1
|
Li Y, Du Y, Huai J, Jing Y, Lin R. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis. THE PLANT CELL 2022; 34:4191-4212. [PMID: 35920787 PMCID: PMC9614450 DOI: 10.1093/plcell/koac235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Light is a key environmental signal that regulates plant growth and development. While posttranscriptional regulatory mechanisms of gene expression include alternative splicing (AS) of pre-messenger RNA (mRNA) in both plants and animals, how light signaling affects AS in plants is largely unknown. Here, we identify DExD/H RNA helicase U2AF65-associated protein (UAP56) as a negative regulator of photomorphogenesis in Arabidopsis thaliana. UAP56 is encoded by the homologs UAP56a and UAP56b. Knockdown of UAP56 led to enhanced photomorphogenic responses and diverse developmental defects during vegetative and reproductive growth. UAP56 physically interacts with the central light signaling repressor constitutive photomorphogenic 1 (COP1) and U2AF65. Global transcriptome analysis revealed that UAP56 and COP1 co-regulate the transcription of a subset of genes. Furthermore, deep RNA-sequencing analysis showed that UAP56 and COP1 control pre-mRNA AS in both overlapping and distinct manners. Ribonucleic acid immunoprecipitation assays showed that UAP56 and COP1 bind to common small nuclear RNAs and mRNAs of downstream targets. Our study reveals that both UAP56 and COP1 function as splicing factors that coordinately regulate AS during light-regulated plant growth and development.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | |
Collapse
|
2
|
An M, Zheng H, Huang J, Lin Y, Luo Y, Kong Y, Pang M, Zhang D, Yang J, Chen J, Li Y, Chen C, Lin T. Aberrant Nuclear Export of circNCOR1 Underlies SMAD7-Mediated Lymph Node Metastasis of Bladder Cancer. Cancer Res 2022; 82:2239-2253. [PMID: 35395674 PMCID: PMC9359746 DOI: 10.1158/0008-5472.can-21-4349] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
Circular RNAs (circRNA) containing retained introns are normally sequestered in the nucleus. Dysregulation of cellular homeostasis can drive their nuclear export, which may be involved in cancer metastasis. However, the mechanism underlying circRNA nuclear export and its role in lymph node (LN) metastasis of bladder cancer remain unclear. Here, we identify an intron-retained circRNA, circNCOR1, that is significantly downregulated in LN metastatic bladder cancer and is negatively associated with poor prognosis of patients. Overexpression of circNCOR1 inhibited lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Nuclear circNCOR1 epigenetically promoted SMAD7 transcription by increasing heterogeneous nuclear ribonucleoprotein L (hnRNPL)-induced H3K9 acetylation in the SMAD7 promoter, leading to inhibition of the TGFβ-SMAD signaling pathway. Nuclear retention of circNCOR1 was regulated by small ubiquitin-like modifier (SUMO)ylation of DDX39B, an essential regulatory factor responsible for circRNA nuclear-cytoplasmic transport. Reduced SUMO2 binding to DDX39B markedly increased circNCOR1 retention in the nucleus to suppress bladder cancer LN metastasis. By contrast, SUMOylated DDX39B activated nuclear export of circNCOR1, impairing the suppressive role of circNCOR1 on TGFβ-SMAD cascade activation and bladder cancer LN metastasis. In patient-derived xenograft (PDX) models, overexpression of circNCOR1 and inhibition of TGFβ signaling significantly repressed tumor growth and LN metastasis. This study highlights SUMOylation-induced nuclear export of circNCOR1 as a key event regulating TGFβ-SMAD signaling and bladder cancer lymphangiogenesis, thus supporting circNCOR1 as a novel therapeutic agent for patients with LN metastatic bladder cancer. SIGNIFICANCE This study identifies the novel intron-retained circNCOR1 and elucidates a SUMOylation-mediated DDX39B-circNCOR1-SMAD7 axis that regulates lymph node metastasis of bladder cancer.
Collapse
Affiliation(s)
- Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuming Luo
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yao Kong
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dingwen Zhang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiabin Yang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| |
Collapse
|
3
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
4
|
An F-Box Protein, Mdm30, Interacts with TREX Subunit Sub2 To Regulate Cellular Abundance Cotranscriptionally in Orchestrating mRNA Export Independently of Splicing and Mitochondrial Function. Mol Cell Biol 2020; 40:MCB.00570-19. [PMID: 31932480 DOI: 10.1128/mcb.00570-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 02/02/2023] Open
Abstract
Although an F-box protein, Mdm30, is found to regulate ubiquitylation of the Sub2 component of TREX (transcription-export) complex for proteasomal degradation in stimulation of mRNA export, it remains unknown whether such ubiquitin-proteasome system (UPS) regulation of Sub2 occurs cotranscriptionally via its interaction with Mdm30. Further, it is unclear whether impaired UPS regulation of Sub2 in the absence of Mdm30 alters mRNA export via splicing defects of export factors and/or mitochondrial dynamics/function, since Sub2 controls mRNA splicing and Mdm30 regulates mitochondrial aggregation. Here, we show that Mdm30 interacts with Sub2, and temporary shutdown of Mdm30 enhances Sub2's abundance and impairs mRNA export. Likewise, Sub2's abundance is increased following transcriptional inhibition. These results support Mdm30's direct role in regulation of Sub2's cellular abundance in a transcription-dependent manner. Consistently, the chromatin-bound Sub2 level is increased in the absence of Mdm30. Further, we find that Mdm30 does not facilitate splicing of export factors. Moreover, Mdm30 does not have a dramatic effect on mitochondrial respiration/function, and mRNA export occurs in the absence of Fzo1, which is required for mitochondrial dynamics/respiration. Collective results reveal that Mdm30 interacts with Sub2 for proteasomal degradation in a transcription-dependent manner to promote mRNA export independently of splicing or mitochondrial function, thus advancing our understanding of mRNA export.
Collapse
|
5
|
Cui X, Han W, Li J, Feng R, Zhou Z, Han J, Li M, Wang S, Zhang W, Lei Q, Zhang J, Liu Y, Hu Y. Heat shock factor 4 regulates the expression of HSP25 and alpha B-crystallin by associating with DEXD/H-box RNA helicase UAP56. Cell Stress Chaperones 2018; 23:571-579. [PMID: 29164525 PMCID: PMC6045540 DOI: 10.1007/s12192-017-0865-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/24/2022] Open
Abstract
Heat shock factor 4 controls the transcription of small heat shock proteins (e.g., HSP25, alpha B-cyrstallin, and r-crystallin), that play important roles in modulating lens proteostasis. However, the molecular mechanism underlying HSF4-mediated transcription is still unclear. Using yeast two hybrid, we found that HSF4 interacts with the ATP-dependent DEXD/H-box RNA helicase UAP56, and their interaction in lens epithelial cell line was further confirmed by GST-pull down assay. UAP56 is a vital regulator of pre-mRNA splicing and mature mRNA nuclear export. The immunofluorescence assay showed that HSF4 and UBA56 co-localize with each other in the nucleus of lens epithelial cells. Ectopic UAP56 upregulated HSF4-controlled HSP25 and alpha B-crystallin proteins expression, while knocking down UAP56 by shRNA reversed it. Moreover, UAP56 interacts with and facilitates the nuclear exportation of HSP25 and alpha B-crystallin mRNA without impacting their total mRNA expression level. In lens tissues, both UAP56 and HSF4 are expressed in the same nucleus of lens fiber cells, and their expression levels are simultaneously reduced with fiber cell maturation. Taken together, these data suggested that UAP56 is a novel regulator of HSF4 and might upregulate HSF4's downstream mRNA maturation and nuclear exportation.
Collapse
Affiliation(s)
- Xiukun Cui
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Wenxiu Han
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Jing Li
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Riping Feng
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Zheng Zhou
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - JiuLi Han
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Mengyuan Li
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Shuangfeng Wang
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Wanting Zhang
- Kaifeng Key Laboratory of Cataract and Myopia, Institute of Eye disease, Kaifeng Central Hospital, Kaifeng, China
| | - Qin Lei
- Kaifeng Key Laboratory of Cataract and Myopia, Institute of Eye disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jun Zhang
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Yutiao Liu
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Yanzhong Hu
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China.
- Kaifeng Key Laboratory of Cataract and Myopia, Institute of Eye disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
6
|
Kumar S, Sharma G, Chakraborty C, Sharma AR, Kim J. Regulatory functional territory of PLK-1 and their substrates beyond mitosis. Oncotarget 2017; 8:37942-37962. [PMID: 28415805 PMCID: PMC5514964 DOI: 10.18632/oncotarget.16290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 12/04/2022] Open
Abstract
Polo-like kinase 1 (PLK-1) is a well-known (Ser/Thr) mitotic protein kinase and is considered as a proto-oncogene. As hyper-activation of PLK-1 is broadly associated with poor prognosis and cancer progression, it is one of the most extensively studied mitotic kinases. During mitosis, PLK-1 regulates various cell cycle events, such as spindle pole maturation, chromosome segregation and cytokinesis. However, studies have demonstrated that the role of PLK-1 is not only restricted to mitosis, but PLK-1 can also regulate other vital events beyond mitosis, including transcription, translation, ciliogenesis, checkpoint adaptation and recovery, apoptosis, chromosomes dynamics etc. Recent reviews have tried to define the regulatory role of PLK-1 during mitosis progression and tumorigenesis, but its' functional role beyond mitosis is still largely unexplored. PLK-1 can regulate the activity of many proteins that work outside of its conventional territory. The dysregulation of these proteins can cause diseases such as Alzheimer's disease, tumorigenesis etc. and may also lead to drug resistance. Thus, in this review, we discussed the versatile role of PLK-1 and tried to collect data to validate its' functional role in cell cycle regulation apart from mitosis.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Garima Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| |
Collapse
|
7
|
CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation. Oncogene 2016; 35:5056-5069. [PMID: 27041584 PMCID: PMC5033661 DOI: 10.1038/onc.2016.67] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/26/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
Abstract
Melanoma is one of the most lethal forms of skin cancer because of its early metastatic spread. The variant form of CD44 (CD44v), a cell surface glycoprotein, is highly expressed on metastatic melanoma. The mechanisms of regulation of CD44 alternative splicing in melanoma and its pathogenic contributions are so far poorly understood. Here, we investigated the expression level of CD44 in a large set of melanocytic lesions at different stages. We found that the expression of CD44v8-10 and a splicing factor, U2AF2, is significantly increased during melanoma progression, whereas CD82/KAI1, a tetraspanin family of tumor suppressor, is reduced in metastatic melanoma. CD44v8-10 and U2AF2 expression levels, which are negatively correlated with CD82 levels, are markedly elevated in primary melanoma compared with dysplastic nevi and further increased in metastatic melanoma. We also showed that patients with higher CD44v8-10 and U2AF2 expression levels tended to have shorter survival. By using both in vivo and in vitro assays, we demonstrated that CD82 inhibits the production of CD44v8-10 on melanoma. Mechanistically, U2AF2 is a downstream target of CD82 and in malignant melanoma facilitates CD44v8-10 alternative splicing. U2AF2-mediated CD44 isoform switch is required for melanoma migration in vitro and lung and liver metastasis in vivo. Notably, overexpression of CD82 suppresses U2AF2 activity by inducing U2AF2 ubiquitination. In addition, our data suggested that enhancement of melanoma migration by U2AF2-dependent CD44v8-10 splicing is mediated by Src/focal adhesion kinase/RhoA activation and formation of stress fibers, as well as CD44-E-selectin binding reinforcement. These findings uncovered a hitherto unappreciated function of CD82 in severing the linkage between U2AF2-mediated CD44 alternative splicing and cancer aggressiveness, with potential prognostic and therapeutic implications in melanoma.
Collapse
|
8
|
Kumar S, Sharma AR, Sharma G, Chakraborty C, Kim J. PLK-1: Angel or devil for cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:190-203. [PMID: 26899266 DOI: 10.1016/j.bbcan.2016.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Garima Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida 203201, India.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| |
Collapse
|
9
|
Geier B, Kurmashev D, Kurmasheva RT, Houghton PJ. Preclinical Childhood Sarcoma Models: Drug Efficacy Biomarker Identification and Validation. Front Oncol 2015; 5:193. [PMID: 26380223 PMCID: PMC4549564 DOI: 10.3389/fonc.2015.00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Over the past 35 years, cure rates for pediatric cancers have increased dramatically. However, it is clear that further dose intensification using cytotoxic agents or radiation therapy is not possible without enhancing morbidity and long-term effects. Consequently, novel, less genotoxic, agents are being sought to complement existing treatments. Here, we discuss preclinical human tumor xenograft models of pediatric cancers that may be used practically to identify novel agents for soft tissue and bone sarcomas, and "omics" approaches to identifying biomarkers that may identify sensitive and resistant tumors to these agents.
Collapse
Affiliation(s)
- Brian Geier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dias Kurmashev
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
10
|
Durairaj G, Lahudkar S, Bhaumik SR. A new regulatory pathway of mRNA export by an F-box protein, Mdm30. RNA (NEW YORK, N.Y.) 2014; 20:133-42. [PMID: 24327750 PMCID: PMC3895266 DOI: 10.1261/rna.042325.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.
Collapse
|
11
|
Russo MA, Kang KS, Di Cristofano A. The PLK1 inhibitor GSK461364A is effective in poorly differentiated and anaplastic thyroid carcinoma cells, independent of the nature of their driver mutations. Thyroid 2013; 23:1284-93. [PMID: 23509868 PMCID: PMC3783934 DOI: 10.1089/thy.2013.0037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are the most aggressive forms of thyroid cancer. Despite their low incidence, they account for a disproportionate number of thyroid cancer-related deaths because of their resistance to most therapeutic approaches. We have generated mouse models that develop ATC ([Pten, p53](thyr-/-) mice) and follicular thyroid cancer with areas of poor differentiation (Pten(thyr-/-),Kras(G12D) mice). Comparative gene expression profiling of human and mouse ATCs reveals a common "mitotic signature" in which mitotic kinases, including Polo-like kinase-1 (PLK1), are found deregulated in both species. Most genes from this signature are also upregulated in poorly differentiated tumors developing in Pten(thyr-/-),Kras(G12D) mice. PLK1 is a crucial driving force for normal mitotic spindle formation, centrosome maturation, and separation, and its overexpression has been demonstrated in a wide range of tumors. METHODS Human and mouse ATC and PDTC cell lines were treated with the PLK1 inhibitor GSK461364A, and proliferation, apoptosis, and mitotic spindle alterations were analyzed. Furthermore, immunocompetent mice were injected in the flank with mouse ATC cells, and treated with placebo or GSK461364A. RESULTS We show that the PLK1 inhibitor GSK461364A inhibits cell proliferation and induces cell death in both mouse ATC- and PDTC-derived cell lines and in several human ATC cell lines carrying different driver mutations. Dose-dependent changes in chromosome alignment and spindle assembly during mitosis are observed after treatment, together with changes in the mitotic index. FACS analysis reveals a G2/M phase arrest, followed by apoptosis, and mitotic slippage in cells with PI3K activation. GSK461364A is also effective in vivo, in an allograft model of ATC. CONCLUSIONS Taken together, these data suggest that PLK1 targeting is a promising and effective therapeutic approach against PDTC cells and undifferentiated thyroid carcinoma cells.
Collapse
Affiliation(s)
- Marika A Russo
- Department of Developmental and Molecular Biology, Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine , Bronx, New York
| | | | | |
Collapse
|