1
|
Gogoi P, Boruah JLH, Yadav A, Debnath R, Saikia R. Comparative seasonal analysis of Eri silkworm (Samia ricini Donovan) gut composition: implications for lignocellulose degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109198-109213. [PMID: 37768488 DOI: 10.1007/s11356-023-29893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Conversion of biomass such as lignocelluloses to an alternative energy source can contribute to sustainable development. Recently, biomass-degrading enzymes are reported to be common resources in insect-microbe interacting systems. Northeast India harbors ample sericigenous insect resources which are exploited for their silk products. Samia ricini Donovan is an economically important poly-phytophagous silkmoth capable of digesting foliage from different plant species, suggesting the versatility of a robust gut system. Here, a gut bacterial profile was determined by 16S rRNA gene characterization across the holometabolous life cycle during the summer and winter seasons, revealing 3 phyla, 13 families, and 22 genera. Comparative analysis among the seasonal gut isolates revealed a high diversity in summer, predominated by the genus Bacillus due to its high occurrence in all developmental stages. Shannon's diversity index demonstrated the second and fourth instars of summer as well as the fifth instar of winter to be relatively better developmental stages for gut bacteria assembly. Bacterial community shifts in concert to host developmental changes were found to be apparent between early instars and late instars in summer, which differed from those of winter. Forty-three and twenty-nine gut bacterial isolates were found to be cellulolytic and xylanolytic enzyme producers, respectively. The present results illustrate the gut microbiota of S. ricini over the seasons and support the holometabolous life cycle effect as the most likely factor shaping the gut bacterial microbiota. These findings may provide leads for the development of new cleaner and environmentally friendly lignocellulose-degrading enzymes.
Collapse
Affiliation(s)
- Parishmita Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research, Uttar Pradesh, Kamala Nehru Nagar, Sector 19, Ghaziabad, 201002, India
| | - Jyoti Lakshmi Hati Boruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Archana Yadav
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rajal Debnath
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, 560035, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research, Uttar Pradesh, Kamala Nehru Nagar, Sector 19, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhang X, Ying C, Jiang M, Lin D, You L, Yin D, Zhang J, Liu K, Xu P. The bacteria of Yangtze finless porpoise ( Neophocaena asiaeorientalis asiaeorientalis) are site-specific and distinct from freshwater environment. Front Microbiol 2022; 13:1006251. [PMID: 36605503 PMCID: PMC9808046 DOI: 10.3389/fmicb.2022.1006251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria play an essential role in the health of marine mammals, and the bacteria of marine mammals are widely concerned, but less is known about freshwater mammals. In this study, we investigated the bacteria of various body sites of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) and analyzed their association with freshwater environmental bacteria. The bacterial community and function of Yangtze finless porpoise showed apparent site-specificity. Various body sites have distinct differences in bacteria and have their dominant bacteria. Romboutsia, Plesiomonas, Actinobacillus, Candidatus Arthromitus dominated in the intestine (fecal and rectal samples). Fusobacterium, Streptococcus, and Acinetobacter dominated in the oral. The dominant genera in the blowhole include Suttonella, Psychrobacter, and two uncultured genera. Psychrobacter, Flavobacterium, and Acinetobacter were dominant in the skin. The alpha diversity of intestinal (fecal and rectal) bacteria was the lowest, while that of skin was the highest. The oral and skin bacteria of Yangtze finless porpoise significantly differed between the natural and semi-natural conditions, but no sex difference was observed. A clear boundary was found between the animal and the freshwater environmental bacteria. Even the skin bacteria, which are more affected by the environment, are significantly different from the environmental bacteria and harbor indigenous bacteria. Our results provide a comprehensive preliminary exploration of the bacteria of Yangtze finless porpoise and its association with bacteria in the freshwater environment.
Collapse
Affiliation(s)
- Xizhao Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Min Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Danqing Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Lei You
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jialu Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,*Correspondence: Kai Liu,
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,Pao Xu,
| |
Collapse
|
3
|
Biofilm formation, antimicrobial assay, and toxin-genotypes of Clostridium perfringens type C isolates cultured from a neonatal Yangtze finless porpoise. Arch Microbiol 2022; 204:361. [DOI: 10.1007/s00203-022-02990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/23/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
|
4
|
Gut Microbial Characterization of Melon-Headed Whales (Peponocephala electra) Stranded in China. Microorganisms 2022; 10:microorganisms10030572. [PMID: 35336147 PMCID: PMC8950688 DOI: 10.3390/microorganisms10030572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 12/04/2022] Open
Abstract
Although gut microbes are regarded as a significant component of many mammals and play a very important role, there is a paucity of knowledge around marine mammal gut microbes, which may be due to sampling difficulties. Moreover, to date, there are very few, if any, reports on the gut microbes of melon-headed whales. In this study, we opportunistically collected fecal samples from eight stranded melon-headed whales (Peponocephala electra) in China. Using high-throughput sequencing technology of partial 16S rRNA gene sequences, we demonstrate that the main taxa of melon-headed whale gut microbes are Firmicutes, Fusobacteriota, Bacteroidota, and Proteobacteria (Gamma) at the phylum taxonomic level, and Cetobacterium, Bacteroides, Clostridium sensu stricto, and Enterococcus at the genus taxonomic level. Meanwhile, molecular ecological network analysis (MENA) shows that two modules (a set of nodes that have strong interactions) constitute the gut microbial community network of melon-headed whales. Module 1 is mainly composed of Bacteroides, while Module 2 comprises Cetobacterium and Enterococcus, and the network keystone genera are Corynebacterium, Alcaligenes, Acinetobacter, and Flavobacterium. Furthermore, by predicting the functions of the gut microbial community through PICRUSt2, we found that although there are differences in the composition of the gut microbial community in different individuals, the predicted functional profiles are similar. Our study gives a preliminary inside look into the composition of the gut microbiota of stranded melon-headed whales.
Collapse
|
5
|
Li W, Chen X, Li M, Cai Z, Gong H, Yan M. Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127094. [PMID: 34530278 DOI: 10.1016/j.jhazmat.2021.127094] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard ( Calotes versicolor). Animals (Basel) 2021; 11:ani11082461. [PMID: 34438918 PMCID: PMC8388656 DOI: 10.3390/ani11082461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The different gut sections potentially provide different habitats for gut microbiota. We found that Bacteroidetes, Firmicutes, and Proteobacteria were the three primary phyla in gut microbiota of C. versicolor. The relative abundance of dominant phyla Bacteroidetes and Firmicutes exhibited an increasing trend from the small intestine to the large intestine, and there was a higher abundance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the hindgut, and some metabolic pathways were higher in the hindgut. Our results reveal the variations of gut microbiota composition and metabolic pathways in different parts of the lizards’ intestine. Abstract Vertebrates maintain complex symbiotic relationships with microbiota living within their gastrointestinal tracts which reflects the ecological and evolutionary relationship between hosts and their gut microbiota. However, this understanding is limited in lizards and the spatial heterogeneity and co-occurrence patterns of gut microbiota inside the gastrointestinal tracts of a host and variations of microbial community among samples remain poorly understood. To address this issue and provide a guide for gut microbiota sampling from lizards, we investigated the bacteria in three gut locations of the oriental garden lizard (Calotes versicolor) and the data were analyzed for bacterial composition by 16S ribosomal RNA (16S rRNA) gene amplicon sequencing. We found the relative abundance of the dominant phyla exhibited an increasing trend from the small intestine to the large intestine, and phyla Firmicutes, Bacteroidetes and Proteobacteria were the three primary phyla in the gut microbiota of C. versicolor. There were a higher abundance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the sample from the hindgut. The secondary bile acid biosynthesis, glycosaminoglycan degradation, sphingolipid metabolism and lysosome were significantly higher in the hindgut than that in the small intestine. Taken together our results indicate variations of gut microbiota composition and metabolic pathway in different parts of the oriental garden lizard.
Collapse
|
7
|
Procopio N, Lovisolo F, Sguazzi G, Ghignone S, Voyron S, Migliario M, Renò F, Sellitto F, D'Angiolella G, Tozzo P, Caenazzo L, Gino S. "Touch microbiome" as a potential tool for forensic investigation: A pilot study. J Forensic Leg Med 2021; 82:102223. [PMID: 34343925 DOI: 10.1016/j.jflm.2021.102223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.
Collapse
Affiliation(s)
- Noemi Procopio
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Stefano Ghignone
- Istituto per La Protezione Sostenibile Delle Piante - SS Torino - Consiglio Nazionale Delle Ricerche, C/o Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Federica Sellitto
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Gabriella D'Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
8
|
The Bacterial Microbiome in the Small Intestine of Hooded Seals ( Cystophora cristata). Microorganisms 2020; 8:microorganisms8111664. [PMID: 33121092 PMCID: PMC7693863 DOI: 10.3390/microorganisms8111664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
Arctic hooded seals (Cystophora cristata) are monogastric carnivores that go through extreme fasting and re-feeding in early life. They are born isolated on sea ice; suckle high-fat milk for four days and may then fast for up to one month before they start hunting and feeding on small prey (fish and crustaceans). Previous studies of the gut microbiota in pinnipeds have focused on the large intestine, while little data exist on the small intestinal microbiota. In this study, the bacterial microbiome in the proximal and distal small intestine of four captive two-year old seals (two males and two females) fed herring (Clupea harengus) was sampled post-mortem and characterized using 16S rRNA metabarcoding from the V1–V3 hypervariable region of the 16S ribosomal RNA (rRNA) genes. The seals were originally born in the wild and taken into human care at the end of the suckling period. Molecular-based analysis using Illumina Hiseq resulted in 569,910 16S rRNA sequences from the four seals (both sampling sites together). Taxonomical classification applying a naive Bayesian algorithm gave 412 Operational Taxonomic Units (OTUs). Firmicutes was the major phylum across samples (Proximal (P): 90.5% of total sequences, on average; Distal (D): 94.5%), followed by Actinobacteria (P: 7%; D: 0.3%) and Proteobacteria (P: 1.7%; D: 1.9%). Bacterial spp. belonging to the Clostridium (P: 54.1%; D: 41.6%) and SMB53 (P: 15.3%; D: 21.5%) constituted the major genera in both the proximal and distal small intestine. Furthermore, comparison with hindgut and fecal samples from geographically diverse marine mammals highlighted similarities in the microbiome between our seals and those sharing similar aquatic environments. This study has provided a first reliable glimpse of the bacterial microbiota in the small intestine microbiome of hooded seals.
Collapse
|
9
|
Wan X, Li J, Cheng Z, Ao M, Tian R, McLaughlin RW, Zheng J, Wang D. The intestinal microbiome of an Indo-Pacific humpback dolphin (Sousa chinensis) stranded near the Pearl River Estuary, China. Integr Zool 2020; 16:287-299. [PMID: 32761739 DOI: 10.1111/1749-4877.12477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian intestinal microbiome is critical for host health and disease resistance. However, the cetacean intestinal microbiota remains relatively unexplored. By using high-throughput 16S rRNA gene sequencing, we analyzed intestinal bacterial samples from an Indo-pacific humpback dolphin (Sousa chinensis) stranded near the Pearl River Estuary in China. The samples included 3 anatomical regions (foregut, midgut, and rectum) and 2 anatomical locations (content and mucus). Our analyses revealed that the dolphin intestinal bacteria contained 139 operational taxonomic units (OTUs), dominated at the phyla level by Firmicutes (47.05% in the content; 94.77% in the mucus), followed by Bacteroidetes (23.63% in the content; 1.58% in the mucus) and Gammaproteobacteria (14.82% in the content; 2.05% in the mucus). The intestinal bacteria had a small core community (15 OTUs, accounting for 99.74% of the reads), some of which could be potentially pathogenic to both human and dolphins. As an alternative to sampling the dolphin intestinal bacteria, fecal sampling could be used. Additionally, function potentials such as, xenobiotics biodegradation, beta-lactam resistance, and human disease-related pathways, were detected in the dolphin intestinal bacteria. These findings provide the first baseline knowledge of the intestinal microbiome of the Indo-Pacific humpback dolphin, which may offer new insights into cetacean conservation by using microbial surveillance.
Collapse
Affiliation(s)
- Xiaoling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolong Cheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Mengxue Ao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Renmao Tian
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA.,Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois, USA
| | - Richard William McLaughlin
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,General Studies, Gateway Technical College, Kenosha, Wisconsin, USA
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Tian J, Du J, Lu Z, Han J, Wang Z, Li D, Guan X, Wang Z. Distribution of microbiota across different intestinal tract segments of a stranded dwarf minke whale, Balaenoptera acutorostrata. Microbiologyopen 2020; 9:e1108. [PMID: 32783331 PMCID: PMC7568251 DOI: 10.1002/mbo3.1108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022] Open
Abstract
Marine mammals are an important part of ocean ecosystems, of which, whales play a vital role in the marine food chain. In this study, the mucosa and contents from different intestinal tract segments (ITSs) of a stranded dwarf minke whale (Balaenoptera acutorostrata) were analyzed. The gut microbiota were sequenced using high‐throughput sequencing technology, based on a 16S rRNA approach. The microbial composition of the intestinal mucosa and its contents were similar in every single ITS. Large intestine microbiota richness and diversity were significantly higher when compared to the duodenum and jejunum. The dominant bacteria in the gut were Firmicutes and Actinobacteria; the former was enriched in the large intestine, whereas the latter was more abundant in the duodenum and jejunum. Our findings provide novel insights for microbiota in B. acutorostrata.
Collapse
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jiabo Han
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, China
| | - Xiaoyan Guan
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zhaohui Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| |
Collapse
|
11
|
Graves GR, Matterson KO, Milensky CM, Schmidt BK, O'Mahoney MJV, Drovetski SV. Does solar irradiation drive community assembly of vulture plumage microbiotas? Anim Microbiome 2020; 2:24. [PMID: 33499993 PMCID: PMC7807431 DOI: 10.1186/s42523-020-00043-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stereotyped sunning behaviour in birds has been hypothesized to inhibit keratin-degrading bacteria but there is little evidence that solar irradiation affects community assembly and abundance of plumage microbiota. The monophyletic New World vultures (Cathartiformes) are renowned for scavenging vertebrate carrion, spread-wing sunning at roosts, and thermal soaring. Few avian species experience greater exposure to solar irradiation. We used 16S rRNA sequencing to investigate the plumage microbiota of wild individuals of five sympatric species of vultures in Guyana. RESULTS The exceptionally diverse plumage microbiotas (631 genera of Bacteria and Archaea) were numerically dominated by bacterial genera resistant to ultraviolet (UV) light, desiccation, and high ambient temperatures, and genera known for forming desiccation-resistant endospores (phylum Firmicutes, order Clostridiales). The extremophile genera Deinococcus (phylum Deinococcus-Thermus) and Hymenobacter (phylum, Bacteroidetes), rare in vertebrate gut microbiotas, accounted for 9.1% of 2.7 million sequences (CSS normalized and log2 transformed). Five bacterial genera known to exhibit strong keratinolytic capacities in vitro (Bacillus, Enterococcus, Pseudomonas, Staphylococcus, and Streptomyces) were less abundant (totaling 4%) in vulture plumage. CONCLUSIONS Bacterial rank-abundance profiles from melanized vulture plumage have no known analog in the integumentary systems of terrestrial vertebrates. The prominence of UV-resistant extremophiles suggests that solar irradiation may play a significant role in the assembly of vulture plumage microbiotas. Our results highlight the need for controlled in vivo experiments to test the effects of UV on microbial communities of avian plumage.
Collapse
Affiliation(s)
- Gary R Graves
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA.
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Kenan O Matterson
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48100, Ravenna, Italy
| | - Christopher M Milensky
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Brian K Schmidt
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Michael J V O'Mahoney
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Sergei V Drovetski
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
- Current address: USGS Patuxent Wildlife Research Center, 10300 Baltimore Avenue, BARC-East Bldg. 308, Beltsville, MD, 20705, USA
| |
Collapse
|
12
|
You L, Ying C, Liu K, Zhang X, Lin D, Yin D, Zhang J, Xu P. Changes in the fecal microbiome of the Yangtze finless porpoise during a short-term therapeutic treatment. Open Life Sci 2020; 15:296-310. [PMID: 33817218 PMCID: PMC7988435 DOI: 10.1515/biol-2020-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
The fecal microbiome is an integral part of aquatic mammals, like an inner organ. But we know very little about this inner organ of the threatened aquatic species, Yangtze finless porpoise (YFP). Four YFPs were placed into a purse seine for skin ulceration treatment, and this opportunity was taken to nurse the animals closer. In particular, we collected the feces of the YFPs before and after the paired healing and therapeutic treatment, along with samples of their fish diet and water habitat, to explore the changes in their fecal microbiome. Firmicutes (20.9–96.1%), Proteobacteria (3.8–78.7%), Actinobacteria (0.1–35.0%) and Tenericutes (0.8–17.1%) were the most dominant phyla present in the feces. The proportion of Proteobacteria and Actinobacteria increased after the treatment. Firmicutes showed a significant decrease, and most potential pathogens were absent, which reflected the administration of ciprofloxacin hydrochloride. Moreover, environmental shifts can also contribute to changes in the fecal microbiome. These results indicate that certain microbial interactions can be affected by environmental shifts, dietary changes and health-care treatments, which can also help maintain the internal environment of YFPs. These findings will inform the future enhanced protection and management of endangered YFPs and other vulnerable aquatic animals.
Collapse
Affiliation(s)
- Lei You
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Congping Ying
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China
| | - Kai Liu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China
| | - Xizhao Zhang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China
| | - Danqing Lin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China
| | - Denghua Yin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China
| | - Jialu Zhang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China
| | - Pao Xu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Volokhov DV, Gulland FM, Gao Y, Chizhikov VE. Ureaplasma miroungigenitalium sp. nov. isolated from northern elephant seals (Mirounga angustirostris) and Ureaplasma zalophigenitalium sp. nov. isolated from California sea lions (Zalophus californianus). Int J Syst Evol Microbiol 2020; 70:153-164. [DOI: 10.1099/ijsem.0.003729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Dmitriy V. Volokhov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | | | - Yamei Gao
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Vladimir E. Chizhikov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
14
|
Kim SW, Han SJ, Lee YR, Kim BY, Park SC. First report of a Risso’s dolphin (
Grampus griseus
) stranded in Jeju Island, Republic of Korea: findings from necropsy, histopathology and microbiome analysis. VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2019-000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sang Wha Kim
- College of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Se Jin Han
- College of Veterinary MedicineSeoul National UniversitySeoulKorea
| | | | - Byung Yeop Kim
- Department of Marine Industry and Maritime PoliceCollege of Ocean ScienceJeju National UniversityJeju‐doKorea
| | - Se Chang Park
- College of Veterinary MedicineSeoul National UniversitySeoulKorea
| |
Collapse
|
15
|
Tian R, Seim I, Zhang Z, Yang Y, Ren W, Xu S, Yang G. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans. Genes Genomics 2019; 41:1417-1430. [PMID: 31535317 DOI: 10.1007/s13258-019-00861-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The relatively rapid spread and diversity of marine pathogens posed an initial and ongoing challenge for cetaceans (whales, dolphins, and porpoises), descendants of terrestrial mammals that transitioned from land to sea approximately 56 million years ago. Toll-like receptors (TLRs) play important roles in regulating immunity against pathogen infections by detecting specific molecular patterns and activating a wide range of downstream signaling pathways. The ever-increasing catalogue of mammalian genomes offers unprecedented opportunities to reveal genetic changes associated with evolutionary and ecological processes. OBJECTIVE This study aimed to explore the molecular evolution of TLR signaling pathway genes in cetaceans. METHODS Genes involved in the TLR signaling pathway were retrieved by BLAST searches using human coding sequences as queries. We tested each gene for positive selection along the cetacean branches using PAML and Hyphy. Physicochemical property changes of amino acids at all positively selected residues were assessed by TreeSAAP and visualized with WebLogo. Bovine and dolphin TLR4 was assessed using human embryonic kidney cell line HEK293, which lacks TLR4 and its co-receptor MD-2. RESULTS We demonstrate that eight TLR signaling pathway genes are under positive selection in cetaceans. These include key genes in the response to Gram-negative bacteria: TLR4, CD14, and LY96 (MD-2). Moreover, 41 out of 65 positively selected sites were inferred to harbor substitution that dramatically changes the physicochemical properties of amino acids, with most of them situated in or adjacent to functional regions. We also found strong evidence that positive selection occurred in the lineage of the Yangtze finless porpoise, likely reflecting relatively recent adaptions to a freshwater milieu. Species-specific differences in TLR4 response were observed between cetacean and terrestrial species. Cetacean TLR4 was significantly less responsive to lipopolysaccharides from a terrestrial E. coli strain, possibly a reflection of the arms race of host-pathogen co-evolution faced by cetaceans in an aquatic environment. CONCLUSION This study provides further impetus for studies on the evolution and function of the cetacean immune system.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Zepeng Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ying Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
16
|
Putative virulence factors of Plesiomonas shigelloides. Antonie van Leeuwenhoek 2019; 112:1815-1826. [PMID: 31372945 DOI: 10.1007/s10482-019-01303-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
Plesiomonas shigelloides is a Gram-negative rod-shaped bacterium which has been isolated from humans, animals and the environment. It has been associated with diarrhoeal disease in humans and various epizootic diseases in animals. In this study P. shigelloides strains were isolated from the faecal material of a captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in semi-natural conditions in China. Plesiomonas shigelloides strain EE2 was subjected to whole genome sequencing. The draft genome was then compared to the genome sequences of ten other P. shigelloides isolates using the Pathosystems Resource Integration Center pipeline. In addition to several virulence factors which have been previously reported, we are proposing new candidate virulence factors such as a repeats-in-toxin protein, lysophospholipase, a twin-arginine translocation system and the type VI secretion effector Phospholipase A1.
Collapse
|
17
|
Marón CF, Kohl KD, Chirife A, Di Martino M, Fons MP, Navarro MA, Beingesser J, McAloose D, Uzal FA, Dearing MD, Rowntree VJ, Uhart M. Symbiotic microbes and potential pathogens in the intestine of dead southern right whale (Eubalaena australis) calves. Anaerobe 2019; 57:107-114. [PMID: 30959166 DOI: 10.1016/j.anaerobe.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Between 2003 and 2017, at least 706 southern right whale (Eubalaena australis) calves died at the Península Valdés calving ground in Argentina. Pathogenic microbes are often suggested to be the cause of stranding events in cetaceans; however, to date there is no evidence supporting bacterial infections as a leading cause of right whale calf deaths in Argentina. We used high-throughput sequencing and culture methods to characterize the bacterial communities and to detect potential pathogens from the intestine of stranded calves. We analyzed small and large intestinal contents from 44 dead calves that stranded at Península Valdés from 2005 to 2010 and found 108 bacterial genera, most identified as Firmicutes or Bacteroidetes, and 9 genera that have been previously implicated in diseases of marine mammals. Only one operational taxonomic unit was present in all samples and identified as Clostridium perfringens type A. PCR results showed that all C. perfringens isolates (n = 38) were positive for alpha, 50% for beta 2 (n = 19) and 47% for enterotoxin (CPE) genes (n = 18). The latter is associated with food-poisoning and gastrointestinal diseases in humans and possibly other animals. The prevalence of the cpe gene found in the Valdés' calves is unusually high compared with other mammals. However, insufficient histologic evidence of gastrointestinal inflammation or necrosis (the latter possibly masked by autolysis) in the gut of stranded calves, and absence of enterotoxin detection precludes conclusions about the role of C. perfringens in calf deaths. Further work is required to determine whether C. perfringens or other pathogens detected in this study are causative agents of calf deaths at Península Valdés.
Collapse
Affiliation(s)
- Carina F Marón
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba-CONICET, Córdoba, 5000, Argentina; Instituto de Conservación de Ballenas, Ciudad Autónoma de Buenos Aires, 1429, Argentina.
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania, 15260, United States
| | - Andrea Chirife
- Southern Right Whale Health Monitoring Program, Chubut, 9120, Argentina
| | - Matías Di Martino
- Southern Right Whale Health Monitoring Program, Chubut, 9120, Argentina
| | - Mariola Penadés Fons
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, 92408, United States
| | - Juliann Beingesser
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, 92408, United States
| | - Denise McAloose
- Southern Right Whale Health Monitoring Program, Chubut, 9120, Argentina; Wildlife Conservation Society, Zoological Health Program, Bronx Zoo, Bronx, NY, 10464, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, 92408, United States
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Utah, 84112, United States
| | - Victoria J Rowntree
- Instituto de Conservación de Ballenas, Ciudad Autónoma de Buenos Aires, 1429, Argentina; Southern Right Whale Health Monitoring Program, Chubut, 9120, Argentina; School of Biological Sciences, University of Utah, Utah, 84112, United States; Whale Conservation Institute/Ocean Alliance, Massachusetts, 01930, United States
| | - Marcela Uhart
- Southern Right Whale Health Monitoring Program, Chubut, 9120, Argentina; School of Veterinary Medicine, University of California Davis, California, 95616, United States
| |
Collapse
|
18
|
Wan XL, McLaughlin RW, Zheng JS, Hao YJ, Fan F, Tian RM, Wang D. Microbial communities in different regions of the gastrointestinal tract in East Asian finless porpoises (Neophocaena asiaeorientalis sunameri). Sci Rep 2018; 8:14142. [PMID: 30237562 PMCID: PMC6147976 DOI: 10.1038/s41598-018-32512-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/13/2018] [Indexed: 01/26/2023] Open
Abstract
Mammalian gastrointestinal (GI) tract microbial communities are critical for host health. However, the microbiota along the GI tract in cetaceans has not been well characterized compared to other animals. In this study, the bacteria and fungi present in the stomach, foregut, hindgut and feces, of East Asian finless porpoises (Neophocaena asiaeorientalis sunameri, EAFPs) were characterized using high-throughput sequencing analysis. The bacterial and fungal diversity and richness in the stomach, hindgut and fecal samples tended to be higher than those in the foregut. Bacterial taxonomic compositions found in the hindgut and feces were different from those seen in the stomach and foregut. A greater proportion of strict anaerobic bacteria including Clostridia, Fusobacteria, and Ruminococcaceae were found in the hindgut and fecal samples. The fungal communities present in stomach samples differed from those detected in other regions to some extent. Zygomycota and Neocallimastigomycota were more predominant in the stomach. Some potential pathogens, such as Helicobacter spp. and Vibrio spp., were commonly present along the GI tract. Our study confirms that the fecal microbiota can represent the whole GI tract to some extent because of their relatively higher microbial diversity and presence of potential pathogens. Our study provides the first comprehensive characterization of the EAFPs GI microbiota, expanding on the current knowledge about the bacterial diversity in the GI tract of cetaceans. In addition, this is the first study characterizing the fungal diversity of any species of porpoise.
Collapse
Affiliation(s)
- Xiao-Ling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Richard William McLaughlin
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,General Studies, Gateway Technical College, Kenosha, WI, 53144, USA
| | - Jin-Song Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yu-Jiang Hao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fei Fan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ren-Mao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
19
|
Guan Y, Yang H, Han S, Feng L, Wang T, Ge J. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express 2017; 7:212. [PMID: 29170893 PMCID: PMC5700909 DOI: 10.1186/s13568-017-0517-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota is characterized as a complex ecosystem that has effects on health and diseases of host with the interactions of many other factors together. Sika deer is the national level for the protection of wild animals in China. The available sequencing data of gut microbiota from feces of wild sika deer, especially for Cervus nippon hortulorum in Northeast China, are limited. Here, we characterized the gastrointestinal bacterial communities of wild (7 samples) and captive (12 samples) sika deer from feces, and compared their gut microbiota by analyzing the V4 region of 16S rRNA gene using high-throughput sequencing technology on the Illumina Hiseq platform [corrected]. Firmicutes (77.624%), Bacteroidetes (18.288%) and Tenericutes (1.342%) were the most predominant phyla in wild sika deer. While in captive sika deer, Firmicutes (50.710%) was the dominant phylum, followed by Bacteroidetes (31.996%) and Proteobacteria (4.806%). A total of 9 major phyla, 22 families and 30 genera among gastrointestinal bacterial communities showed significant differences between wild and captive sika deer. The specific function and mechanism of Tenericutes in wild sika deer need further study. Our results indicated that captive sika deer in farm had higher fecal bacterial diversity than the wild. Abundance and quantity of diet source for sika deer played crucial role in shaping the composition and structure of gut microbiota.
Collapse
|
20
|
Jiang HY, Ma JE, Li J, Zhang XJ, Li LM, He N, Liu HY, Luo SY, Wu ZJ, Han RC, Chen JP. Diets Alter the Gut Microbiome of Crocodile Lizards. Front Microbiol 2017; 8:2073. [PMID: 29118742 PMCID: PMC5660983 DOI: 10.3389/fmicb.2017.02073] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
The crocodile lizard is a critically endangered reptile, and serious diseases have been found in this species in recent years, especially in captive lizards. Whether these diseases are caused by changes in the gut microbiota and the effect of captivity on disease remains to be determined. Here, we examined the relationship between the gut microbiota and diet and disease by comparing the fecal microbiota of wild lizards with those of sick and healthy lizards in captivity. The gut microbiota in wild crocodile lizards was consistently dominated by Proteobacteria (∼56.4%) and Bacteroidetes (∼19.1%). However, the abundance of Firmicutes (∼2.6%) in the intestine of the wild crocodile lizards was distinctly lower than that in other vertebrates. In addition, the wild samples from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve also had a high abundance of Deinococcus-Thermus while the wild samples from Guangxi Daguishan Crocodile Lizard National Nature Reserve had a high abundance of Tenericutes. The gut microbial community in loach-fed crocodile lizards was significantly different from the gut microbial community in the earthworm-fed and wild lizards. In addition, significant differences in specific bacteria were detected among groups. Notably, in the gut microbiota, the captive lizards fed earthworms resulted in enrichment of Fusobacterium, and the captive lizards fed loaches had higher abundances of Elizabethkingia, Halomonas, Morganella, and Salmonella, all of which are pathogens or opportunistic pathogens in human or other animals. However, there is no sufficient evidence that the gut microbiota contributes to either disease A or disease B. These results provide a reference for the conservation of endangered crocodile lizards and the first insight into the relationship between disease and the gut microbiota in lizards.
Collapse
Affiliation(s)
- Hai-Ying Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou, China
| | - Jing-E Ma
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Juan Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou, China
| | - Xiu-Juan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Nan He
- Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve, Shaoguan, China
| | - Hai-Yang Liu
- Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve, Shaoguan, China
| | - Shu-Yi Luo
- Guangxi Daguishan Crocodile Lizard National Nature Reserve, Hezhou, China
| | - Zheng-Jun Wu
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
21
|
Erwin PM, Rhodes RG, Kiser KB, Keenan-Bateman TF, McLellan WA, Pabst DA. High diversity and unique composition of gut microbiomes in pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales. Sci Rep 2017; 7:7205. [PMID: 28775301 PMCID: PMC5543158 DOI: 10.1038/s41598-017-07425-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
Mammals host diverse bacterial and archaeal symbiont communities (i.e. microbiomes) that play important roles in digestive and immune system functioning, yet cetacean microbiomes remain largely unexplored, in part due to sample collection difficulties. Here, fecal samples from stranded pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales were used to characterize the gut microbiomes of two closely-related species with similar diets. 16S rRNA gene sequencing revealed diverse microbial communities in kogiid whales dominated by Firmicutes and Bacteroidetes. Core symbiont taxa were affiliated with phylogenetic lineages capable of fermentative metabolism and sulfate respiration, indicating potential symbiont contributions to energy acquisition during prey digestion. The diversity and phylum-level composition of kogiid microbiomes differed from those previously reported in toothed whales, which exhibited low diversity communities dominated by Proteobacteria and Actinobacteria. Community structure analyses revealed distinct gut microbiomes in K. breviceps and K. sima, driven by differential relative abundances of shared taxa, and unique microbiomes in kogiid hosts compared to other toothed and baleen whales, driven by differences in symbiont membership. These results provide insight into the diversity, composition and structure of kogiid gut microbiomes and indicate that host identity plays an important role in structuring cetacean microbiomes, even at fine-scale taxonomic levels.
Collapse
Affiliation(s)
- Patrick M Erwin
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA.
| | - Ryan G Rhodes
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Kevin B Kiser
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Tiffany F Keenan-Bateman
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - William A McLellan
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - D Ann Pabst
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| |
Collapse
|
22
|
Bik EM, Costello EK, Switzer AD, Callahan BJ, Holmes SP, Wells RS, Carlin KP, Jensen ED, Venn-Watson S, Relman DA. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun 2016; 7:10516. [PMID: 26839246 PMCID: PMC4742810 DOI: 10.1038/ncomms10516] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
Marine mammals play crucial ecological roles in the oceans, but little is known about their microbiotas. Here we study the bacterial communities in 337 samples from 5 body sites in 48 healthy dolphins and 18 healthy sea lions, as well as those of adjacent seawater and other hosts. The bacterial taxonomic compositions are distinct from those of other mammals, dietary fish and seawater, are highly diverse and vary according to body site and host species. Dolphins harbour 30 bacterial phyla, with 25 of them in the mouth, several abundant but poorly characterized Tenericutes species in gastric fluid and a surprisingly paucity of Bacteroidetes in distal gut. About 70% of near-full length bacterial 16S ribosomal RNA sequences from dolphins are unique. Host habitat, diet and phylogeny all contribute to variation in marine mammal distal gut microbiota composition. Our findings help elucidate the factors structuring marine mammal microbiotas and may enhance monitoring of marine mammal health.
Collapse
Affiliation(s)
- Elisabeth M. Bik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Elizabeth K. Costello
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alexandra D. Switzer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Susan P. Holmes
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Randall S. Wells
- Sarasota Dolphin Research Program, Chicago Zoological Society, c/o Mote Marine Laboratory, Sarasota, Florida 34236, USA
| | - Kevin P. Carlin
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, California 92106, USA
| | - Eric D. Jensen
- Space and Naval Warfare Systems Center Pacific, San Diego, California 92152, USA
| | - Stephanie Venn-Watson
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, California 92106, USA
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
- Department of Medicine (Infectious Diseases and Geographic Medicine), Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
23
|
Wan X, Ruan R, McLaughlin RW, Hao Y, Zheng J, Wang D. Fecal Bacterial Composition of the Endangered Yangtze Finless Porpoises Living Under Captive and Semi-natural Conditions. Curr Microbiol 2015; 72:306-14. [PMID: 26620537 DOI: 10.1007/s00284-015-0954-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022]
Abstract
Intestinal microbiota is essential to the health and physiology of host animals. We undertook the first microbiological study of the fecal bacterial composition from critically endangered (CR) Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis; YFPs) living under captive and semi-natural conditions using both high-throughput sequencing method and 16S rRNA gene clone library method. As determined by high-throughput sequencing of V3-V4 regions of the 16S rRNA gene, semi-natural samples harbored 30 and 36 operational taxonomic units (OTUs), which was more than the 22 and 27 OTUs detected from YFPs living in captivity. In captive YFPs Firmicutes was the predominant phylum, whereas this was Proteobacteria for YFPs living in semi-nature conditions. This suggests habitat-specific fecal bacterial composition of YFPs. Plesiomonas spp. and Aeromonas spp., which are potentially pathogenic, were identified in all the feces. Bacterial diversity from one porpoise living in captivity was also determined by constructing a 16S rRNA gene clone library and only 1 phylum was identified. High-throughput sequencing was more effective at determining the bacterial diversity compared to the 16S rRNA gene clone library. This study provides important information for the management and conservation of the CR YFPs.
Collapse
Affiliation(s)
- Xiaoling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rui Ruan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Richard William McLaughlin
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China.,Biology Department, Saint Mary's University of Minnesota, 700 Terrace, Winona, MN, 55987-1399, USA
| | - Yujiang Hao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China.
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China.
| |
Collapse
|
24
|
Gohain A, Gogoi A, Debnath R, Yadav A, Singh BP, Gupta VK, Sharma R, Saikia R. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants. FEMS Microbiol Lett 2015; 362:fnv158. [PMID: 26347302 DOI: 10.1093/femsle/fnv158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 11/13/2022] Open
Abstract
Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds.
Collapse
Affiliation(s)
- Anwesha Gohain
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Animesh Gogoi
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Rajal Debnath
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Archana Yadav
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Bhim P Singh
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram 796004, India
| | - Vijai K Gupta
- Glyco-Biotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Rajeev Sharma
- Centre for Bioinformatics Studies, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ratul Saikia
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| |
Collapse
|
25
|
Benskin CMH, Rhodes G, Pickup RW, Mainwaring MC, Wilson K, Hartley IR. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus. Ecol Evol 2015; 5:821-35. [PMID: 25750710 PMCID: PMC4338966 DOI: 10.1002/ece3.1384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 11/24/2022] Open
Abstract
Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts.
Collapse
Affiliation(s)
| | - Glenn Rhodes
- Centre for Ecology and Hydrology, Lancaster Environment Centre Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Roger W Pickup
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University Lancaster, LA1 4YQ, UK
| | - Mark C Mainwaring
- Lancaster Environment Centre, Lancaster University Lancaster, LA1 4YQ, UK
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University Lancaster, LA1 4YQ, UK
| | - Ian R Hartley
- Lancaster Environment Centre, Lancaster University Lancaster, LA1 4YQ, UK
| |
Collapse
|
26
|
Zhou L, Yan W, Yang L, Chen H, Cao Q, Ren W. Isolation of gamma-interferon-inducible lysosomal thiol reductase (GILT) from the Yangtze finless porpoise. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:652-656. [PMID: 23817143 DOI: 10.1016/j.dci.2013.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/11/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
In this study, we isolated the cDNA of a gamma-interferon-inducible lysosomal thiol reductase (GILT), which is critical for innate immune regulation, from the Yangtze finless porpoise (FpGILT). This gene encoded a protein with 244 amino acids and a predicted molecular weight of 28 kDa. The amino acid sequence of FpGILT includes an active-site CXXC motif, a GILT signature sequence, CQHGX2ECX2NX4C, and three N-linked glycosylation sites. Phylogenetic analysis showed that FpGILT and other GILT family members were derived from a common ancestor and finless porpoises are closely related to artiodactyla. Recombinant protein (FpsGILT) was then efficiently expressed and purified, and thiol reductase activity assays suggested that FpGILT catalyses disulfide bond reduction. These findings provide a basis for understanding the characteristics of immunity in the finless porpoise and other aquatic mammals.
Collapse
Affiliation(s)
- Lidan Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | | | | | | | | | | |
Collapse
|
27
|
The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol. DIVERSITY-BASEL 2012. [DOI: 10.3390/d4040375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|