1
|
Cosenza G, Fulgione A, Albarella S, Ciotola F, Peretti V, Gallo D, Pauciullo A. Identification and Validation of Genus/Species-Specific Short InDels in Dairy Ruminants. BMC Vet Res 2025; 21:215. [PMID: 40155939 PMCID: PMC11951546 DOI: 10.1186/s12917-025-04694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Over the past thirty years, the identification of species-specific molecular markers has significantly advanced our understanding of genetic diversity in both plants and animals. Among these, short InDels have emerged as vital genomic features, contributing more to sequence divergence than single nucleotide polymorphisms do in closely related species. This study aimed to identify specific InDels for Bos taurus, Bubalus bubalis, Capra hircus, and Ovis aries via an in silico approach and validated them in 400 individuals (100 for each species). RESULTS We identified and characterized short, specific InDels in the sequences of the CSN1S1, CSN1S2, MSTN, and PRLR genes, which can be used for species identification of Capra hircus, Ovis aries, Bos taurus, and Bubalus bubalis, respectively. We developed a Tetraplex Specific PCR assay to enable efficient discrimination among these species. CONCLUSIONS This study highlights the utility of InDels as biallelic, codominant markers that are cost-effective and easy to analyse, providing valuable tools for genetic diversity analysis and species identification.
Collapse
Affiliation(s)
- Gianfranco Cosenza
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Andrea Fulgione
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy.
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Daniela Gallo
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, 10095, Italy
| |
Collapse
|
2
|
Bo S, Sun Q, Ning P, Yuan N, Weng Y, Liang Y, Wang H, Lu Z, Li Z, Zhao X. A novel approach to analyze the association characteristics between post-spliced introns and their corresponding mRNA. Front Genet 2023; 14:1151172. [PMID: 36923795 PMCID: PMC10008863 DOI: 10.3389/fgene.2023.1151172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Studies have shown that post-spliced introns promote cell survival when nutrients are scarce, and intron loss/gain can influence many stages of mRNA metabolism. However, few approaches are currently available to study the correlation between intron sequences and their corresponding mature mRNA sequences. Here, based on the results of the improved Smith-Waterman local alignment-based algorithm method (SW method) and binding free energy weighted local alignment algorithm method (BFE method), the optimal matched segments between introns and their corresponding mature mRNAs in Caenorhabditis elegans (C.elegans) and their relative matching frequency (RF) distributions were obtained. The results showed that although the distributions of relative matching frequencies on mRNAs obtained by the BFE method were similar to the SW method, the interaction intensity in 5'and 3'untranslated regions (UTRs) regions was weaker than the SW method. The RF distributions in the exon-exon junction regions were comparable, the effects of long and short introns on mRNA and on the five functional sites with BFE method were similar to the SW method. However, the interaction intensity in 5'and 3'UTR regions with BFE method was weaker than with SW method. Although the matching rate and length distribution shape of the optimal matched fragment were consistent with the SW method, an increase in length was observed. The matching rates and the length of the optimal matched fragments were mainly in the range of 60%-80% and 20-30bp, respectively. Although we found that there were still matching preferences in the 5'and 3'UTR regions of the mRNAs with BFE, the matching intensities were significantly lower than the matching intensities between introns and their corresponding mRNAs with SW method. Overall, our findings suggest that the interaction between introns and mRNAs results from synergism among different types of sequences during the evolutionary process.
Collapse
Affiliation(s)
- Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Qiuying Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Pengfei Ning
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ningping Yuan
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Yujie Weng
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ying Liang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Huitao Wang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhongxian Li
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
3
|
Associations between the Bovine Myostatin Gene and Milk Fatty Acid Composition in New Zealand Holstein-Friesian × Jersey-Cross Cows. Animals (Basel) 2020; 10:ani10091447. [PMID: 32824948 PMCID: PMC7552700 DOI: 10.3390/ani10091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The gene that encodes myostatin influences more than one trait, and its expression has been observed in skeletal muscle, as well as the mammary gland. In this study, association analysis revealed that variation in the bovine myostatin gene affects milk fatty acid composition, raising the possibility that this genetic variation may be utilized to increase the amount of unsaturated fatty acid and decrease the amount of saturated fatty acid in milk. Abstract The myostatin gene (MSTN), which encodes the protein myostatin, is pleiotropic, and its expression has been associated with both increased and decreased adipogenesis and increased skeletal muscle mass in animals. In this study, the polymerase chain reaction, coupled with single strand conformation polymorphism analysis, was utilized to reveal nucleotide sequence variation in bovine MSTN in 410 New Zealand (NZ) Holstein-Friesian × Jersey (HF × J)-cross cows. These cows ranged from 3 to 9 years of age and over the time studied, produced an average 22.53 ± 2.18 L of milk per day, with an average milk fat content of 4.94 ± 0.17% and average milk protein content of 4.03 ± 0.10%. Analysis of a 406-bp amplicon from the intron 1 region, revealed five nucleotide sequence variants (A–E) that contained seven nucleotide substitutions. Using general linear mixed-effect model analyses the AD genotype was associated with reduced C10:0, C12:0, and C12:1 levels when compared to levels in cows with the AA genotype. These associations in NZ HF × J cross cows are novel, and they suggest that this variation in bovine MSTN could be explored for increasing the amount of milk unsaturated fatty acid and decreasing the amount of saturated fatty acid.
Collapse
|
4
|
Haruna IL, Ekegbu UJ, Ullah F, Amirpour-Najafabadi H, Zhou H, Hickford JGH. Genetic variations and haplotypic diversity in the Myostatin gene of New Zealand cattle breeds. Gene 2020; 740:144400. [PMID: 31987910 DOI: 10.1016/j.gene.2020.144400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023]
Abstract
Myostatin (MSTN) is a circulating factor that is secreted by muscle cells, and that acts upon those cells to inhibit the proliferation of muscle fibres during pre-natal muscle growth. The Polymerase Chain Reaction (PCR) coupled with Single Strand Conformational Polymorphism (SSCP) analysis, was used to reveal variation in the bovine MSTN gene (MSTN) in 722 cattle from a variety of breeds farmed in New Zealand (NZ). These included Hereford, Angus, Charolais, Simmental, Red Poll, South Devon, Shorthorn, Murray Grey, cross-bred Holstein-Friesian × Jersey cattle, and other composite breeds of cattle. Sequence analysis of five regions of MSTN that encompassed coding and non-coding regions of the gene, revealed a total of twelve single-nucleotide substitutions (7 in intron 1 and 5 in a region spanning the intron 2 - exon 3 boundary), and a single nucleotide deletion. Of these 12 substitutions, five are reported here for the first time, whereas seven have been previously described. The deletion c.748-78del, was located in the intron 2 - exon 3 boundary region, and has been reported previously. No nucleotide variation was identified in exons 1, 2 and 3. A total of 18 extended haplotypes were resolved spanning two variable regions (intron 1 and the intron 2 - exon 3 boundary), some of which were common across the breeds, while others were peculiar to particular breeds. The genetic variations identified provide insight into the conserved and polymorphic nature of the coding and non-coding sequences of bovine MSTN respectively, and thus provides a baseline for further study into how variation in the gene might affect growth and carcass traits in NZ cattle.
Collapse
Affiliation(s)
- Ishaku L Haruna
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Ugonna J Ekegbu
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Farman Ullah
- Department of Biotechnology, University of Malakand, Dir lower 18800, Chakdara, Pakistan
| | | | - Huitong Zhou
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jon G H Hickford
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
5
|
Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol 2019; 10:32. [PMID: 31044074 PMCID: PMC6477727 DOI: 10.1186/s40104-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- 1Universidade Federal da Integração Latino-Americana, UNILA, Instituto Latino-Americano de Ciências da Vida e da Natureza, Avenida Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR CEP 85870-901 Brazil
| | - Carolina Stefano Mantovani
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| | - Lúcia Elvira Alvares
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
6
|
Ma JE, Lang QQ, Qiu FF, Zhang L, Li XG, Luo W, Wang J, Wang X, Lin XR, Liu WS, Nie QH, Zhang XQ. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line. Int J Mol Sci 2016; 17:ijms17111863. [PMID: 27834851 PMCID: PMC5133863 DOI: 10.3390/ijms17111863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.
Collapse
Affiliation(s)
- Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qian-Qian Lang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Yu B, Lu R, Yuan Y, Zhang T, Song S, Qi Z, Shao B, Zhu M, Mi F, Cheng Y. Efficient TALEN-mediated myostatin gene editing in goats. BMC DEVELOPMENTAL BIOLOGY 2016; 16:26. [PMID: 27461387 PMCID: PMC4962387 DOI: 10.1186/s12861-016-0126-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/15/2016] [Indexed: 12/27/2022]
Abstract
Background Myostatin (MSTN) encodes a negative regulator of skeletal muscle mass that might have applications for promoting muscle growth in livestock. In this study, we aimed to test whether targeted MSTN editing, mediated by transcription activator-like effector nucleases (TALENs), is a viable approach to create myostatin-modified goats (Capra hircus). Results We obtained a pair of TALENs (MTAL-2) that could recognize and cut the targeted MSTN site in the goat genome. Fibroblasts from pedigreed goats were co-transfected with MTAL-2, and 272 monoclonal cell strains were confirmed to have mono- or bi-allelic mutations in MSTN. Ten cell strains with different genotypes were used as donor cells for somatic cell nuclear transfer, which produced three cloned kids (K179/MSTN−/−, K52-2/MSTN+/−, and K52-1/MSTN+/+). Conclusions The results suggested that the MTAL-2 could disrupt MSTN efficiently in the goat genome. The mutated somatic cells could be used to produce MSTN-site mutated goats without developmental disruption. Thus, TALENs is an effective method for accurate genome editing to produce site-modified goats. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0126-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baoli Yu
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Rui Lu
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Yuguo Yuan
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Ting Zhang
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Shaozheng Song
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Zhengqiang Qi
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Bin Shao
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Mengmin Zhu
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Fei Mi
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Yong Cheng
- College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Road, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Liu WS, Ma JE, Li WX, Zhang JG, Wang J, Nie QH, Qiu FF, Fang MX, Zeng F, Wang X, Lin XR, Zhang L, Chen SH, Zhang XQ. The Long Intron 1 of Growth Hormone Gene from Reeves' Turtle (Chinemys reevesii) Correlates with Negatively Regulated GH Expression in Four Cell Lines. Int J Mol Sci 2016; 17:543. [PMID: 27077853 PMCID: PMC4848999 DOI: 10.3390/ijms17040543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022] Open
Abstract
Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii) have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH) cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp), comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS) of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO) cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH) gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei-Xia Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jin-Ge Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Mei-Xia Fang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shao-Hao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|