1
|
Li C, Zhao W, Zhou H, Wu J, Huo Y, Jiang D, Ji X, Liu K, Xu Q, Li W. Functional Mutations in the microRNA-155 Promoter Modulate its Transcription Efficiency and Expression. Mol Biotechnol 2024; 66:2262-2272. [PMID: 37624482 DOI: 10.1007/s12033-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Limited research has been conducted on porcine miR-155 promoters, and previous study from our group have identified two haplotypes (TT and CC) in different pig breeds, each associated with five fully linked mutation sites within or near the miR-155 gene (Li et al. Dev Comp Immunol 39(1):110-116, 2013). In this study, the promoter region of porcine miR-155 was screened, and two important transcription factors, Foxp3 and RelA, were identified. The binding ability of Foxp3 protein was found to be affected by the first mutation site (A/C) using EMSA analysis. In vitro experiments revealed that the expression level of miR-155 was significantly higher in the C haplotype compared to the T haplotype. Additionally, northern blotting assays indicated that both the first mutation site (A/C) and the fourth mutation site (G/T) had a significant impact on miR-155 expression levels. These findings provide further insights into the transcriptional regulation of porcine miR-155 and identify crucial mutation sites that influence miR-155 expression. This knowledge can serve as a basis for identifying potential molecular markers associated with disease resistance in swine.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| | - Wanxia Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Huijie Zhou
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Yong Huo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Dongfeng Jiang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Xiangbo Ji
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Kun Liu
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wantao Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| |
Collapse
|
2
|
Wang S, Li Y, Du X, Li Q. Two single nucleotide variants in the miR-23a promoter affect granulosa cell apoptosis. Anim Genet 2023; 54:207-210. [PMID: 36478437 DOI: 10.1111/age.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are well known to be important in mammalian female fertility. However, the genetic regulation of miRNAs associated with female fertility remains largely unknown. Here, we report that two single-nucleotide variants (SNVs) in the miR-23a promoter strongly influence miR-23a transcription and function in granulosa cell (GC) apoptosis. Two novel SNVs, g.-283G>C and g.-271C>T, were detected in the porcine miR-23a promoter by pooled-DNA sequencing. Furthermore, SNVs in the promoter region influenced miR-23a transcription in porcine GCs by altering its promoter activity. Functionally, SNVs in the promoter strongly influenced miR-23a regulation of early apoptosis in porcine GCs cultured in vitro. In addition, a preliminary association analysis showed that the combined genotypes of the two SNVs, rather than a single SNV, were tentatively associated with sow fertility traits in a Large White population. Overall, our findings suggest that the SNVs g.-283G>C and g.-271C>T in the miR-23a promoter are causal variants affecting GC apoptosis and miR-23a may be a potential small-molecule nonhormonal drug for regulating female fertility.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Vaishnav S, Chauhan A, Ajay A, Saini BL, Kumar S, Kumar A, Bhushan B, Gaur GK. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep 2023; 50:3705-3721. [PMID: 36642776 DOI: 10.1007/s11033-022-08168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/01/2022] [Indexed: 01/17/2023]
Abstract
Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.
Collapse
Affiliation(s)
| | - Anuj Chauhan
- Indian Veterinary Research Institute, Bareilly, India.
| | - Argana Ajay
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Subodh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | | |
Collapse
|
4
|
miR-27a-3p targets NR5A2 to regulate CYP19A1 expression and 17-β estradiol synthesis in ovine granulosa cells. Anim Reprod Sci 2023; 248:107160. [PMID: 36481589 DOI: 10.1016/j.anireprosci.2022.107160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Although 17-β estradiol (E2) synthesis is important in regulating female fertility, we know little regarding the molecular mechanism of miRNA-regulated ovine E2 synthesis. Here, our experiments with granulosa cells (GCs) from Hu sheep revealed miR-27a-3p involvement in E2 synthesis and its association with ovine litter size. First, we showed that miR-27a-3p of sheep and other mammals share a high nucleotide identity. Next, gain- and loss-of-function assays indicated that miR-27a-3p inhibits CYP19A1 expression and E2 synthesis in GCs. Moreover, we demonstrated that NR5A2 is a direct target of miR-27a-3p. Ovine miR-27a-3p suppresses E2 synthesis via the NR5A2 and CYP19A1 axes. We also identified four single nucleotide polymorphisms in the ovine miR-27a gene, and g.-13 G>A and g 0.24 T > G were significantly associated with the first and the second parity litter size, respectively (P < 0.05). In summary, our findings reveal that miR-27a-3p is a novel regulator of E2 synthesis and may predict litter size of Hu sheep, providing insight into mechanisms underlying granulosa cell function and female fertility.
Collapse
|
5
|
Wang H, Shen Z, Huang R, Zhao A, Jiang J, Li P, Zhou X, Yang S, Hou L. A polymorphism in porcine miR-22 is associated with pork color. Front Vet Sci 2022; 9:939440. [PMID: 35968001 PMCID: PMC9366310 DOI: 10.3389/fvets.2022.939440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are posttranscriptional regulators that play key roles in meat color regulation. Changes in miRNA expression affect their target mRNAs, leading to multifunctional effects on biological processes and phenotypes. In this study, a G > A mutation site located upstream of the precursor miR-22 sequence in Suhuai pigs was significantly correlated with the meat color parameter a*(redness) of the porcine longissimus dorsi (LD) muscle. AA genotype individuals had the highest average meat color a* value and the lowest miR-22 level. When G > A mutation was performed in the miR-22 overexpression vector, miR-22 expression significantly decreased. Considering that Ca2+ homeostasis is closely related to pig meat color, our results further demonstrated that ELOVL6 is a direct target of miR-22 in pigs. The effects of miR-22 on skeletal muscle intracellular Ca2+ were partially caused by the suppression of ELOVL6 expression.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Zhonghao Shen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ruihua Huang
- Institute of Swine Science, Department of Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiani Jiang
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Pinghua Li
- Institute of Swine Science, Department of Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Liming Hou
- Institute of Swine Science, Department of Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Liming Hou
| |
Collapse
|
6
|
A Mutation in Endogenous saRNA miR-23a Influences Granulosa Cells Response to Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061174. [PMID: 35740072 PMCID: PMC9219974 DOI: 10.3390/antiox11061174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Phenotypes are the result of the interaction between the gene and the environment, so the response of individuals with different genotypes to an environment is variable. Here, we reported that a mutation in miR-23a influences granulosa cells (GCs) response to oxidative stress, a common mechanism of environmental factors affecting female reproduction. We showed that nuclear miR-23a is a pro-apoptotic miRNA in porcine GCs through the activation of the transcription and function of NORHA, a long non-coding RNA (lncRNA) induces GC apoptosis and responses to oxidative stress. Mechanistically, miR-23a acts as an endogenous small activating RNA (saRNA) to alter histone modifications of the NORHA promoter through the direct binding to its core promoter. A C > T mutation was identified at −398 nt of the miR-23a core promoter, which created a novel binding site for the transcription factor SMAD4 and recruited the transcription repressor SMAD4 to inhibit miR-23a transcription and function in GCs. Notably, g.−398C > T mutation in the miR-23a promoter reduced GCs response to oxidative stress. In addition, g.−398C > T mutation was significantly associated with sow fertility traits. In short, our findings preliminarily revealed the genetic basis of individual differences in the response to oxidative stress from the perspective of a single mutation and identified miR-23a as a candidate gene for the environmental adaptation to oxidative stress.
Collapse
|
7
|
Wang S, Wu P, Wang K, Ji X, Chen D, Liu Y, Ding J, Xu X, Tang G. Comparative metabolome profiling of serum and urine from sows with a high prevalence of piglet mummification and normal sows at different stages of pregnancy. Theriogenology 2022; 183:10-25. [DOI: 10.1016/j.theriogenology.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022]
|
8
|
Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Front Vet Sci 2021; 8:654064. [PMID: 33937376 PMCID: PMC8081834 DOI: 10.3389/fvets.2021.654064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Spontaneous fetal loss is one of the most important challenges that commercial pig industry is still facing in North America. Research over the decade provided significant insights into some of the associated mechanisms including uterine capacity, placental efficiency, deficits in vasculature, and immune-inflammatory alterations at the maternal-fetal interface. Pigs have unique epitheliochorial placentation where maternal and fetal layers lay in opposition without any invasion. This has provided researchers opportunities to accurately tease out some of the mechanisms associated with maternal-fetal interface adaptations to the constantly evolving needs of a developing conceptus. Another unique feature of porcine pregnancy is the conceptus derived recruitment of immune cells during the window of conceptus attachment. These immune cells in turn participate in pregnancy associated vascular changes and contribute toward tolerance to the semi-allogeneic fetus. However, the precise mechanism of how maternal-fetal cells communicate during the critical times in gestation is not fully understood. Recently, it has been established that bi-directional communication between fetal trophoblasts and maternal cells/tissues is mediated by extracellular vesicles (EVs) including exosomes. These EVs are detected in a variety of tissues and body fluids and their role has been described in modulating several physiological and pathological processes including vascularization, immune-modulation, and homeostasis. Recent literature also suggests that these EVs (exosomes) carry cargo (nucleic acids, protein, and lipids) as unique signatures associated with some of the pregnancy associated pathologies. In this review, we provide overview of important mechanisms in porcine pregnancy success and failure and summarize current knowledge about the unique cargo containing biomolecules in EVs. We also discuss how EVs (including exosomes) transfer their contents into other cells and regulate important biological pathways critical for pregnancy success.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jessica E. Miller
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
9
|
miR-130a/TGF-β1 axis is involved in sow fertility by controlling granulosa cell apoptosis. Theriogenology 2020; 157:407-417. [PMID: 32871445 DOI: 10.1016/j.theriogenology.2020.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
TGF-β1 is a ligand of the TGF-β superfamily and an important cytokine that regulates ovarian functions including follicular development, steroid production, ovulation, luteinization, and female fertility. However, little is known about the regulation of TGF-β1 expression in ovary. Here, we identified that TGF-β1 is a functional target of miR-130a in porcine ovarian granulosa cells (GCs). The 3'-UTR sequence of TGF-β1 gene (1137 bp in length) in Large White (LW) pig was isolated, and multiple RNA regulatory elements (RREs), including several binding motifs of different miRNAs, were identified in this region. Luciferase activity assay showed that miR-130a dramatically suppresses the 3'-UTR luciferase activity of TGF-β1 gene, and further inhibits the expression of TGF-β1 in porcine GCs. FACS revealed that miR-130a acts as a pro-apoptotic factor and promotes GC apoptosis by inhibiting TGF-β1. Two novel linked mutations (-573G > A and -540T > C) were identified in the promoter region of ssc-miR-130a, but their polymorphisms are not associated with sow reproductive traits. Importantly, combined genotype analysis with a known mutation (c.1583 A > G) in the 3'-UTR of porcine TGF-β1 gene showed a significant association with reproductive performance in LW sow population. Overall, our findings defined a novel regulatory axis, miR-130a/TGF-β1 axis, which is involved in regulating sow fertility.
Collapse
|
10
|
Kaczmarek MM, Najmula J, Guzewska MM, Przygrodzka E. MiRNAs in the Peri-Implantation Period: Contribution to Embryo-Maternal Communication in Pigs. Int J Mol Sci 2020; 21:ijms21062229. [PMID: 32210170 PMCID: PMC7139304 DOI: 10.3390/ijms21062229] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a large family of noncoding RNAs, approximately 22 nucleotides long, which function as guide molecules in RNA silencing. Targeting most protein-coding transcripts, miRNAs are involved in nearly all developmental and pathophysiological processes in animals. To date, the regulatory roles of miRNAs in reproduction, such as fertilization, embryo development, implantation, and placenta formation, among others, have been demonstrated in numerous mammalian species, including domestic livestock such as pigs. Over the past years, it appeared that understanding the functions of miRNAs in mammalian reproduction can substantially improve our understanding of the biological challenges of successful reproductive performance. This review describes the current knowledge on miRNAs, specifically in relation to the peri-implantation period when the majority of embryonic mortality occurs in pigs. To present a broader picture of crucial peri-implantation events, we focus on the role of miRNA-processing machinery and miRNA–mRNA infarctions during the maternal recognition of pregnancy, leading to maintenance of the corpus luteum function and further embryo implantation. Furthermore, we summarize the current knowledge on cell-to-cell communication involving extracellular vesicles at the embryo–maternal interface in pigs. Finally, we discuss the potential of circulating miRNAs to serve as indicators of ongoing embryo–maternal crosstalk.
Collapse
Affiliation(s)
- Monika M. Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (J.N.); (M.M.G.)
- Correspondence:
| | - Joanna Najmula
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (J.N.); (M.M.G.)
| | - Maria M. Guzewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (J.N.); (M.M.G.)
| | | |
Collapse
|
11
|
Nielsen BS, Holmstrøm K. Combined MicroRNA In Situ Hybridization and Immunohistochemical Detection of Protein Markers. Methods Mol Biol 2019; 1953:271-286. [PMID: 30912028 DOI: 10.1007/978-1-4939-9145-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are short (18-23 nucleotides) noncoding RNAs involved in posttranscriptional regulation of gene expression through their specific binding to the 3'UTR of mRNAs. MicroRNAs can be detected in tissues using specific locked nucleic acid (LNA)-enhanced probes. The characterization of microRNA expression in tissues by in situ detection is often crucial following a microRNA biomarker discovery phase in order to validate the candidate microRNA biomarker and allow better interpretation of its molecular functions and derived cellular interactions. The in situ hybridization data provides information about contextual distribution and cellular origin of the microRNA. By combining microRNA in situ hybridization with immunohistochemical staining of protein markers, it is possible to precisely characterize the microRNA-expressing cells and to identify the potential microRNA targets. This combined technology can also help to monitor changes in the level of potential microRNA targets in a therapeutic setting. In this chapter, we present a fluorescence-based detection method that allows the combination of microRNA in situ hybridization with immunohistochemical staining of one and, in this updated version of the paper, two protein markers detected with primary antibodies raised in the same host species.
Collapse
|
12
|
Balogh EE, Gábor G, Bodó S, Rózsa L, Rátky J, Zsolnai A, Anton I. Effect of single-nucleotide polymorphisms on specific reproduction parameters in Hungarian Large White sows. Acta Vet Hung 2019; 67:256-273. [PMID: 31238725 DOI: 10.1556/004.2019.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to reveal the effect of single-nucleotide polymorphisms (SNPs) on the total number of piglets born (TNB), the litter weight born alive (LWA), the number of piglets born dead (NBD), the average litter weight on the 21st day (M21D) and the interval between litters (IBL). Genotypes were determined on a high-density Illumina Porcine SNP 60K BeadChip. Data screening and data identification were performed by a multi-locus mixed-model. Statistical analyses were carried out to find associations between individual genotypes of 290 Hungarian Large White sows and the investigated reproduction parameters. According to the analysis outcome, three SNPs were identified to be associated with TNB. These loci are located on chromosomes 1, 6 and 13 (-log10P = 6.0, 7.86 and 6.22, the frequencies of their minor alleles, MAF, were 0.298, 0.299 and 0.364, respectively). Two loci showed considerable association (-log10P = 10.35 and 10.46) with LWA on chromosomes 5 and X, the MAF were 0.425 and 0.446, respectively. Seven loci were found to be associated with NBD. These loci are located on chromosomes 5, 6, 13, 14, 15, 16 and 18 (-log10P = 10.95, 5.43, 8.29, 6.72, 6.81, 5.90, and 5.15, respectively). One locus showed association (-log10P = 5.62) with M21D on chromosome 1 (the MAF was 0.461). Another locus was found to be associated with IBL on chromosome 8 (-log10P = 7.56; the MAF was 0.438). The above-mentioned loci provide a straightforward possibility to assist selection by molecular tools and, consequently, to improve the competitiveness of the Hungarian Large White (HLW) breed.
Collapse
Affiliation(s)
- Eszter Erika Balogh
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - György Gábor
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - Szilárd Bodó
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - László Rózsa
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - József Rátky
- 2Department of Obstetrics and Reproduction, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsolnai
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - István Anton
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| |
Collapse
|
13
|
Wang Y, Wang S, Wang S, Li G, Jiang R, Li Z, Han R, Kang X, Sun G. Target gene identification and functional characterization of miR-1704 in chicken. Anim Biotechnol 2019; 31:229-236. [PMID: 31039664 DOI: 10.1080/10495398.2019.1585365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MiRNAs are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. SNPs in miRNA genes may lead to phenotypic variation by altering miRNA expression and their targets. In this study, miR-1704 expression profiles in nine tissues at 1 d, 6 weeks and 16 weeks old Gushi chickens were detected. MiR-1704 was widely expressed in the detection of tissues. The expression in 1 d and 6 weeks old was low abundance, while its expression at 16 weeks was very high. An rs14668705 (C > G) SNP was detected within the pre-miR-1704 in an F2 resource population of Gushi chicken crossed with Anka broiler. Bioinformatic analysis indicated that the C > G mutation could introduce a base-pair mismatch and cause the change of free energy. Experiments further revealed that the rs14668705 in precursor miR-1704 could significantly affect mature miR-1704 biogenesis and was significantly associated with body weight at the age of 0, 6, 8, 10, and 12 weeks, shank circumference at 4, 8, and 12 weeks, carcass weight, and semi-evisceration weight (p < 0.05). Insulin receptor 2 (IRS2) gene, one of the potential targets of miR-1704 was identified and further confirmed. These data suggested that miR-1704 targeted IRS2 and have an effect on body weight in chicken.
Collapse
Affiliation(s)
- Yongcai Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Shunhong Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Shanghe Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - RuiRui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
14
|
Gao Z, Sun L, Dai K, Du Y, Wu S, Bao W. Effects of mutations in porcine miRNA-215 precursor sequences on miRNA-215 regulatory function. Gene 2019; 701:131-138. [PMID: 30905811 DOI: 10.1016/j.gene.2019.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) play an important role in animal growth and disease development, and sequence variation in microRNAs can alter their functions. Herein, we explored the effects of mutations in the miRNA-215 precursor sequence on the miRNA-215 regulatory network and resistance to Escherichia coli (E. coli). Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to detect sequence variations in Sutai and Meishan pigs. The miR-192 precursor sequence was not mutated, but the miR-215 precursor included an AT insertion mutation at position 6 (start from the first base of the miR-215 precursor) and a C/T mutation at position 43. Wild-type (WT) and mutant miR-215 precursor expression vectors were constructed to investigate the effects of sequence variation on expression of miR-215 and its target genes DLG5 and ALCAM, cytokine levels and E. coli adhesion. Compared with the WT control group, cells harbouring the C/T mutant vector displayed reduced miR-215 expression, increased target gene expression, elevated cytokine levels and rising E. coli adhesion, whereas cells harbouring the AT insertion mutant vector were not significantly changed. The sequence variation in the miRNA-215 precursor may affect the miRNA-215 regulatory network, and alter the stability of intestinal epithelial cells (IPEC-J2 cells) and resistance to E. coli. Our findings provide guidance for future research on the regulatory mechanisms of miR-215 in porcine resistance to E. coli F18, and identifying effective genetic markers against this organism.
Collapse
Affiliation(s)
- Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaiyu Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yulu Du
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Pang P, Li Z, Hu H, Wang L, Sun H, Mei S, Li F. Genetic effect and combined genotype effect of ESR, FSHβ, CTNNAL1 and miR-27a loci on litter size in a Large White population. Anim Biotechnol 2018; 30:287-292. [PMID: 30178695 DOI: 10.1080/10495398.2018.1486322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To select new Large White line with high number of piglets born, genotypes of estrogen receptor (ESR), the follicle stimulating hormone β subunit (FSHβ), catenin alpha like 1 (CTNNAL1) and miR-27a were tested in 472 Large White sows. The associations of different genotypes with litter size traits were also studied. The results showed ESRBB and FSHβBB sows produced 0.41-1.49 more pigs per litter (p < .05) for total number born (TNB) and number born alive (NBA) than did other corresponding genotypes. TNB of CTNNAL1CG sows is 0.50 more pigs per litter (p < .05) than that of CTNNAL1GG sows with the dominance effect of 0.25 pigs per litter (p < .05). miR-27aBB sows had a less estimated breeding value (EBV) to TNB and had a more number of mummified pigs (NM) than did miR-27aAA or miR-27aAB sows (p < .05). Therefore, ESRB, FSHβB, CTNNAL1G, miR-27aA allele was favorable for litter size traits. Furthermore, combined genetic effect analysis showed ESRAAFSHβBB, ESRAACTNNAL1CG, ESRAAmiR-27aAA, FSHβBBCTNNAL1CC, FSHβBBmiR-27aAA and CTNNAL1CG miR-27aAB was the favorable combined genotype for litter size traits. These results identified favorable alleles and genotypes for litter size traits and suggested a potential selection scheme for litter size in Large White pigs.
Collapse
Affiliation(s)
- Panfei Pang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China
| | - Zhenzhu Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China
| | - Hua Hu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Science , Wuhan , China
| | - Lei Wang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Science , Wuhan , China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Science , Wuhan , China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China.,The Cooperative Innovation Centre for Sustainable Pig Production , Wuhan , China
| |
Collapse
|
16
|
Chen B, Chen J, Du Q, Zhou D, Wang L, Xie J, Li Y, Zhang D. Genetic variants in microRNA biogenesis genes as novel indicators for secondary growth in Populus. THE NEW PHYTOLOGIST 2018; 219:1263-1282. [PMID: 29916214 DOI: 10.1111/nph.15262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) function as key regulators of complex traits, but how genetic alterations in miRNA biogenesis genes (miRBGs) affect quantitative variation has not been elucidated. We conducted transcript analyses and association genetics to investigate how miRBGs, miRNA genes (MIRNAs) and their respective targets contribute to secondary growth in a natural population of 435 Populus tomentosa individuals. This analysis identified 29 843 common single-nucleotide polymorphisms (SNPs; frequency > 0.10) within 682 genes (80 miRBGs, 152 MIRNAs, and 457 miRNA targets). Single-SNP association analysis found SNPs in 234 candidate genes exhibited significant additive/dominant effects on phenotypes. Among these, specific candidates that associated with the same traits produced 791 miRBG-MIRNA-target combinations, suggesting possible genetic miRBG-MIRNA and MIRNA-target interactions, providing an important clue for the regulatory mechanisms of miRBGs. Multi-SNP association found 4672 epistatic pairs involving 578 genes that showed significant associations with traits and identified 106 miRBG-MIRNA-target combinations. Two multi-hierarchical networks were constructed based on correlations of miRBG-miRNA and miRNA-target expression to further probe the mechanisms of trait diversity underlying changes in miRBGs. Our study opens avenues for the investigation of miRNA function in perennial plants and underscored miRBGs as potentially modulating quantitative variation in traits.
Collapse
Affiliation(s)
- Beibei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jinhui Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
17
|
Zhang S, Yang J, Wang L, Li Z, Pang P, Li F. SLA-11 mutations are associated with litter size traits in Large White and Chinese DIV pigs. Anim Biotechnol 2018; 30:212-218. [PMID: 29936889 DOI: 10.1080/10495398.2018.1471401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Litter size is an important economic traits in pigs. SLA-11 gene is a member of SLA (swine leukocyte antigen) complex. In our previous study, the SLA-11 gene was differentially expressed in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. Here, we identified two mutations (c.754-132 T > C and c.1421 + 38 T > C) in SLA-11 gene and analyzed the associations of two SNPs with litter size traits in Large White (n = 263) and DIV (n = 117) sows. The results showed that in Large White pigs, SLA-11 c.754-132 CC sows produced 0.74 and 0.87 more pigs per litter for TNB and NBA of all parities than did TT sows (p < .05); In DIV pigs, SLA-11 c.754-132 CC sows produced 1.17 more pigs per litter for TNB of all parities than did TC sows (p < .05). In Large White pigs, SLA-11 c.1421 + 38 CC sows produced 0.9 more pigs per litter for TNB of all parities than did TT sows (p < .05), while in DIV pigs SLA-11 c.1421 + 38 CC sows produced 0.84 and 0.7 less pigs per litter for TNB and NBA of all parities than did TT sows (p < .05). Our research indicated that SLA-11 mutations were potential molecular markers for improving the litter size traits in pigs.
Collapse
Affiliation(s)
- Shuna Zhang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Jiahao Yang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Lei Wang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Zhenzhu Li
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Panfei Pang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Fenge Li
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China.,b The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , PR China
| |
Collapse
|
18
|
Bidarimath M, Tayade C. Pregnancy and spontaneous fetal loss: A pig perspective. Mol Reprod Dev 2017; 84:856-869. [PMID: 28661560 DOI: 10.1002/mrd.22847] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Pigs have a unique, non-invasive epitheliochorial placenta where maternal and fetal layers lay in apposition. Indentation of fetal capillaries into the trophoblasts and maternal capillaries into the uterine epithelium reduce the distance between the fetal and maternal blood, ensuring nutrient transfer for proper conceptus development. Another unique feature of pig pregnancy is conceptus-mediated immune cell enrichment during the early stages of conceptus attachment (around gestation Day 15). This period coincides with the development of vasculature networks at the maternal-fetal interface, which is critical for successful conceptus growth. Specific chemokines, their receptors, and chemokine decoy receptor networks coordinate this immune cell enrichment and the positioning at the maternal-fetal interface. The recruited immune cells, in turn, adopt a specialized phenotype to support key processes of maternal-fetal adaptations, including tolerance to the semi-allogeneic fetus and supporting vascularization. Disturbance in coordinated cross talk between the conceptus and maternal endometrium is an important mechanism associated with spontaneous fetal loss. The exact mechanism of fetal loss is still not yet identified, although research in the last two decades point to various factors including genetics, nutrition, uterine capacity, placental efficiency, and imbalanced immune factors at the maternal-fetal interface. In this review, we summarize some of the recent advances in endometrial immune cell functions and their regulation. We also provide insights into endometrial/placental transcriptome, microRNA biology, and extravesicular transport across the maternal-fetal interface, as well as their potential implications in porcine pregnancy success or failure.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Shi J, Sun G. Effect of pre-miRNA-1658 gene polymorphism on chicken growth and carcass traits. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:455-461. [PMID: 27503275 PMCID: PMC5394830 DOI: 10.5713/ajas.16.0305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022]
Abstract
Objective Polymorphisms occurring in the precursor region of microRNAs (miRNAs) affect the target gene and alter the biogenesis of miRNAs, resulting in phenotypic variation. The purpose of the study was to investigate the genetic effects of rs16681031 (C>G) mutation in the precursor region of gga-miR-1658 on the economic traits of the Gushi-Anka chicken F2 resource population. Methods To explore the effect of miR-1658 polymorphisms on chicken economic traits, the SNP was genotyped by MassArray matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The association between the SNP and chicken body size, growth and carcass traits was determined by linear mixed models. Results The SNP was not only significantly associated with body weight at the age of 6, 8, 10, 12 weeks, respectively, but also with the breadth of the chicken chest, body slanting length and pelvic breadth at 4 weeks, chest depth at 8 weeks of age, and body slanting length at 12 weeks (p<0.05), respectively. Conclusion Our data serve as a useful resource for further analysis of miRNA function, and represent a molecular genetic basis for poultry breeding.
Collapse
Affiliation(s)
- Jianzhou Shi
- Institute of Agricultural and Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Guirong Sun
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
20
|
Trenhaile MD, Petersen JL, Kachman SD, Johnson RK, Ciobanu DC. Long‐term selection for litter size in swine results in shifts in allelic frequency in regions involved in reproductive processes. Anim Genet 2016; 47:534-42. [DOI: 10.1111/age.12448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Affiliation(s)
- M. D. Trenhaile
- Animal Science Department University of Nebraska Lincoln NE 68583 USA
| | - J. L. Petersen
- Animal Science Department University of Nebraska Lincoln NE 68583 USA
| | - S. D. Kachman
- Department of Statistics University of Nebraska Lincoln NE 68583 USA
| | - R. K. Johnson
- Animal Science Department University of Nebraska Lincoln NE 68583 USA
| | - D. C. Ciobanu
- Animal Science Department University of Nebraska Lincoln NE 68583 USA
| |
Collapse
|
21
|
Chen B, Du Q, Chen J, Yang X, Tian J, Li B, Zhang D. Dissection of allelic interactions among Pto-miR257 and its targets and their effects on growth and wood properties in Populus. Heredity (Edinb) 2016; 117:73-83. [PMID: 27118153 DOI: 10.1038/hdy.2016.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/02/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in the regulation of genes; however, for trees few studies have explored the potential impact of the interactions between miRNAs and their target genes. Here, we performed transcript profiling and association genetics (single-SNP, haplotype-based and multi-SNP associations) to study the genetic regulatory relationship of Pto-miR257 and its 12 target genes in 435 individuals of a natural population of Populus tomentosa. Expression profiling of Pto-miR257 and its targets showed a negative relationship between their expression levels. Of the 61 single-nucleotide polymorphisms (SNPs) detected in Pto-miR257, 6 in the pre-mature region strongly affected its secondary stability and 1 in the mature region could alter its target spectrum. Among the 1029 SNPs in the targets, 3 were located in target sites that could change the binding affinity of Pto-miR257. Single-SNP association analysis revealed that SNPs in Pto-miR257 and target genes associated with both growth and wood property traits, in agreement with haplotype-based identifications. Multi-SNP association found that 10 targets shared at least one common trait with Pto-miR257, with phenotypic variance from 0.5 to 8.5%, suggesting a possible internal genetic interaction between them. Epistasis analysis showed significant epistatic interactions among Pto-miR257 and its targets. Therefore, our study demonstrated Pto-miR257 and its 12 targets had roles in wood formation and revealed the genetic interaction network between the miRNA and its targets under additive, dominant and epistatic models. Thus, association genetics can be used to decipher the interactions between miRNAs and their target genes and to help understand the genetic architecture of complex traits.
Collapse
Affiliation(s)
- B Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Q Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - J Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - X Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - J Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - B Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Department of Forestry, North Carolina State University, Raleigh, NC, USA
| | - D Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
22
|
The transcription factor ccaat/enhancer binding protein β (C/EBPβ) and miR-27a regulate the expression of porcine Dickkopf2 (DKK2). Sci Rep 2015; 5:17972. [PMID: 26656471 PMCID: PMC4675968 DOI: 10.1038/srep17972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023] Open
Abstract
Using Affymetrix porcine Gene-Chip analyses, we found that Dickkopf2 (DKK2), a WNT antagonist, is differentially expressed in pre-ovulatory follicles between Large White and Chinese Taihu sows. This study aims to identify the regulatory factors responsible for DKK2 expression. Deletion fragment and mutation analyses identified DKK2-D3 as the porcine DKK2 core promoter. There were four C/EBPβ binding sites within the DKK2 core promoter. The C allele that results from a spontaneous alteration (DKK2 c.−1130 T > C) in the core promoter was associated with a higher total number born (TNB) and a higher number born alive (NBA) in all parities in a synthetic pig population. This was possibly the result of a change in C/EBPβ binding ability, which was confirmed using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA). Moreover, C/EBPβ specifically bound to and activated the DKK2 promoter, as revealed by mutation analysis, overexpression and RNA interference (RNAi) experiments. We also confirmed that miR-27a is a negative regulator of the DKK2 gene using miR-27a overexpression and inhibition experiments and mutation analyses. RTCA xCELLigence experiments showed that miR-27a suppressed Chinese hamster ovary (CHO) cell proliferation by down-regulating DKK2 gene expression. Taken together, our findings suggest that C/EBPβ and miR-27a control DKK2 transcription.
Collapse
|
23
|
Placentation, maternal-fetal interface, and conceptus loss in swine. Theriogenology 2015; 85:135-44. [PMID: 26324112 DOI: 10.1016/j.theriogenology.2015.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
Pregnancy is a delicate yet complex physiological process that requires fine-tuning of many factors (hormones, growth factors, cytokines, and receptors) between the mother and the conceptus to ensure the survival of the conceptus(es) to term. Any disturbance in the maternal-conceptus dialog can have detrimental effects on the affected conceptus or even the outcome of pregnancy as a whole. Being a litter-bearing species, such disruptions can lead to a loss of up to 45% of the totally healthy offspring during early (periattachment) and midgestation to late gestation in pigs. Although the exact mechanism is not entirely understood, several factors have been associated with the fetal loss including but not limited to uterine capacity, placental efficiency, genetics, nutrition, and deficits in vascularization at the maternal-fetal interface. Over the years, we investigated how immune cells are recruited to the porcine maternal-fetal interface and whether they contribute to vascularization. We also delineated how cytokines, chemokines, and cytokine destabilizing factors fine-tune inflammation and whether the cytokine shift from early to midpregnancy exists at the porcine maternal-fetal interface. Finally, we evaluated the role of microRNAs in regulating immune cell recruitment and their angiogenic functions during pregnancy. Collectively our research points out that the immune-angiogenesis axis at the porcine maternal interface is significantly involved in promoting new blood vessel development, regulating inflammatory responses and ultimately contributing to pregnancy success. In this review, we summarized current knowledge on spontaneous fetal loss in swine, with special attention to the mechanisms in immune reactivity and interplay at the maternal-fetal interface.
Collapse
|
24
|
Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken. Gene 2015; 566:8-12. [DOI: 10.1016/j.gene.2015.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/28/2015] [Accepted: 03/16/2015] [Indexed: 11/21/2022]
|
25
|
Wang SH, Wang SH, Li H, Sun GR, Lyu SJ, Liu XJ, Li ZJ, Kang XT. SNP in pre-miR-1666 decreases mature miRNA expression and is associated with chicken performance. Genome 2015; 58:81-90. [PMID: 26053224 DOI: 10.1139/gen-2015-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polymorphisms in miRNA genes could potentially alter various biological processes by influencing the processing and (or) target selection of miRNAs. The rs14120863 (C > G) mutation, which we characterized in a Gushi-Anka F2 resource population, resides in the precursor region of miR-1666. Association analysis with chicken carcass and growth traits showed that the SNP was significantly associated with carcass weight, evisceration weight, breast muscle weight, leg muscle weight, and body weight at 8 weeks of age, as well as some body size indexes including shank girth, chest breadth, breast bone length, and body slanting length, in the Gushi-Anka F2 resource population. Quantitative RT-PCR results showed that miR-1666 expression levels in muscle tissues differed within various genotypes. Experiment in DF1 cells further confirmed that the SNP in miR-1666 could significantly alter mature miRNA production. Subsequently, using dual-luciferase report assay, we verified that miR-1666 could perform its function through targeting of the CBFB gene. In conclusion, the SNP in the precursor of miR-1666 could significantly reduce mature miR-1666 production. It may further affect the function of miR-1666 through the target gene CBFB, hence it is associated with chicken growth traits.
Collapse
Affiliation(s)
- Shan-He Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| | - Shun-Hong Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| | - Gui-Rong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| | - Shi-Jie Lyu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| | - Xiao-Jun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| | - Zhuan-Jian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| | - Xiang-Tao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, P.R. China
| |
Collapse
|
26
|
Zhang R, Große-Brinkhaus C, Heidt H, Uddin MJ, Cinar MU, Tesfaye D, Tholen E, Looft C, Schellander K, Neuhoff C. Polymorphisms and expression analysis of SOX-6 in relation to porcine growth, carcass, and meat quality traits. Meat Sci 2015; 107:26-32. [PMID: 25935846 DOI: 10.1016/j.meatsci.2015.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/16/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
The aim of the study was to investigate single nucleotide polymorphisms (SNPs) and expression of SOX-6 to support its candidacy for growth, carcass, and meat quality traits in pigs. The first SNP, rs81358375, was associated with pH 45 min post mortem in loin (pH1L), the thickness of backfat and side fat, and carcass length in Pietrain (Pi) population, and related with backfat thickness and daily gain in Duroc × Pietrain F2 (DuPi) population. The other SNP, rs321666676, was associated with meat colour in Pi population. In DuPi population, the protein, not mRNA, level of SOX-6 in high pH1L pigs was significantly less abundant compared with low pH1L pigs, where microRNAs targeting SOX-6 were also differently regulated. This paper shows that SOX-6 could be a potential candidate gene for porcine growth, carcass, and meat quality traits based on genetic association and gene expression.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christine Große-Brinkhaus
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Hanna Heidt
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Muhammad Jasim Uddin
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany; Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Mehmet Ulas Cinar
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany; Faculty of Agriculture, Department of Animal Science, Erciyes University, 38039 Kayseri, Turkey.
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christian Looft
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
27
|
Kim JM, Lim KS, Hong JS, Kang JH, Lee YS, Hong KC. A polymorphism in the porcine miR-208b is associated with microRNA biogenesis and expressions of SOX-6 and MYH7 with effects on muscle fibre characteristics and meat quality. Anim Genet 2014; 46:73-7. [PMID: 25530254 DOI: 10.1111/age.12255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) encoded by the myosin heavy chain (MHC) genes are muscle-specific miRNAs (myomiRs) and regulate the expression of MHC isoforms in skeletal muscle. These miRNAs have been implicated in muscle fibre types and their characteristics by affecting the heterogeneity of myosin. In pigs, miR-208b and miR-499 are embedded in introns of MYH7 and MYH7b respectively. Here, we identified a novel single nucleotide polymorphism (SNP) in intron 30 of MYH7 by which porcine miR-208b is encoded. Based on the association study using a total of 487 pigs including Berkshire (n = 164), Landrace (n = 121) and Yorkshire (n = 202), the miR-208b SNP (g.17104G>A) had significant effects on the proportions of types I and IIb fibre numbers (P < 0.010) among muscle fibre characteristics and on drip loss (P = 0.012) in meat quality traits. Moreover, the SNP affected the processing of primary miR-208b into precursor miR-208b with a marginal trend towards significance (P = 0.053), thereby leading to significant changes in the levels of mature miR-208b (P = 0.009). These SNP-dependent changes in mature miR-208b levels were negatively correlated with the expression levels of its target gene, SOX-6 (P = 0.038), and positively associated with the expression levels of its host gene, MYH7 (P = 0.046). Taken together, our data suggest that the porcine miR-208b SNP differentially represses the expression of SOX-6 by regulating miRNA biogenesis, thereby affecting the expression of MYH7 and the traits of muscle fibre characteristics and meat quality.
Collapse
Affiliation(s)
- J M Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, South Korea; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, 4072, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Association study of a common genetic variant in pre-miR-1596 with chicken performance traits. Mol Biol Rep 2014; 41:7175-81. [PMID: 25038725 DOI: 10.1007/s11033-014-3600-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 07/07/2014] [Indexed: 02/01/2023]
Abstract
Increasing reports have verified that miRNAs had an important effect on the growth and development in farm animals. To evaluate the possible effect of miR-1596 polymorphisms on chicken economic traits, directly sequencing and polymerase chain reaction-restriction fragment length polymorphism, association analysis as well as online software were used. The results showed that a C > T polymorphism existed in the miR-1596 gene of the Gushi × Anka F2 resource population. The association analysis showed that it was significantly relevant with the potential of hydrogen of leg muscle, fat content of dry sample and fat content of fresh sample, shank length at 0 day and 4 weeks of age; leg weight, leg muscle weight, and breast muscle weight (P < 0.05); and highly significant association with shank girth at 8 weeks of age and abdominal fat weight (P < 0.01). We predicted the secondary structure of Gallus gallus-miR-1596 (gga-miR-1596) and the free energy by using M-fold, which were not altered. MiR-1596 is conserved between chicken and turkey. Our data implied that miR-1596 might participate in regulating the muscle development and adipogenesis.
Collapse
|
29
|
Gong W, Xiao D, Ming G, Yin J, Zhou H, Liu Z. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J Diabetes 2014; 6:279-89. [PMID: 24606011 DOI: 10.1111/1753-0407.12143] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are important endogenous regulators in eukaryotic gene expression and a broad range of biological processes. MiRNA-related genetic variations have been proved to be associated with human diseases, such as type 2 diabetes mellitus (T2DM). Polymorphisms in miRNA genes (primary miRNAs, precursor miRNAs, mature miRNAs, and miRNA regulatory regions) may be involved in the development of T2DM by changing the expression and structure of miRNAs and target gene expression. Genetic polymorphisms of the 3'-untranslated region (UTR) in miRNA target genes may destroy putative miRNA binding sites or create new miRNA binding sites, which affects the binding of UTRs with miRNAs, finally resulting in susceptibility to and development of T2DM. Therefore, focusing on studies into genetic polymorphisms in miRNAs or miRNA binding sites will help our understanding of the pathophysiology of T2DM development and lead to better health management. Herein, we review the association of genetic polymorphisms in miRNA and miRNA targets genes with T2DM development.
Collapse
Affiliation(s)
- Weijing Gong
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China; Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | |
Collapse
|
30
|
Jung YW, Jeon YJ, Rah H, Kim JH, Shin JE, Choi DH, Cha SH, Kim NK. Genetic variants in microRNA machinery genes are associated [corrected] with idiopathic recurrent pregnancy loss risk. PLoS One 2014; 9:e95803. [PMID: 24769857 PMCID: PMC4000197 DOI: 10.1371/journal.pone.0095803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/31/2014] [Indexed: 11/28/2022] Open
Abstract
Objective Key molecules involved in microRNA (miRNA) biogenesis, such as DROSHA, XPO5, and DICER, have been identified in trophoblast cells, confirming that the miRNA biogenesis pathway is active in human placenta. In addition, miRNAs regulate uterine gene expression associated with inflammatory responses during the peri-implantation period and participate in maternal-fetal immune tolerance. The purpose of this study was to demonstrate whether genetic polymorphisms in miRNA machinery genes show an association with idiopathic recurrent pregnancy loss (RPL) in Korean women. Study design We performed a case-control study with 238 controls and 338 women who had experienced at least two consecutive pregnancy losses between 1999 and 2010. Genotypes of miRNA machinery genes, including DICER rs3742330, DROSHA rs10719, RAN GTPase (RAN) rs14035, and exportin-5 (XPO5) rs11077 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The logistic odds ratios (ORs) of RPL were estimated with a 95% confidence interval (CI) in multivariate analysis after maternal age adjustment. Gene-gene interactions among the loci of the four gene polymorphisms were evaluated using the multifactor dimensionality reduction (MDR) method. Results The RAN rs14035 CC genotype and DICER rs3742330/DROSHA rs10719 GG/TC+CC, rs3742330/RAN rs14035 GG/CC, and DICER rs3742330/XPO5 rs11077 GG/AC+CC combinations were significantly associated with increased RPL risk, whereas the RAN rs14035 CT, DICER rs3742330/RAN rs14035 AA+AG/CT+TT, DROSHA rs10719/RAN rs14035 TC+CC/CT+TT, and RAN rs14035/XPO5 rs11077 CT+TT/AA combinations reduced RPL risk. The A-T-T-C and G-C-T-A allele combinations (DICER/DROSHA/RAN/XPO5) were 20 times more frequent in the RPL group than in the control group. Conclusion Our study demonstrates the relationship between RPL development and the polymorphism of the miRNA machinery gene RAN and combined genotype of DROSHA/DICER.
Collapse
Affiliation(s)
- Yong Wook Jung
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, South Korea
| | - Young Joo Jeon
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - HyungChul Rah
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Ji Eun Shin
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Dong Hee Choi
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Sun Hee Cha
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
| | - Nam Keun Kim
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam-si, South Korea
- * E-mail:
| |
Collapse
|
31
|
Wessels JM, Edwards AK, Khalaj K, Kridli RT, Bidarimath M, Tayade C. The microRNAome of pregnancy: deciphering miRNA networks at the maternal-fetal interface. PLoS One 2013; 8:e72264. [PMID: 24278102 PMCID: PMC3838410 DOI: 10.1371/journal.pone.0072264] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate a vast network of genes by inhibiting mRNA translation. Aberrant miRNA expression profiles have been implicated in pathologies and physiological processes including pregnancy and angiogenesis. Using our established model of implantation failure and spontaneous fetal loss in pigs (Sus scrofa), 236 miRNAs were profiled and compared between 1) non-pregnant and pregnant endometrium, 2) maternal and fetal tissues, and 3) viable and growth-arrested conceptus attachment sites by microarray and Real-Time PCR. Many significant differences in miRNA expression were observed between each of the aforementioned comparisons, and several were validated by PCR. Results indicated which miRNAs were important during pregnancy, which were elevated on the maternal or fetal side of the maternal-fetal interface, and they implicated the maternal expression of miR-10a, 27a, 29c, 323, 331-5p, 339-3p, 374b-5p, and 935 in the spontaneous loss observed in pigs. Several putative mRNA targets of the miRNAs (elevated in endometrium associated with arresting conceptuses) were assessed by quantitative Real-Time PCR and were depressed, supporting their regulation by miRNAs. Finally, targets were clustered by function to obtain ranked lists of gene networks that indicated which pathways/physiological processes might be important in non-pregnant (extracellular matrix factors) versus pregnant endometrium (nuclear transcription factor regulation), maternal (blood vessel development) versus fetal (neuronal differentiation) tissue, and healthy (extracellular matrix factors) versus arresting (GRAM domain) conceptus attachment sites. Overall, we demonstrate the presence of miRNAs on both sides of the maternal-fetal interface, implicate them in spontaneous fetal loss, and present a unique glimpse into the vast microRNAome of pregnancy.
Collapse
Affiliation(s)
- Jocelyn M. Wessels
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Andrew K. Edwards
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kasra Khalaj
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Rami T. Kridli
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Li H, Sun GR, Lv SJ, Wei Y, Han RL, Tian YD, Kang XT. Association study of polymorphisms inside the miR-1657 seed region with chicken growth and meat traits. Br Poult Sci 2013; 53:770-6. [PMID: 23398421 DOI: 10.1080/00071668.2012.750716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Polymorphisms occurring in the seed region of microRNAs (miRNAs) could influence their target gene and lead to phenotypic variation. The purpose of the research was to explore the genetic effects of the rs14934924 (G > A) mutation resident in the conserved seed region of miR-1657 on growth and meat traits of the Gushi-Anka F2 resource population. 2. The NdeI polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and association analysis were used to analyse the polymorphism. 3. The mutation was associated with body weight at 8 weeks of age, shank girth at 12 weeks of age, breast bone length at 12 weeks of age, pelvis breadth at 4 weeks of age and subcutaneous fat thickness (P < 0·05) and was associated with body weight at 4, 6, 10 and 12 weeks of age (P < 0·01). 4. Our results will be a useful resource for a subsequent study in miRNA function, and provide a basis for molecular techniques in chicken breeding.
Collapse
Affiliation(s)
- H Li
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, P.R. China
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
MicroRNAs (miRNAs) are a class of ~22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3'-untranslated regions (3'-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
Collapse
|
34
|
Li H, Sun GR, Tian YD, Han RL, Li GX, Kang XT. MicroRNAs-1614-3p gene seed region polymorphisms and association analysis with chicken production traits. J Appl Genet 2013; 54:209-13. [PMID: 23456846 DOI: 10.1007/s13353-013-0142-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/02/2013] [Accepted: 02/11/2013] [Indexed: 11/30/2022]
Abstract
In the present study, a total of 860 chickens from a Gushi-Anka F2 resource population were used to evaluate the genetic effect of the gga-miR-1614-3p gene. A novel, silent, single nucleotide polymorphism (SNP, +5 C>T) was detected in the gga-miR-1614-3p gene seed region through AvaII polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR products sequencing methods. Associations between the SNP and chicken growth, meat quality and carcass traits were performed by association analysis. The results showed that the SNP was significantly associated with breast muscle shear force and leg muscle water loss rate, wing weight, liver weight and heart weight (p<0.05), and highly significantly associated with the weight of the abdominal fat (p<0.01). The secondary structure of gga-miR-1614 and the free energy were altered due to the variation predicted by the M-fold program.
Collapse
Affiliation(s)
- Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Nielsen BS, Holmstrøm K. Combined microRNA in situ hybridization and immunohistochemical detection of protein markers. Methods Mol Biol 2013; 986:353-65. [PMID: 23436423 DOI: 10.1007/978-1-62703-311-4_22] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs are short (18-23 nucleotides) non-coding RNAs involved in posttranscriptional regulation of gene expression through their specific binding to the 3'UTR of mRNAs. MicroRNAs can be detected in tissues using specific locked nucleic acid (LNA)-enhanced probes. The characterization of microRNA expression in tissues by in situ detection is often crucial following a microRNA biomarker discovery phase in order to validate the candidate microRNA biomarker and allow better interpretation of its molecular functions and derived cellular interactions. The in situ hybridization data provides information about contextual distribution and cellular origin of the microRNA. By combining microRNA in situ hybridization with immunohistochemical staining of protein markers, it is possible to precisely characterize the microRNA expressing cells and to identify the potential microRNA targets. This combined technology can also help to monitor changes in the level of potential microRNA targets in a therapeutic setting. In this chapter we present a fluorescence-based technology that allows the combination of microRNA in situ hybridization with immunohistochemistry exemplified by the in situ detection of miR-21 and miR-205 in combination with PDCD4 and smooth muscle a-actin.
Collapse
|
36
|
Identification of the promoter region and genetic mutations of the porcine GALP gene. Mol Biol Rep 2012; 40:2821-7. [PMID: 23224658 DOI: 10.1007/s11033-012-2297-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Galanin-like peptide (GALP) gene, encoding a member of the galanin family of neuropeptides involved in reproduction, was differentially expressed in PMSG-hCG stimulated pre-ovulatory ovarian follicles of Chinese Taihu and Large White sows in our previous study. In the present study, promoter region and genetic mutations of the porcine GALP gene were determined. A 1,322 bp contig in 5'-flanking region was predicted to contain 5 potential transcription promoters by Neural Network Promoter Prediction version 2.2. 5'-deletion expression in both CHO and hela cells showed that there were a negative regulatory element at -852 to -803 bp and a positive regulatory element at -1,318 to -1,269 bp. Comparative sequence analyses of Chinese Taihu and Large White GALP gene sequence revealed the c.*27C>G mutation in the 3'-UTR and the c.88-1225C>G mutation in intron 1, which can be detected by HhaI and AluI PCR-RFLP, respectively. The association analysis with litter size traits showed that at both loci CC and GG genotypes were different for NBA for all parities in DIV pigs (P < 0.05). However, two SNPs were not in significant linkage disequilibrium analyzed using SHEsis online software, and could be used in pig breeding individually.
Collapse
|
37
|
Amiel J, de Pontual L, Henrion-Caude A. miRNA, development and disease. ADVANCES IN GENETICS 2012; 80:1-36. [PMID: 23084872 DOI: 10.1016/b978-0-12-404742-6.00001-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jeanne Amiel
- Unité INSERM U781, Université Paris-Sorbonne Cité, Institut IMAGINE, France.
| | | | | |
Collapse
|