1
|
Yuan Z, Guo W, Yang J, Li L, Wang M, Lei Y, Wan Y, Zhao X, Luo N, Cheng P, Liu X, Nie C, Peng Y, Tong A, Wei Y. PNAS-4, an Early DNA Damage Response Gene, Induces S Phase Arrest and Apoptosis by Activating Checkpoint Kinases in Lung Cancer Cells. J Biol Chem 2015; 290:14927-44. [PMID: 25918161 DOI: 10.1074/jbc.m115.658419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Indexed: 02/05/2023] Open
Abstract
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Our previous study has shown that PNAS-4 induces S phase arrest and apoptosis when overexpressed in A549 lung cancer cells. However, the underlying action mechanism remains far from clear. In this work, we found that PNAS-4 expression in lung tumor tissues is significantly lower than that in adjacent lung tissues; its expression is significantly increased in A549 cells after exposure to cisplatin, methyl methane sulfonate, and mitomycin; and its overexpression induces S phase arrest and apoptosis in A549 (p53 WT), NCI-H460 (p53 WT), H526 (p53 mutation), and Calu-1 (p53(-/-)) lung cancer cells, leading to proliferation inhibition irrespective of their p53 status. The S phase arrest is associated with up-regulation of p21(Waf1/Cip1) and inhibition of the Cdc25A-CDK2-cyclin E/A pathway. Up-regulation of p21(Waf1/Cip1) is p53-independent and correlates with activation of ERK. We further showed that the intra-S phase checkpoint, which occurs via DNA-dependent protein kinase-mediated activation of Chk1 and Chk2, is involved in the S phase arrest and apoptosis. Gene silencing of Chk1/2 rescues, whereas that of ATM or ATR does not affect, S phase arrest and apoptosis. Furthermore, human PNAS-4 induces DNA breaks in comet assays and γ-H2AX staining. Intriguingly, caspase-dependent cleavage of Chk1 has an additional role in enhancing apoptosis. Taken together, our findings suggest a novel mechanism by which elevated PNAS-4 first causes DNA-dependent protein kinase-mediated Chk1/2 activation and then results in inhibition of the Cdc25A-CDK2-cyclin E/A pathway, ultimately causing S phase arrest and apoptosis in lung cancer cells.
Collapse
Affiliation(s)
- Zhu Yuan
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China,
| | - Wenhao Guo
- the Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, Sichuan Province, China, and
| | - Jun Yang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Lei Li
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Meiliang Wang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Yi Lei
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Yang Wan
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Xinyu Zhao
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Na Luo
- the Nankai University School of Medicine/Collaborative Innovation Center of Biotherapy, Tianjin 300071, China
| | - Ping Cheng
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Xinyu Liu
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Chunlai Nie
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Yong Peng
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| | - Aiping Tong
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China,
| | - Yuquan Wei
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, China
| |
Collapse
|
2
|
Shinmura K, Kahyo T, Kato H, Igarashi H, Matsuura S, Nakamura S, Kurachi K, Nakamura T, Ogawa H, Funai K, Tanahashi M, Niwa H, Sugimura H. RSPO fusion transcripts in colorectal cancer in Japanese population. Mol Biol Rep 2014; 41:5375-5384. [PMID: 24847761 DOI: 10.1007/s11033-014-3409-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
Abstract
R-spondin (RSPO) gene fusions have recently been discovered in a subset of human colorectal cancer (CRC) in the U.S. population; however, whether the fusion is recurrent in CRC arising in patients from the other demographic areas and whether it is specific for CRC remain uncertain. In this study, we examined 75 primary CRCs and 121 primary lung cancers in the Japanese population for EIF3E-RSPO2 and PTPRK-RSPO3 fusion transcripts using RT-PCR and subsequent sequencing analyses. Although the expression of EIF3E-RSPO2 and PTPRK-RSPO3 was not detected in any of the lung carcinomas, RSPO fusions were detected in three (4%) of the 75 CRCs. Two CRCs contained EIF3E-RSPO2 fusion transcripts, and another CRC contained PTPRK-RSPO3 fusion transcripts. Interestingly, in one of the two EIF3E-RSPO2 fusion-positive CRCs, a novel fusion variant form of EIF3E-RSPO2 was identified: exon 1 of EIF3E was connected to exon 2 of RSPO2 by a 351-bp insertion. A quantitative RT-PCR analysis revealed that RSPO mRNA expression was upregulated in the three CRCs containing RSPO fusion transcripts, while it was downregulated in nearly all of the other CRCs. An immunohistochemical analysis and a mutational analysis revealed that the RSPO fusion-containing CRC had a CDX2 cell lineage, was positive for mismatch repair protein expression, and had the wild-type APC allele. Finally, the forced expression of RSPO fusion proteins were shown to endow colorectal cells with an increased growth ability. These results suggest that the expression of RSPO fusion transcripts is related to a subset of CRCs arising in the Japanese population.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, 431-3192, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
He Y, Wang J, Gou L, Shen C, Chen L, Yi C, Wei X, Yang J. Comprehensive analysis of expression profile reveals the ubiquitous distribution of PPPDE peptidase domain 1, a Golgi apparatus component, and its implications in clinical cancer. Biochimie 2013; 95:1466-75. [PMID: 23567336 DOI: 10.1016/j.biochi.2013.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/26/2013] [Indexed: 02/05/2023]
Abstract
PPPDE peptidase domain 1 (PPPDE1) is a recently identified gene; however, its expression regulation and biological function are unclear. Previous studies have indicated that PPPDE1 is involved in embryogenesis, apoptosis induction and cell cycle regulation. In the present study, we first used an anti-PPPDE1 antibody to determine that endogenous PPPDE1 is located in the Golgi apparatus. Immunohistochemistry (IHC) of mouse embryos indicated that PPPDE1 was markedly distributed in liver, skin, intestinal villi, and muscles, whereas Western blot analysis of mouse mature organs revealed its ubiquitous expression, without an appreciable distinction in protein abundance. Surprisingly, another potential isoform of PPPDE1 with a molecular weight of 18 kD (rather than its predicted molecular weight of 21 kD) was detected in the mouse kidney, testis, and intestine. Moreover, microarrays that were derived from twelve tumor types revealed that PPPDE1 expression was significantly lower in pancreas, stomach, and skin tumors compared with normal tissue from these organs. We specifically and extensively analyzed PPPDE1 expression in clinical samples and observed strong associations between PPPDE1 expression and (i) differentiation grade in pancreatic ductal adenocarcinoma and (ii) T stage in skin squamous cell carcinoma. Our data are the first to reveal the expression profile of PPPDE1 protein and its implications in cancer. These results will contribute to the understanding of the expression regulation and biological functions of PPPDE1 in development and carcinogenesis.
Collapse
Affiliation(s)
- Yi He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Expression of hPNAS-4 radiosensitizes Lewis lung cancer. Int J Radiat Oncol Biol Phys 2012; 84:e533-40. [PMID: 22836062 DOI: 10.1016/j.ijrobp.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/01/2012] [Accepted: 06/15/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aimed to transfer the hPNAS-4 gene, a novel apoptosis-related human gene, into Lewis lung cancer (LL2) and observe its radiosensitive effect on radiation therapy in vitro and in vivo. METHODS AND MATERIALS The hPNAS-4 gene was transfected into LL2 cells, and its expression was detected via western blot. Colony formation assay and flow cytometry were used to detect the growth and apoptosis of cells treated with irradiation/PNAS-4 in vitro. The hPNAS-4 gene was transferred into LL2-bearing mice through tail vein injection of the liposome/gene complex. The tumor volumes were recorded after radiation therapy. Proliferating cell nuclear antigen (PCNA) immunohistochemistry staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were performed to detect the tumor cell growth and apoptosis in vivo. RESULTS The hPNAS-4 gene was successfully transferred into LL2 cells and tumor tissue, and its overexpressions were confirmed via western blot analysis. Compared with the control, empty plasmid, hPNAS-4, radiation, and empty plasmid plus radiation groups, the hPNAS-4 plus radiation group more significantly inhibited growth and enhanced apoptosis of LL2 cells in vitro and in vivo (P<.05). CONCLUSIONS The hPNAS-4 gene was successfully transferred into LL2 cells and tumor tissue and was expressed in both LL2 cell and tumor tissue. The hPNAS-4 gene therapy significantly enhanced growth inhibition and apoptosis of LL2 tumor cells by radiation therapy in vitro and in vivo. Therefore, it may be a potential radiosensitive treatment of radiation therapy for lung cancer.
Collapse
|