1
|
Zheng SH, Yan CY, Duan N, Wang W, Mei XP. Penehyclidine hydrochloride suppressed peripheral nerve injury-induced neuropathic pain by inhibiting microglial MAPK/p-p38/IL-1 β pathway activation. Mol Pain 2020; 15:1744806919858260. [PMID: 31149893 PMCID: PMC6589961 DOI: 10.1177/1744806919858260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Millions of people suffered from neuropathic pain, which is related to neuroinflammation in the central nervous system. Penehyclidine hydrochloride is a premedication of general anesthesia, which has been confirmed possessing neuroprotective effects against various neurodegenerative or neuroinflammatory diseases. However, it is not clear that whether penehyclidine hydrochloride could suppress neuropathic pain through its anti-neuroinflammatory effects. Methods This study investigated the effects of penehyclidine hydrochloride on rat spinal nerve ligation injury-induced neuropathic pain with behavioral, morphological, and molecular biological methods in animals. Results The results indicated that penehyclidine hydrochloride could attenuate spinal nerve ligation-induced neuropathic pain without any motor impairment and had no effect on sham-operated animals after repeated intraperitoneal administration. Intraperitoneal penehyclidine hydrochloride could suppress spinal nerve ligation-induced ipsilateral spinal dorsal horn microglial activation with downregulation of OX42 expression. Moreover, intraperitoneal penehyclidine hydrochloride inhibited spinal nerve ligation-induced spinal p-p38 mitogen-activated protein kinase expression, which was specially colocalized with the spinal dorsal horn microglia. Furthermore, intraperitoneal penehyclidine hydrochloride could depress spinal neuroinflammation by suppressing spinal nerve ligation-induced interleukin (IL)-1β over-expression. Conclusion These results indicated that the anti-allodynic effects of penehyclidine hydrochloride on spinal nerve ligation-induced neuropathic pain did not rely on motor impairment. Inhibiting spinal microglial p-p38/IL-1β pathway activation might contribute to the anti-allodynic effect of penehyclidine hydrochloride on nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Shao-Hua Zheng
- 1 Department of Anesthesiology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, China
| | - Chao-Ying Yan
- 1 Department of Anesthesiology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, China
| | - Na Duan
- 1 Department of Anesthesiology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, China
| | - Wei Wang
- 2 State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao-Peng Mei
- 1 Department of Anesthesiology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Xie P, Zheng Z, Jiang L, Wu S. Penehyclidine effects the angiogenic potential of pulmonary microvascular endothelial cells. Pulm Pharmacol Ther 2019; 55:5-16. [PMID: 30641132 DOI: 10.1016/j.pupt.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/25/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The present study sought to determine the pharmacological effects of penehyclidine, an anticholinergic agent, on the angiogenic capacity of pulmonary microvascular endothelial cells (PMVECs). In vitro Matrigel network formation assay, cell proliferation assay, cell-matrix adhesion assay, and wound-healing assay were performed in PMVECs with or without exposure to penehyclidine or, in some cases, glycopyrrolate or acetylcholine, over a concentration range. In addition, the phosphorylation state of Akt and ERK, as well as the endogenous level of mTOR and RICTOR were examined in PMVECs by Western blot following the cells exposure to penehyclidine or, for some proteins, glycopyrrolate or acetylcholine. Finally, Western blot for Akt phosphorylation and in vitro Matrigel network formation assay were performed in PMVECs following their exposure to penehyclidine with or without phosphoinositide 3-kinase (PI3K) inhibitor LY294002 or mTOR inhibitor torin-1. We found that, in PMVECs, penehyclidine affected the network formation and cell migration, but not proliferation or cell-matrix adhesion, in a concentration-specific manner, i.e., penehyclidine increased the network formation and cell migration at lower concentrations but increased these processes at higher concentrations. Coincidentally, we observed that penehyclidine concentration-specifically affected the phosphorylation state of Akt in PMVECs, i.e., increased Akt phosphorylation at lower concentrations and decreased it at higher concentrations. In contrast, glycopyrrolate was found straightly to decrease network formation and Akt phosphorylation in a concentration-dependent manner. Further, we demonstrated that PI3K or mTOR blockade abolished both the enhanced network formation and the increased Akt phosphorylation by penehyclidine. Hence, penehyclidine may differentially alter the angiogenic capacity of PMVECs through affecting the Akt signaling pathway downstream of PI3K and mTOR. Findings from this study suggest a unique pharmacological feature of penehyclidine, which may imply its clinical and therapeutic value in modulating angiogenesis.
Collapse
Affiliation(s)
- Peilin Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhen Zheng
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lihua Jiang
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
M 3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell. Pulm Pharmacol Ther 2017; 48:144-150. [PMID: 29158153 DOI: 10.1016/j.pupt.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/19/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022]
Abstract
LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M3 receptor or not. HPMVECs were treated with specific M3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M3 shRNA group (C group) and LPS + PHC + M3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M3 mRNA expressions compared with LPS group. When M3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M3 receptor.
Collapse
|
4
|
Reddy SS, Chauhan P, Maurya P, Saini D, Yadav PP, Barthwal MK. Coagulin-L ameliorates TLR4 induced oxidative damage and immune response by regulating mitochondria and NOX-derived ROS. Toxicol Appl Pharmacol 2016; 309:87-100. [PMID: 27568862 DOI: 10.1016/j.taap.2016.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
Withanolides possess diverse biological and pharmacological activity but their immunomodulatory function is less realized. Hence, coagulin-L, a withanolide isolated from Withania coagulans Dunal has been studied for such an effect in human and murine cells, and mice model. Coagulin-L (1, 3, 10μM) exhibited immunomodulatory effect by suppressing TLR4 induced immune mediators such as cytokines (GMCSF, IFNα, IFNγ, IL-1α, IL-1Rα, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p40/p70), IL-13, IL-15, IL-17), chemokines (IL-8/CXCL8, MIG/CXCL9, IP-10/CXCL10, KC, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, eotaxin/CCL11), growth factors (FGF-basic, VEGF), nitric oxide and intracellular superoxide. Mechanistically, coagulin-L abrogated LPS induced total and mitochondrial ROS generation, NOX2, NOX4 mRNA expression, IRAK and MAPK (p38, JNK, ERK) activation. Coagulin-L also attenuated IκBα degradation, which prevented NFκB downstream iNOS expression and pro-inflammatory cytokine release. Furthermore, coagulin-L (10, 25, 50mg/kg, p.o.), undermined the LPS (10mg/kg, i.p.) induced endotoxemia response in mice as evinced from diminished cytokine release, nitric oxide, aortic p38 MAPK activation and endothelial tissue impairment besides suppressing NOX2 and NOX4 expression in liver and aorta. Moreover, coagulin-L also alleviated the ROS mediated oxidative damage which was assessed through protein carbonyl, lipid hydroperoxide, 8-isoprostane and 8-hydroxy-2-deoxyguanosine quantification. To extend, coagulin-L also suppressed carrageenan-induced paw edema and thioglycollate-induced peritonitis in mice. Therefore, coagulin-L can be of therapeutic importance in pathological conditions induced by oxidative damage.
Collapse
Affiliation(s)
- Sukka Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Parul Chauhan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Preeti Maurya
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Deepika Saini
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prem Prakash Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
5
|
Turmerone enriched standardized Curcuma longa extract alleviates LPS induced inflammation and cytokine production by regulating TLR4–IRAK1–ROS–MAPK–NFκB axis. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
6
|
Wang T, Wei XY, Liu B, Wang LJ, Jiang LH. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages. ACTA ACUST UNITED AC 2015; 48:286-91. [PMID: 25714879 PMCID: PMC4418357 DOI: 10.1590/1414-431x20144222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/10/2014] [Indexed: 02/08/2023]
Abstract
This study aimed to determine the effects of different concentrations of propofol
(2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of
high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell
line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels
of HMGB1 mRNA were detected using RT-PCR, and cell culture
supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent
assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in
macrophages was observed by Western blotting and activity of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected
using ELISA. HMGB1 mRNA expression levels increased significantly in
the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells
with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the
P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol,
respectively, were significantly lower than those in the group receiving LPS
stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced
significantly in the nucleus but were increased in the cytoplasm (P<0.05).
Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After
propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and
NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can
inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1
translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be
protective in patients with sepsis.
Collapse
Affiliation(s)
- T Wang
- Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - X Y Wei
- Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - B Liu
- Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - L J Wang
- Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - L H Jiang
- Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Yuan T, Li Z, Li X, Yu G, Wang N, Yang X. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. J Surg Res 2014; 192:150-62. [PMID: 24952412 DOI: 10.1016/j.jss.2014.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/23/2014] [Accepted: 05/08/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lidocaine has been used as a local anesthetic with anti-inflammatory properties, but its effects on neuroinflammation have not been well defined. In the present study, we investigated the prophylactic effects of lidocaine on lipopolysaccharide (LPS)-activated microglia and explored the underlying mechanisms. MATERIALS AND METHODS Microglial cells were incubated with or without 1 μg/mL LPS in the presence or absence of lidocaine, a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580), a nuclear factor-kappa B (NF-κB) inhibitor (pyrrolidine dithiocarbamate), or small interfering RNA. The protein and expression levels of inflammatory mediators, such as monocyte chemotactic protein 1, nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α were measured using enzyme-linked immunosorbent assays and real-time polymerase chain reaction. The effect of lidocaine on NF-κB and p38 MAPK activation was evaluated using enzyme-linked immunosorbent assays, Western blot analysis, and electrophoretic mobility shift assay. RESULTS Lidocaine (≥2 μg/mL) significantly inhibited the release and expression of nitric oxide, monocyte chemotactic protein 1, prostaglandin E2, interleukin 1β, and tumor necrosis factor α in LPS-activated microglia. Treatment with lidocaine also significantly inhibited the phosphorylation of p38 MAPK and the nuclear translocation of NF-κB p50/p65, increased the protein levels of inhibitor kappa B-α. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by SB203580, pyrrolidine dithiocarbamate, and small interfering RNA. CONCLUSIONS Prophylactic treatment with lidocaine inhibits LPS-induced release of inflammatory mediators from microglia, and these effects may be mediated by blockade of p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Tong Yuan
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiwen Li
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinbai Li
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Gaoqi Yu
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Na Wang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xige Yang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Penehyclidine hydrochloride inhibits the LPS-induced inflammatory response in microglia. J Surg Res 2014; 188:260-7. [DOI: 10.1016/j.jss.2013.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023]
|
9
|
Zhan J, Xiao F, Zhang ZZ, Wang YP, Chen K, Wang YL. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells. Braz J Med Biol Res 2013; 46:1040-1046. [PMID: 24345913 PMCID: PMC3935276 DOI: 10.1590/1414-431x20133289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/12/2013] [Indexed: 01/14/2023] Open
Abstract
β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.
Collapse
Affiliation(s)
- J Zhan
- Wuhan University, Zhongnan Hospital, Department of Anesthesiology, WuhanHubei, China
| | - F Xiao
- Huazhong University of Science and Technology, Department of Osteology, Pu Ai Hospital, WuhanHubei, China
| | - Z Z Zhang
- Wuhan University, Zhongnan Hospital, Department of Anesthesiology, WuhanHubei, China
| | - Y P Wang
- Wuhan University, Zhongnan Hospital, Department of Anesthesiology, WuhanHubei, China
| | - K Chen
- Wuhan University, Zhongnan Hospital, Department of Anesthesiology, WuhanHubei, China
| | - Y L Wang
- Wuhan University, Zhongnan Hospital, Department of Anesthesiology, WuhanHubei, China
| |
Collapse
|
10
|
Yang Q, Liu X, Yao Z, Mao S, Wei Q, Chang Y. Penehyclidine hydrochloride inhibits the release of high-mobility group box 1 in lipopolysaccharide-activated RAW264.7 cells and cecal ligation and puncture-induced septic mice. J Surg Res 2013; 186:310-7. [PMID: 24124976 DOI: 10.1016/j.jss.2013.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/08/2013] [Accepted: 08/16/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) is a critical mediator in the pathogenesis of many inflammatory diseases. Penehyclidine hydrochloride (PHC) has been proven to reduce sepsis-related mortality and sepsis-induced pathological complications. These effects are because of the reduced expression and release of many inflammatory mediators, although it is not clear whether PHC affects the expression and release of HMGB1. In this study, we explored the effect of PHC on the release of HMGB1 in lipopolysaccharide (LPS)-activated RAW264.7 cells and cecal ligation and puncture (CLP)-induced septic mice. MATERIALS AND METHODS RAW264.7 cells were incubated with LPS in the presence or absence of various concentrations of PHC. The expression levels of HMGB1 in the culture supernatant were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Western blotting was used to observe changes in the translocation of HMGB1 from the nucleus to the cytoplasm, and the nuclear factor (NF)-κB activity in the nuclear extract was detected by the NF-κB p50/p65 Transcription Factor Assay Kit. In addition, 48 CLP-induced septic BALB/c were treated with different concentrations of PHC 1 h before performing the CLP, and the level of serum HMGB1 and the functional parameters of multiple organs were determined using several detection kits. RESULTS We found that PHC inhibited the release of HMGB1 in LPS-activated RAW264.7 cells and CLP-induced septic mice. PHC inhibited the translocation of HMGB1 from the nucleus to the cytoplasm and also suppressed the expression of HMGB1 messenger RNA. Furthermore, PHC inhibited the translocation of NF-κB from the cytoplasm to the nucleus in LPS-activated RAW264.7 cells in a dose-dependent manner. Compared with the CLP alone group, the levels of alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine, and creatine kinase were significantly decreased in mice treated with 0.45 mg/kg of PHC (P < 0.01). CONCLUSIONS Our study demonstrates that PHC inhibits the translocation of HMGB1 from the nucleus to the cytoplasm and the expression of HMGB1 messenger RNA in a dose-dependent manner. The mechanism responsible for these effects involves the NF-κB signaling pathway. Moreover, PHC can significantly protect important organs, such as the liver, kidney, and heart in mice with sepsis.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Hebei, China
| | | | | | | | | | | |
Collapse
|
11
|
Cao HJ, Sun YJ, Zhang TZ, Zhou J, Diao YG. Penehyclidine hydrochloride attenuates the cerebral injury in a rat model of cardiopulmonary bypass. Can J Physiol Pharmacol 2013; 91:521-7. [PMID: 23827043 DOI: 10.1139/cjpp-2012-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of penehyclidine hydrochloride (PHC) on regulatory mediators during the neuroinflammatory response and cerebral cell apoptosis following cardiopulmonary bypass (CPB). Forty-eight rats were randomly divided among 4 groups as follows: sham-operation, vehicle, low-dose PHC (0.6 mg·(kg body mass)(-1)), and high-dose PHC (2.0 mg·(kg body mass)(-1)). CPB was performed in the latter 3 groups. The plasma levels of neuron specific enolase (NSE) and S-100B were tested with ELISA. Real-time PCR and Western blotting were used to evaluate the expression levels of matrix metalloproteinase-9 (MMP-9), IL-10, caspase-3, Bcl-2, and p38 in brain tissue. The ultrastructure of hippocampus tissue was examined under an electron microscope. PHC attenuated the increase of plasma NSE and S-100B following CPB. MMP-9, cleaved caspase-3, and phosphorylated p38 expression were substantially increased in the vehicle group compared with the sham-operation group and gradually diminished with increasing doses of PHC. IL-10 and Bcl-2 expression were markedly lower in the vehicle group than in the sham-operation group and gradually recovered with increasing doses of PHC. PHC attenuated the histopathological changes of cerebral injury following CPB. PHC favorably regulates the inflammatory response and reduces markers of neuronal injury following CPB, potentially by reducing p38 and caspase-3 activation.
Collapse
Affiliation(s)
- Hui-juan Cao
- Department of Anaesthesiology, General Hospital of Shenyang Military Region, 83 Wenhua Road, Shenyang 110016, Liaoning Province, China
| | | | | | | | | |
Collapse
|
12
|
He CL, Yi PF, Fan QJ, Shen HQ, Jiang XL, Qin QQ, Song Z, Zhang C, Wu SC, Wei XB, Li YL, Fu BD. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells. Immunopharmacol Immunotoxicol 2012; 35:215-24. [DOI: 10.3109/08923973.2012.744034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|