1
|
Hooglugt A, van der Stoel MM, Shapeti A, Neep BF, de Haan A, van Oosterwyck H, Boon RA, Huveneers S. DLC1 promotes mechanotransductive feedback for YAP via RhoGAP-mediated focal adhesion turnover. J Cell Sci 2024; 137:jcs261687. [PMID: 38563084 PMCID: PMC11112125 DOI: 10.1242/jcs.261687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
| | - Miesje M. van der Stoel
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| | - Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, 3001 Leuven, Belgium
| | - Beau F. Neep
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
| | - Annett de Haan
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| | - Hans van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, 3001 Leuven, Belgium
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, 3000 Leuven, Belgium
| | - Reinier A. Boon
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt am Main, Germany
- Goethe University, Institute of Cardiovascular Regeneration, 60590 Frankfurt am Main, Germany
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| |
Collapse
|
2
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
3
|
Zhang Y, Li G. A tumor suppressor DLC1: The functions and signal pathways. J Cell Physiol 2019; 235:4999-5007. [DOI: 10.1002/jcp.29402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Zhang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life SciencesShandong Normal UniversityJinan China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life SciencesShandong Normal UniversityJinan China
| |
Collapse
|
4
|
Yang Y, Huang Q, Luo C, Wen Y, Liu R, Sun H, Tang L. MicroRNAs in acute pancreatitis: From pathogenesis to novel diagnosis and therapy. J Cell Physiol 2019; 235:1948-1961. [PMID: 31552677 DOI: 10.1002/jcp.29212] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder initiated by activation of pancreatic zymogens, leading to pancreatic injury and systemic inflammatory response. MicroRNAs (miRNAs) have emerged as important regulators of gene expression and key players in human physiological and pathological processes. Discoveries over the past decade have confirmed that altered expression of miRNAs is implicated in the pathogenesis of AP. Indeed, a number of miRNAs have been found to be dysregulated in various cell types involved in AP such as acinar cells, macrophages, and lymphocytes. These aberrant miRNAs can regulate acinar cell necrosis and apoptosis, local and systemic inflammatory response, thereby contributing to the initiation and progression of AP. Moreover, patients with AP possess unique miRNA signatures when compared with healthy individuals or those with other diseases. In view of their stability and easy detection, therefore, miRNAs have the potential to act as biomarkers for the diagnosis and assessment of patients with AP. In this review, we provide an overview of the novel cellular and molecular mechanisms underlying the roles of miRNAs during the disease processes of AP, as well as the potential diagnosis and therapeutic biomarkers of miRNAs in patients with AP.
Collapse
Affiliation(s)
- Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Chen Luo
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Ruohong Liu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Xiang H, Tao X, Xia S, Qu J, Song H, Liu J, Shang D. Targeting MicroRNA Function in Acute Pancreatitis. Front Physiol 2017; 8:726. [PMID: 28983256 PMCID: PMC5613139 DOI: 10.3389/fphys.2017.00726] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disorder that featured by acute inflammatory responses leading to systemic inflammatory response syndrome (SIRS) or multiple organ failure. A worldwide increase in annual incidence has been observed during the past decade with high acute hospitalization and mortality. Lack of any specific treatment for AP, even to this day, is a reminder that there is much to be learned about the exact pathogenesis of AP. Fortunately, the discovery of microRNA (miRNA) has started an entirely new thought process regarding the molecular mechanism associated with the disease processes. Given the extensive effort made on miRNA research, certain types of miRNA have been identified across a variety of biological processes, including cell differentiation, apoptosis, metabolism, and inflammatory responses. Mutations in miRNA sequences or deregulation of miRNA expression may contribute to the alteration of a pivotal physiological function leading to AP. Designing miRNA-related tools for AP diagnosis and treatment presents a novel and potential research frontier. In this mini-review, we summarize the current knowledge of various miRNAs closely interacting with AP and the possible development of targeted miRNA therapies in this disease, which may benefit the development of potential disease biomarkers and novel treatment targets for future medical implications.
Collapse
Affiliation(s)
- Hong Xiang
- College of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical UniversityDalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jianjun Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Dong Shang
- College of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
6
|
Qin T, Fu Q, Pan YF, Liu CJ, Wang YZ, Hu MX, Tang Q, Zhang HW. Expressions of miR-22 and miR-135a in acute pancreatitis. ACTA ACUST UNITED AC 2014; 34:225-233. [PMID: 24710937 DOI: 10.1007/s11596-014-1263-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/20/2014] [Indexed: 01/27/2023]
Abstract
This study examined the expressions of miR-22 and miR-135a in rats with acute edematous pancreatitis (AEP) and their target genes in order to shed light on the involvement of miR-22 and miR-135a in the pathogenesis of acute pancreatitis (AP). The in vivo model of AEP was established by introperitoneal injection of L-arginine (150 mg/kg) in rats. The miRNA microarray analysis was used to detect the differential expression of miRNAs in pancreatic tissue in AEP and normal rats. The in vitro AEP model was established by inducing the rat pancreatic acinar cell line (AR42J) with 50 ng/mL recombinant rat TNF-α. Real-time quantitative RT-PCR was employed to detect the expression of miR-22 and miR-135a in AR42J cells. Lentiviruses carrying the miRNA mimic and anti-miRNA oligonucleotide (AMO) of miR-22 and miR-135a were transfected into the AR42J cells. The AR42J cells transfected with vehicle served as control. Western blotting was used to measure the expression of activated caspase3 and flow cytometry analysis to detect the apoptosis of AR42J cells. Targets of miR-22 and miR-135a were predicted by using TargetScan, miRanda, and TarBase. Luciferase reporter assay and quantitative real-time RT-PCR were performed to confirm whether ErbB3 and Ptk2 were the target gene of miR-22 and miR-135a, respectively. The results showed that the expression levels of miR-22 and miR-135a were obviously increased in AEP group compared with the control group in in-vivo and in-vitro models. The expression levels of miR-22 and miR-135a were elevated conspicuously and the expression levels of their target genes were reduced significantly in AR42J cells transfected with lentiviruses carrying the miRNA mimic. The apoptosis rate was much higher in the TNF-α-induced cells than in non-treated cells. The AR42J cells transfected with miRNA AMOs expressed lower level of miR-22 and miR-135a and had lower apoptosis rate, but the expression levels of ErbB3 and Ptk2 were increased obviously. It was concluded that the expression levels of miR-22 and miR-135a were elevated in AEP. Up-regulating the expression of miR-22 and miR-135a may promote the apoptosis of pancreatic acinar cells by repressing ErbB3 and Ptk2 expression in AEP.
Collapse
Affiliation(s)
- Tao Qin
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China
| | - Qiang Fu
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China
| | - Yan-Feng Pan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China
| | - Chuan-Jiang Liu
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China
| | - Yu-Zhu Wang
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China
| | - Ming-Xing Hu
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China
| | - Qiang Tang
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China
| | - Hong-Wei Zhang
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
7
|
Lišková M, Klepárník K, Matalová E, Hegrová J, Přikryl J, Svandová E, Foret F. Bioluminescence determination of active caspase-3 in single apoptotic cells. Electrophoresis 2013; 34:1772-7. [PMID: 23436689 DOI: 10.1002/elps.201200675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 11/07/2022]
Abstract
Caspase-3 is an executive caspase, in the central position within apoptotic machinery. Apoptosis as a way of programmed cell death is a physiological process that plays an essential role in the development and homeostasis maintenance; moreover, its deregulations are linked to tumor progression or various autoimmune disorders. Therefore, an investigation of apoptosis pathways on the level of individual cells is not only of biological but also medical importance. In this work we report on the development of a high-sensitivity instrumentation and protocol for detection of active caspase-3 in individual mammalian apoptotic cells. The technology is based on the specific cleavage of modified luciferin by caspase-3, an immediate bioluminescence reaction of free luciferin with luciferase followed by emissions of photons and their detection by photomultiplier tube working in the photon counting regime. Three different instrumental arrangements are compared for the determination of caspase-3 in free cells or tissue samples. Thus, in our best miniaturized system the mean amount as low as about 6.5 fg corresponding to 122 000 molecules of caspase-3 can be detected in individual apoptotic mouse leg cells.
Collapse
Affiliation(s)
- Marcela Lišková
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Science, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|