1
|
Kehlmaier C, Kuchling G, Shea G, Georges A, Zhang X, Fritz U, Thomson S. History and historical DNA: Identity of Chelodina intergularis Fry, 1915 and type localities of C. intergularis and C. rugosa Ogilby, 1890. Zootaxa 2024; 5448:531-555. [PMID: 39646239 DOI: 10.11646/zootaxa.5448.4.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 12/10/2024]
Abstract
Based on the phylogenetic placement of a near-complete mitogenome sequence of the holotype of Chelodina intergularis Fry, 1915 generated with hDNA approaches, we present evidence for the synonymy of this nominal species with Chelodina rugosa Ogilby, 1890. The type specimens of both taxa are housed in the Australian Museum, Sydney. Scrutinizing historical records, we conclude that the type locality of both taxa is most likely the vicinity of Somerset, at the northern extremity of Cape York Peninsula, Queensland, Australia. We figure and describe both type specimens. Our results support the earlier conclusion that the exceptional arrangement of intergular and gular scutes in the holotype of C. intergularis is an individual aberration.
Collapse
Affiliation(s)
| | - Gerald Kuchling
- School of Biological Sciences; The University of Western Australia; Crawley; WA 6009; Australia.
| | - Glenn Shea
- Sydney School of Veterinary Science; B01; University of Sydney; NSW 2006; Australia; Australian Museum Research Institute; Australian Museum; 1 William Street; Sydney; NSW 2010; Australia.
| | - Arthur Georges
- Institute for Applied Ecology; University of Canberra; Canberra; ACT 2601; Australia.
| | - Xiuwen Zhang
- Institute for Applied Ecology; University of Canberra; Canberra; ACT 2601; Australia.
| | - Uwe Fritz
- Institute for Applied Ecology; University of Canberra; Canberra; ACT 2601; Australia.
| | - Scott Thomson
- Museum of Zoology; Senckenberg Dresden; 01109 Dresden; Germany.
| |
Collapse
|
2
|
Complete Mitochondrial Genomes of Four Pelodiscus sinensis Strains and Comparison with Other Trionychidae Species. BIOLOGY 2023; 12:biology12030406. [PMID: 36979098 PMCID: PMC10045651 DOI: 10.3390/biology12030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquaculture reptile with rich nutritional and medicinal values. In recent decades, the wild resources of P. sinensis have been depleting due to natural and artificial factors. Herein, we report the complete mitochondrial genome of four P. sinensis strains, including the Japanese (RB) strain, Qingxi Huabie (HB) strain, Jiangxi (JB) strain, and Qingxi Wubie (WB) strain. The nucleotide composition within the complete mitogenomes was biased towards A + T with a variable frequency ranging from 59.28% (cox3) to 70.31% (atp8). The mitogenomes of all four strains contained 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, 1 control region, and a replication origin region of the L-strand replication (OL), which was consistent with most vertebrates. Additionally, the atp8, nad4l, nad6, and nad3 genes possessed high genetic variation and can be used as potential markers for the identification of these P. sinensis strains. Additionally, all PCGs genes were evolving primarily under purifying selection. Through comparative analysis, it was revealed that most of the tRNAs were structurally different in the TψC stem, DHU stem, and acceptor stem. The length of the tandem repeats in the control region was variable in the four P. sinensis strains, ranging from 2 bp to 50 bp. Phylogenetic analysis indicated that all P. sinensis strains clustered into one branch and were closely related to other Trionychinae species. Overall, this study provides mitochondrial genome information for different P. sinensis strains to support further species identification and germplasm resource conservation.
Collapse
|
3
|
Bernacki LE, Kilpatrick CW. Structural Variation of the Turtle Mitochondrial Control Region. J Mol Evol 2020; 88:618-640. [PMID: 32808073 DOI: 10.1007/s00239-020-09962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/05/2020] [Indexed: 11/25/2022]
Abstract
The present study describes the most comprehensive comparison of turtle mtD-loop regions to date. The primary structure was compared from DNA sequences accessed from GenBank from 48 species in 13 families of extant turtles, and secondary structures of the mtD-loop region were inferred from thermal stabilities, using the program Mfold, for each superfamiliy of turtles. Both primary and secondary structures were found to be highly variable across the order. The Cryptodira showed conservation in the primary structure at conserved sequence blocks (CSBs), but the Pleurodira displayed limited conservation of primary structural characters, other than the coreTAS, a binding site for the helicase TWINKLE, which was highly conserved in the Central and Right Domains across the order. No secondary structure was associated with a TAS, but an AT-rich fold (secondary structure) near the 3' terminus of the mtD-loop region was detected in all turtle superfamilies. Mapping of character states of structural features of the mtD-loop region revealed that most character states were autapomorphies and inferred a number of homoplasies. The Left Domain of turtles, containing no highly conserved structural elements, likely does not serve a functional role; therefore, the Central Domain in turtles is likely equivalent to the Left Domain of mammals. The AT-rich secondary structural element near the 3' terminus of the mtD-loop region may be conserved across turtles because of a functional role, perhaps containing the Light Strand Promotor, or perhaps interacting with the TWINKLE-coreTAS complex in the Central and Right Domains to regulate mtDNA replication and transcription.
Collapse
Affiliation(s)
- Lucas E Bernacki
- Department of Sciences, Saint Joseph's College, Mercy Hall, Rm 122, 278 Whites Bridge Road, Standish, ME, 04084, USA.
- Department of Biology, University of Vermont, Burlington, VT, USA.
| | | |
Collapse
|
4
|
Vargas-Ramírez M, Caballero S, Morales-Betancourt MA, Lasso CA, Amaya L, Martínez JG, das Neves Silva Viana M, Vogt RC, Farias IP, Hrbek T, Campbell PD, Fritz U. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol Phylogenet Evol 2020; 148:106823. [PMID: 32278863 DOI: 10.1016/j.ympev.2020.106823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
The matamata is one of the most charismatic turtles on earth, widely distributed in northern South America. Debates have occurred over whether or not there should be two subspecies or species recognized due to its geographic variation in morphology. Even though the matamata is universally known, its natural history, conservation status and biogeography are largely unexplored. In this study we examined the phylogeographic differentiation of the matamata based on three mitochondrial DNA fragments (2168 bp of the control region, cytochrome oxidase subunit I, and the cytochrome b gene), one nuclear genomic DNA fragment (1068 bp of the R35 intron) and 1661 Single Nucleotide Polymorphisms (SNPs). Our molecular and morphological analyses revealed the existence of two distinct, genetically deeply divergent evolutionary lineages of matamatas that separated in the late Miocene (approximately 12.7 million years ago), corresponding well to the time when the Orinoco Basin was established. As a result of our analyses, we describe the genetically and morphologically highly distinct matamata from the Orinoco and Río Negro Basins and the Essequibo drainage as a species new to science (Chelus orinocensis sp. nov.). Chelus fimbriata sensu stricto is distributed in the Amazon Basin and the Mahury drainage. Additionally, the analyses revealed that each species displays phylogeographic differentiation. For C. orinocensis, there is moderate mitochondrial differentiation between the Orinoco and the Río Negro. For C. fimbriata, there is more pronounced differentiation matching different river systems. One mitochondrial clade was identified from the Amazon, Ucayali, and Mahury Rivers, and another one from the Madeira and Jaci Paraná Rivers. The C. orinocensis in the Essequibo and Branco Rivers have haplotypes that constitute a third clade clustering with C. fimbriata. Phylogenetic analyses of the R35 intron and SNP data link the matamatas from the Essequibo and Branco with the new species, suggesting past gene flow and old mitochondrial introgression. Chelus orinocensis is collected for the pet trade in Colombia and Venezuela. However, neither the extent of the harvest nor its impact are known. Hence, it is crucial to gather more information and to assess its exploitation throughout its distribution range to obtain a better understanding of its conservation status and to design appropriate conservation and management procedures. RESUMEN: La matamata es una de las tortugas más carismáticas del mundo, ampliamente distribuida en el norte de Sudamérica. Debido a su variación morfológica geográfica, se debate sobre el reconocimiento de dos subespecies o especies. A pesar de que la matamata es universalmente conocida, su historia natural, estado de conservación y biogeografía han sido muy poco estudiados. En este estudio examinamos la diferenciación filogeográfica de las matamatas en base a tres fragmentos de ADN mitocondrial (2168 pb de la región de control, la subunidad I del citocromo oxidasa y el gen del citocromo b), un fragmento de ADN genómico nuclear (1068 pb del intrón R35) y 1661 polimorfismos de nucleótido único (SNPs). Nuestros análisis moleculares y morfológicos revelaron la existencia de dos linajes evolutivos distintos de matamatas, genéticamente divergentes que se separaron en el Mioceno tardio (hace aproximadamente 12.7 millones de años), correspondiendo al tiempo en que se estableció la cuenca del Orinoco. Como resultado de nuestros análisis, describimos las genéticamente y morfológicamente distintas matamatas de las cuencas del Orinoco, Río Negro y Essequibo como una especie nueva para la ciencia (Chelus orinocensis sp. nov.). Chelus fimbriata sensu stricto se distribuye en la cuenca del Amazonas y en el drenaje del Mahury. Adicionalmente, los análisis revelaron que cada especie muestra diferenciación filogeográfica. Para C. orinocensis, hay una moderada diferenciación mitocondrial entre el Orinoco y el Río Negro. Para C. fimbriata, hay una diferenciación más pronunciada, concordando con los diferentes sistemas fluviales. Se identificó un clado de los ríos Amazonas, Ucayali y Mahury y otro de los ríos Madeira y Jaci Paraná. Las C. orinocensis de los ríos Essequibo y Branco tienen haplotipos que constituyen un tercer clado que se agrupa con C. fimbriata. Los análisis filogenéticos del intrón R35 y los datos de SNP asocian las matamatas de Essequibo y Branco con la nueva especie, sugiriendo flujo de genes pasado e introgresión mitocondrial antigua. Chelus orinocensis se colecta para el comercio de mascotas en Colombia y Venezuela. Sin embargo, ni se conoce el alcance de las colectas ni su impacto. Por lo tanto, es crucial recopilar más información y evaluar su explotación en todo su rango de distribución, comprender mejor su estado de conservación y para diseñar acciones apropiadas de conservación y manejo.
Collapse
Affiliation(s)
- Mario Vargas-Ramírez
- Estación de Biología Tropical Roberto Franco (EBTRF), Universidad Nacional de Colombia, Villavicencio, Colombia; Biodiversidad y Conservación Genética, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, Dresden, Germany.
| | - Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos-LEMVA, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Mónica A Morales-Betancourt
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Programa Ciencias de la Biodiversidad, Línea de Recursos Hidrobiológicos, Pesqueros Continentales y Fauna Silvestre, Bogotá, Colombia
| | - Carlos A Lasso
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Programa Ciencias de la Biodiversidad, Línea de Recursos Hidrobiológicos, Pesqueros Continentales y Fauna Silvestre, Bogotá, Colombia
| | - Laura Amaya
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos-LEMVA, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - José Gregorio Martínez
- Grupo de Investigación Biociencias, Facultad de Ciencias de la Salud, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia; Laboratório de Evolução e Genética Animal, Departamento de Genetica, Universidade Federal do Amazonas, Manaus, Brazil
| | - Maria das Neves Silva Viana
- Laboratório de Evolução e Genética Animal, Departamento de Genetica, Universidade Federal do Amazonas, Manaus, Brazil
| | - Richard C Vogt
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Izeni Pires Farias
- Laboratório de Evolução e Genética Animal, Departamento de Genetica, Universidade Federal do Amazonas, Manaus, Brazil
| | - Tomas Hrbek
- Laboratório de Evolução e Genética Animal, Departamento de Genetica, Universidade Federal do Amazonas, Manaus, Brazil
| | - Patrick D Campbell
- Department of Life Sciences, Darwin Centre 1, Natural History Museum, London, UK
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, Dresden, Germany
| |
Collapse
|
5
|
Wang M, Lu Y, Nie L. The complete mitochondrial genome of the Cyclemys fusca (Chelonia: Geoemydidae). Mitochondrial DNA B Resour 2018; 3:805-806. [PMID: 33474329 PMCID: PMC7800475 DOI: 10.1080/23802359.2018.1481786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022] Open
Abstract
The complete mitochondrial genome (mitogenome) of Cyclemys fusca was obtained and characterized in this study. The circular molecule is 16,491 bp in length and contained 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and one non-coding region (control region). Its gene arrangement type is identical to the type of most vertebrate. All protein-coding genes initiate with ATG as start codon, except for COI started with GTG. Interestingly, COI and ND6 end up with AGG. The complete mitogenome of C. fusca provides the basic data to research molecular systematics of Geoemydidea.
Collapse
Affiliation(s)
- Meng Wang
- Life Science College, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| | - Yuanhua Lu
- Life Science College, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| | - Liuwang Nie
- Life Science College, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| |
Collapse
|
6
|
Thomson RC, Spinks PQ, Shaffer HB. Molecular phylogeny and divergence of the map turtles (Emydidae: Graptemys). Mol Phylogenet Evol 2017; 121:61-70. [PMID: 29242165 DOI: 10.1016/j.ympev.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022]
Abstract
The map turtles (genus Graptemys) comprise a morphologically diverse clade that forms a major component of the southeastern US hotspot of chelonian diversity. Map turtles have experienced both recent and rapid diversification resulting in long-standing uncertainty regarding species boundaries and phylogenetic relationships within the genus as well as timing of their divergence. We present a phylogeny for the group that includes geographically representative sampling for all described species and subspecies. We make use of an empirical prior on rates of molecular evolution to estimate divergence times with a molecular clock under a coalescent framework. Together, the phylogeny and divergence time estimates suggest that diversification has been both more recent and more rapid than has so far been suspected. We provide a well-supported evolutionary framework for Graptemys that is necessary for understanding map turtle diversity, biogeography, and for conservation of this threatened clade of turtles.
Collapse
Affiliation(s)
- Robert C Thomson
- Department of Biology, University of Hawai'i, Honolulu, HI 96822, USA.
| | - Phillip Q Spinks
- Department of Ecology and Evolutionary Biology, and La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, and La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Zhang X, Unmack PJ, Kuchling G, Wang Y, Georges A. Resolution of the enigmatic phylogenetic relationship of the critically endangered Western Swamp Tortoise Pseudemydura umbrina (Pleurodira: Chelidae) using a complete mitochondrial genome. Mol Phylogenet Evol 2017; 115:58-61. [PMID: 28754240 DOI: 10.1016/j.ympev.2017.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
Pseudemydura umbrina is one of the most endangered turtle species in the world, and the imperative for its conservation is its distinctive morphology and relict status among the Chelidae. We use Illumina sequencing to obtain the complete mitogenome for resolving its uncertain phylogenetic position. A novel nuclear paralogue confounded the assembly, and resolution of the authentic mitogenome required further Sanger sequencing. The P. umbrina mitogenome is 16,414bp comprising 37 genes organized in a conserved pattern for other vertebrates. The nuclear paralogue is 547bp, 97.8% identity to the corresponding mitochondrial sequence. Particular features of the mitogenome include an nd3 174+1A frameshift, loss of DHC loop in tRNASer (AGN), and a light-strand replication initiation site in Wancy region that extends into an adjacent tRNA gene. Phylogenetic analysis showed that P. umbrina is the monotypic sister lineage to the remaining Australasian Chelidae, a lineage probably dating back to the Cretaceous.
Collapse
Affiliation(s)
- Xiuwen Zhang
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| | - Peter J Unmack
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| | - Gerald Kuchling
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Yinan Wang
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| |
Collapse
|
8
|
Schmidt DJ, Brockett B, Espinoza T, Connell M, Hughes JM. Complete mitochondrial genome of the endangered Mary River turtle (Elusor macrurus) and low mtDNA variation across the species' range. AUST J ZOOL 2016. [DOI: 10.1071/zo16013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Elusor macrurus is an endangered short-necked turtle restricted to the Mary River catchment in south-eastern Queensland. Shotgun sequencing of genomic DNA was used to generate a complete mitochondrial genome sequence for E. macrurus using the Illumina MiSeq platform. The mitogenome is 16 499 base pairs (bp) long with 37 genes arranged in the typical vertebrate order and a relatively short 918-bp control region, which does not feature extensive tandem repeats as observed in some turtles. Primers were designed to amplify a 1270-bp region that includes 81% of the typically hypervariable control region. Two haplotypes were detected in a sample of 22 wild-caught individuals from eight sites across its natural range. The Mary River turtle is a species with low mtDNA nucleotide variability relative to other Chelidae. The combination of a very restricted distribution and dramatic reduction in population size due to exploitation for the pet trade are the conditions likely to have led to very low mtDNA variability in this endangered species.
Collapse
|
9
|
A complete mitochondrial genome sequence for the Australian turtle, Chelodina longicollis, obtained using 454-pyrosequencing. CONSERV GENET RESOUR 2014. [DOI: 10.1007/s12686-014-0202-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Hodges K, Donnellan S, Georges A. Phylogeography of the Australian freshwater turtleChelodina expansareveals complex relationships among inland and coastal bioregions. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kate Hodges
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures; University of Canberra; Canberra ACT 2601 Australia
| | | | - Arthur Georges
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures; University of Canberra; Canberra ACT 2601 Australia
| |
Collapse
|
11
|
Iverson JB, Le M, Ingram C. Molecular phylogenetics of the mud and musk turtle family Kinosternidae. Mol Phylogenet Evol 2013; 69:929-39. [DOI: 10.1016/j.ympev.2013.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/15/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
|