1
|
Zhao Y, Bi Q, Wei Y, Wang R, Wang G, Fu G, Ran Z, Lu J, Zhang H, Zhang L, Jin R, Nie Y. A DNA vaccine (EG95-PT1/2/3-IL2) encoding multi-epitope antigen and IL-2 provokes efficient and long-term immunity to echinococcosis. J Control Release 2023; 361:402-416. [PMID: 37527761 DOI: 10.1016/j.jconrel.2023.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Echinococcosis is a highly prevalent global zoonosis, and vaccines are required. The commercial vaccine based on a protein-based subunit (EG95), however, is limited by its insufficient cellular immunity, a short protection period, and limited prevention against novel mutant strains. Herein, we applied bioinformatics to develop a DNA vaccine (pEG95-IL2) expressing both multi-epitope-based antigens (EG95-PT1/2/3) and an IL-2 adjuvant to regulate T cell differentiation and memory cell response. EG95-PT1/2/3 was screened with hierarchical structure prediction from the epitope conformation of B cells with high confidence across various species to guarantee immunogenicity. Importantly, cationic arginine-rich lipid nanoparticles (RNP) were utilized as a delivery vehicle to form lipoplexes that had a transfection efficiency of nearly two orders of magnitude greater than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) with both immune and nonimmune cells (DC2.4 and L929 cells, respectively). RNP/pEG95-IL2 lipoplexes displayed a robust and long-term antigen expression, as well as adjuvant effects during the immunization. Consequently, intramuscular injection of RNP/pEG95-IL2 elicited similar humoral immune responses and significantly greater cellular responses in mice when compared with those of the commercial vaccine. In addition, the inoculation protocol of RNP/pEG95-IL2 with sequential booster further strengthens cellular immunity in comparison with the homologous booster. Those findings provide a promising strategy for improving plasmid vaccine efficacy.
Collapse
Affiliation(s)
- Yangyang Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Yu Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Gang Fu
- Chongqing Auleon Biological Co., Ltd., Chongqing 402460, China
| | - Zhiguang Ran
- Chongqing Auleon Biological Co., Ltd., Chongqing 402460, China
| | - Jiao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Heyang Zhang
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Leiden 2333 CC, the Netherlands
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Yang H, Wang L, Yuan L, Du H, Pan B, Lu K. Antimicrobial Peptides with Rigid Linkers against Gram-Negative Bacteria by Targeting Lipopolysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15903-15916. [PMID: 36511360 DOI: 10.1021/acs.jafc.2c05921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of hybrid peptides were designed by connecting an antimicrobial peptide Ce(1-8) with a lipopolysaccharide (LPS)-targeting peptide Lf(28-34) via different linkers. Antimicrobial experimental results indicated that linkers play an essential role in the anti-Gram-negative bacterial activity of the hybrid peptides. Among these hybrid peptides, peptide CL5 with dipeptide rigid linker LP exhibited excellent activity and selectivity against Gram-negative bacteria. The minimum inhibitory concentrations of CL5 against the tested Gram-negative bacteria were 4-32 μM, while the toxicity toward HEK-293 cells was relatively low. It was found that the interactions of the peptides with LPS were crucial for peptide activity against Gram-negative bacteria. Antimicrobial mechanistic studies showed that peptide CL5 contributed to the death of Gram-negative bacterial cells by disrupting the integrity of the bacterial membranes. This study revealed the importance of linker selection in the design of hybrid peptides and provides the basis for the further development of antimicrobial peptides.
Collapse
Affiliation(s)
- Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lan Wang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Boyuan Pan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| |
Collapse
|
3
|
Du B, Xuan H, Geng L, Li W, Zhang J, Xiang W, Liu R, Shu C. Microflora for improving the Auricularia auricula spent mushroom substrate for Protaetia brevitarsis production. iScience 2022; 25:105307. [PMID: 36300006 PMCID: PMC9589201 DOI: 10.1016/j.isci.2022.105307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Mushroom cultivation is a sustainable agricultural waste utilization method, but the lack of high-value utilization of the produced spent mushroom substrate (SMS) has hindered the development of mushroom cultivation-based circular agricultural systems. Conversion and utilization of SMS via Protaetia brevitarsis larvae (PBL) have proven to be a high-value AASMS utilization strategy. However, Auricularia auricula SMS (AASMS), which contains woodchips, is less palatable and digestible for PBL. To solve this problem, in this investigation, we screened out microflora (MF) for AASMS fermentation by comparing the fermentation performance as well as the effect on PBL feed intake, weight gain, and AASMS phytotoxic compound removal efficiency. In addition, by bacterial community analysis, the genera Luteimonas, Moheibacter, and Pseudoxanthomonas were predicted to be functional bacteria for AASMS fermentation and contribute to palatability and digestibility improvement. Larvae frass microflora can ferment Auricularia auricula spent mushroom substrate The fermentation can improve feed intake, weight gain, and phytotoxic removal efficiency The genera Luteimonas, Moheibacter, and Pseudoxanthomonas were functional bacteria
Collapse
Affiliation(s)
- Baohai Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China,Northeast Agricultural University, HarBin 150030, P. R. China
| | - Huina Xuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Weihang Li
- Northeast Agricultural University, HarBin 150030, P. R. China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wensheng Xiang
- Northeast Agricultural University, HarBin 150030, P. R. China
| | - Rongmei Liu
- Northeast Agricultural University, HarBin 150030, P. R. China,Corresponding author
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China,Corresponding author
| |
Collapse
|
4
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
5
|
Feng L, Wang Y, Yang J, Sun YF, Li YW, Ye ZH, Lin HB, Yang K. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed Pharmacother 2022; 153:113493. [DOI: 10.1016/j.biopha.2022.113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
|
6
|
Vahedi F, Ghasemi Y, Atapour A, Zomorodian K, Ranjbar M, Monabati A, Nezafat N, Savardashtaki A. B-Cell Epitope Mapping from Eight Antigens of Candida albicans to Design a Novel Diagnostic Kit: An Immunoinformatics Approach. Int J Pept Res Ther 2022; 28:110. [PMID: 35669279 PMCID: PMC9136830 DOI: 10.1007/s10989-022-10413-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Invasive candidiasis is an emerging fungal infection and a leading cause of morbidity in health care facilities. Despite advances in antifungal therapy, increased antifungal drug resistance in Candida albicans has enhanced patient fatality. The most common method for Candida albicans diagnosing is blood culture, which has low sensitivity. Therefore, there is an urgent need to establish a valid diagnostic method. Our study aimed to use the bioinformatics approach to design a diagnostic kit for detecting Candida albicans with high sensitivity and specificity. Eight antigenic proteins of Candida albicans (HYR1, HWP1, ECE1, ALS, EAP1, SAP1, BGL2, and MET6) were selected. Next, a construct containing different immunodominant B-cell epitopes was derived from the antigens and connected using a suitable linker. Different properties of the final construct, such as physicochemical properties, were evaluated. Moreover, the designed construct underwent 3D modeling, reverse translation, and codon optimization. The results confirmed that the designed construct could identify Candida albicans with high sensitivity and specificity in serum samples of patients with invasive candidiasis. However, experimental studies are needed for final confirmation.
Collapse
Affiliation(s)
- Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Ma S, Wu J, Hu H, Mu Y, Zhang L, Zhao Y, Bian X, Jing W, Wei P, Zhao B, Deng J, Liu Z. Novel fusion peptides deliver exosomes to modify injectable thermo-sensitive hydrogels for bone regeneration. Mater Today Bio 2022; 13:100195. [PMID: 35024598 PMCID: PMC8724941 DOI: 10.1016/j.mtbio.2021.100195] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022] Open
Abstract
Injectable thermo-sensitive hydrogels composed of small intestinal submucosa (SIS) with exosomes derived from bone marrow mesenchymal stem cells (BMSCs) are desired for bone regeneration. However, poor mechanical properties limit the clinical application of SIS hydrogels. Herein, the mechanical properties of SIS hydrogels incorporated with 3-(3,4-dihydroxyphenyl) propionic acid (CA) are assessed. The results show that the mechanical properties of SIS hydrogels are improved. In addition, the retention and stability of exosomes over time at the defect site are also challenges. Fusion peptides are designed by connecting collagen-binding domines (CBDs) of collagen type I/III with exosomal capture peptides CP05 (CRHSQMTVTSRL) directly or via rigid linkers (EAAAK). In vitro experiments demonstrate that fusion peptides are contribute to promoting the positive effect of exosomes on osteogenic differentiation of BMSCs. Meanwhile, the results of hydrogels combining exosomes and fusion peptides in the treatment of rat skull defect models reveal that fusion peptides could enhance the retention and stability of exosomes, thereby strengthen the therapeutic effect for skull defects. Therefore, SIS hydrogels with CA modified by fusion peptides and exosomes appear to be a promising strategy in bone regenerative medicine.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomotology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Jinzhe Wu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Han Hu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Lei Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Xiaowei Bian
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing, 102600, China
- Foshan (Southern China) Institute for New Materials, Foshan, 528220, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing, 102600, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| |
Collapse
|
8
|
Reginald K, Wong YR, Shah SMR, Teh KF, Freddy Jalin EJ, Khan NA. Investigating immune responses of the house cricket, Acheta domesticus to pathogenic Eschericia coli K1. Microbes Infect 2021; 23:104876. [PMID: 34332091 DOI: 10.1016/j.micinf.2021.104876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Insects models are excellent models of the innate immune system, as they are free from the influences of the vertebrate adaptive immunity. Crickets are hemimetabolous insects belonging to the order Orthopteran order that have not been as extensively characterized as other holometabolous insects, and may provide new insights to the insect immune responses. In this study, we aim to characterize the innate immune responses of the common house cricket, Acheta domesticus in response to a human pathogenic bacterium E. coli K1. METHODS Crickets were injected with sterile buffer, live E. coli K1 or heat-killed E. coli K1. Physiological effects such as mortality and weight change of the crickets were determined 24-, 48 and 72-hours post injection while immunological effects such as hemocyte counts, bacteremia, phenoloxidase and lysozyme activity of the crickets were measured at 2- and 24-hours post-injection. RESULTS The injection of E. coli K1 in crickets resulted in >85% mortality 3-days post injection, accompanied by significant weight loss. E. coli K1 injection caused a significant increase in both phenoloxidase and lysozyme activities in cricket hemolymphs 24-hours post injection. Live E. coli K1 injected crickets resulted in a significant reduction in circulating hemocytes 24-hours post injection which was not observed in other treatment groups. This was consistent with the resolution of bacteremia observed 24-hours post infection in live E. coli K1 injected crickets. CONCLUSION Our study provides new insights on the innate immune response to pathogenic E. coli K1 in a cricket model.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia.
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Eunice Jalin Freddy Jalin
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia; Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol 2021; 12:661195. [PMID: 34248873 PMCID: PMC8265172 DOI: 10.3389/fmicb.2021.661195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Biofilms form a complex layer with defined structures, that attach on biotic or abiotic surfaces, are tough to eradicate and tend to cause some resistance against most antibiotics. Several studies confirmed that biofilm-producing bacteria exhibit higher resistance compared to the planktonic form of the same species. Antibiotic resistance factors are well understood in planktonic bacteria which is not so in case of biofilm producing forms. This may be due to the lack of available drugs with known resistance mechanisms for biofilms. Existing antibiotics cannot eradicate most biofilms, especially of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). Insects produce complex and diverse set of chemicals for survival and defense. Antimicrobial peptides (AMPs), produced by most insects, generally have a broad spectrum of activity and the potential to bypass the resistance mechanisms of classical antibiotics. Besides, AMPs may well act synergistically with classical antibiotics for a double-pronged attack on infections. Thus, AMPs could be promising alternatives to overcome medically important biofilms, decrease the possibility of acquired resistance and treatment of multidrug-resistant pathogens including ESKAPE. The present review focuses on insect-derived AMPs with special reference to anti-biofilm-based strategies. It covers the AMP composition, pathways and mechanisms of action, the formation of biofilms, impact of biofilms on human diseases, current strategies as well as therapeutic options to combat biofilm with antimicrobial peptides from insects. In addition, the review also illustrates the importance of bioinformatics tools and molecular docking studies to boost the importance of select bioactive peptides those can be developed as drugs, as well as suggestions for further basic and clinical research.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, India
| | - Shasank Sekhar Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Ayusman Behera
- Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, India
| | | | - Sujogya Kumar Panda
- Centre of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, India
| |
Collapse
|
10
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020; 8:E405. [PMID: 33050619 PMCID: PMC7601869 DOI: 10.3390/biomedicines8100405] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain
| |
Collapse
|
11
|
Vasilenko EA, Gorshkova EN, Astrakhantseva IV, Drutskaya MS, Tillib SV, Nedospasov SA, Mokhonov VV. The structure of myeloid cell-specific TNF inhibitors affects their biological properties. FEBS Lett 2020; 594:3542-3550. [PMID: 32865225 DOI: 10.1002/1873-3468.13913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 11/05/2022]
Abstract
Spatial organization and conformational changes of antibodies may significantly affect their biological functions. We assessed the effect of mutual organization of the two VH H domains within bispecific antibodies recognizing human TNF and the surface molecules of murine myeloid cells (F4/80 or CD11b) on TNF retention and inhibition. TNF-neutralizing properties in vitro and in vivo of MYSTI-2 and MYSTI-3 antibodies were compared with new variants with interchanged VH H domains and different linker sequences. The most effective structure of MYSTI-2 and MYSTI-3 proteins required the Ser/Gly-containing 'superflexible' linker. The orientation of the modules was crucial for the activity of the proteins, but not for MYSTI-3 with the Pro/Gln-containing 'semi-rigid' linker. Our results may contribute toward the development of more effective drug prototypes.
Collapse
Affiliation(s)
| | | | - Irina V Astrakhantseva
- Lobachevsky State University, Nizhny Novgorod, Russia.,Sirius University of Science and Technology, Sochi, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei V Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Sirius University of Science and Technology, Sochi, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Vladislav V Mokhonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Blokhina Scientific Research Institute of Epidemiology and Microbiology of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Baghbeheshti S, Hadadian S, Eidi A, Pishkar L, Rahimi H. Effect of Flexible and Rigid Linkers on Biological Activity of Recombinant Tetramer Variants of S3 Antimicrobial Peptide. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10095-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Cho Y, Cho S. Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, Gryllus bimaculatus. Sci Rep 2019; 9:18066. [PMID: 31792279 PMCID: PMC6889498 DOI: 10.1038/s41598-019-54484-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, more than 1,000 cricket (Gryllus bimaculatus) hemocytes were classified based on their size and morphology. These hemocytes were classified into six types: granulocytes, plasmatocytes, prohemocytes, spherulocytes, coagulocytes, and oenocytoids. Hemocyte cultures was observed in real time to determine which hemocytes were associated with cellular immune responses against potential pathogens. Granulocytes were identified as the professional immune cell that mediates nodulation, encapsulation, and phagocytosis of pathogens. Granulocytes have been shown to actively produce various sticky nets (amoeba-like hairs and extracellular traps) from their plasma membranes that they use to gather other hemocytes and to implement cellular immune responses. The activation of lysosomes in granulocytes started at 4 h, peaked at 12 h, and returned to baseline by 24 h post-infection. At 48 h post-infection, cells could be found within the cytoplasm of granulocytes and reactivated lysosomes surrounding these cells were visible. This result seems to reflect a phenomenon in which necrotic granulocytes are removed by other healthy granulocytes. This unique mechanism of cellular immunity is therefore a way to efficiently and effectively remove pathogens and simultaneously maintain healthy hemocytes.
Collapse
Affiliation(s)
- Youngwoo Cho
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Saeyoull Cho
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
14
|
Xiong Y, Karuppanan K, Bernardi A, Li Q, Kommineni V, Dandekar AM, Lebrilla CB, Faller R, McDonald KA, Nandi S. Effects of N-Glycosylation on the Structure, Function, and Stability of a Plant-Made Fc-Fusion Anthrax Decoy Protein. FRONTIERS IN PLANT SCIENCE 2019; 10:768. [PMID: 31316527 PMCID: PMC6611495 DOI: 10.3389/fpls.2019.00768] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/27/2019] [Indexed: 05/29/2023]
Abstract
Protein N-glycosylation is an important post-translational modification and has influences on a variety of biological processes at the cellular and molecular level, making glycosylation a major study aspect for glycoprotein-based therapeutics. To achieve a comprehensive understanding on how N-glycosylation impacts protein properties, an Fc-fusion anthrax decoy protein, viz rCMG2-Fc, was expressed in Nicotiana benthamiana plant with three types of N-glycosylation profiles. Three variants were produced by targeting protein to plant apoplast (APO), endoplasmic reticulum (ER) or removing the N-glycosylation site by a point mutation (Agly). Both the APO and ER variants had a complex-type N-glycan (GnGnXF) as their predominant glycans. In addition, ER variant had a higher concentration of mannose-type N-glycans (50%). The decoy protein binds to the protective antigen (PA) of anthrax through its CMG2 domain and inhibits toxin endocytosis. The protein expression, sequence, N-glycosylation profile, binding kinetics to PA, toxin neutralization efficiency, and thermostability were determined experimentally. In parallel, we performed molecular dynamics (MD) simulations of the predominant full-length rCMG2-Fc glycoform for each of the three N-glycosylation profiles to understand the effects of glycosylation at the molecular level. The MAN8 glycoform from the ER variant was additionally simulated to resolve differences between the APO and ER variants. Glycosylation showed strong stabilizing effects on rCMG2-Fc during in planta accumulation, evidenced by the over 2-fold higher expression and less protein degradation observed for glycosylated variants compared to the Agly variant. Protein function was confirmed by toxin neutralization assay (TNA), with effective concentration (EC50) rankings from low to high of 67.6 ng/ml (APO), 83.15 ng/ml (Agly), and 128.9 ng/ml (ER). The binding kinetics between rCMG2-Fc and PA were measured with bio-layer interferometry (BLI), giving sub-nanomolar affinities regardless of protein glycosylation and temperatures (25 and 37°C). The protein thermostability was examined utilizing the PA binding ELISA to provide information on EC50 differences. The fraction of functional ER variant decayed after overnight incubation at 37°C, and no significant change was observed for APO or Agly variants. In MD simulations, the MAN8 glycoform exhibits quantitatively higher distance between the CMG2 and Fc domains, as well as higher hydrophobic solvent accessible surface areas (SASA), indicating a possibly higher aggregation tendency of the ER variant. This study highlights the impacts of N-glycosylation on protein properties and provides insight into the effects of glycosylation on protein molecular dynamics.
Collapse
Affiliation(s)
- Yongao Xiong
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Austen Bernardi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | | | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Liu Z, Zhu M, Chen X, Yang G, Yang T, Yu L, Hui L, Wang X. Expression and antibacterial activity of hybrid antimicrobial peptide cecropinA-thanatin in Pichia pastoris. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.flm.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Pinheiro AM, Carreira A, Ferreira RB, Monteiro S. Fusion proteins towards fungi and bacteria in plant protection. MICROBIOLOGY (READING, ENGLAND) 2018; 164:11-19. [PMID: 29239714 PMCID: PMC5892777 DOI: 10.1099/mic.0.000592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
In agriculture, although fungi are considered the foremost problem, infections by bacteria also cause significant economical losses. The presence of different diseases in crops often leads to a misuse of the proper therapeutic, or the combination of different diseases forces the use of more than one pesticide. This work concerns the development of a 'super-Blad': a chimeric protein consisting of Blad polypeptide, the active ingredient of a biological fungicide already on the market, and two selected peptides, SP10-5 and Sub5, proven to possess biological potential as antibacterial agents. The resulting chimeric protein obtained from the fusion of Blad with SP10-5 not only maintained strong antibacterial activity, especially against Xanthomonas spp. and Pseudomonas syringae, but was also able to retain the ability to inhibit the growth of both yeast and filamentous fungi. However, the antibacterial activity of Sub5 was considerably diminished when fused with Blad, which seems to indicate that not all fusion proteins behave equally. These newly designed drugs can be considered promising compounds for use in plant protection. A deeper and focused development of an appropriate formulation may result in a potent biopesticide that can replace, per se, two conventional chemistries with less impact on the environment.
Collapse
Affiliation(s)
- Ana Margarida Pinheiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra Carreira
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| | - Ricardo B. Ferreira
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Sara Monteiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| |
Collapse
|
17
|
van Rosmalen M, Krom M, Merkx M. Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins. Biochemistry 2017; 56:6565-6574. [PMID: 29168376 PMCID: PMC6150656 DOI: 10.1021/acs.biochem.7b00902] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Flexible
polypeptide linkers composed of glycine and serine are
important components of engineered multidomain proteins. We have previously
shown that the conformational properties of Gly-Gly-Ser repeat linkers
can be quantitatively understood by comparing experimentally determined
Förster resonance energy transfer (FRET) efficiencies of ECFP-linker-EYFP
proteins to theoretical FRET efficiencies calculated using wormlike
chain and Gaussian chain models. Here we extend this analysis to include
linkers with different glycine contents. We determined the FRET efficiencies
of ECFP-linker-EYFP proteins with linkers ranging in length from 25
to 73 amino acids and with glycine contents of 33.3% (GSSGSS), 16.7%
(GSSSSSS), and 0% (SSSSSSS). The FRET efficiency decreased with an
increasing linker length and was overall lower for linkers with less
glycine. Modeling the linkers using the WLC model revealed that the
experimentally observed FRET efficiencies were consistent with persistence
lengths of 4.5, 4.8, and 6.2 Å for the GSSGSS, GSSSSS, and SSSSSS
linkers, respectively. The observed increase in linker stiffness with
reduced glycine content is much less pronounced than that predicted
by a classical model developed by Flory and co-workers. We discuss
possible reasons for this discrepancy as well as implications for
using the stiffer linkers to control the effective concentrations
of connected domains in engineered multidomain proteins.
Collapse
Affiliation(s)
- Martijn van Rosmalen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mike Krom
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
18
|
Jacobs CGC, Gallagher JD, Evison SEF, Heckel DG, Vilcinskas A, Vogel H. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:1-8. [PMID: 28034605 DOI: 10.1016/j.dci.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 05/28/2023]
Abstract
In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects.
Collapse
Affiliation(s)
- Chris G C Jacobs
- Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany.
| | - Joe D Gallagher
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Sophie E F Evison
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
19
|
Cook JM, Charlesworth A. Insertion of inter-domain linkers improves expression and bioactivity of Zygote arrest (Zar) fusion proteins. Protein Eng Des Sel 2017; 30:313-319. [PMID: 28130327 DOI: 10.1093/protein/gzx002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/10/2017] [Indexed: 11/12/2022] Open
Abstract
Developmentally important proteins that are crucial for fertilization and embryogenesis are synthesized through highly regulated translation of maternal mRNA. The Zygote arrest proteins, Zar1 and Zar2, are crucial for embryogenesis and have been implicated in binding mRNA and repressing mRNA translation. To investigate Zar1 and Zar2, the full-length proteins had been fused to glutathione-S-transferase (GST) or MS2 protein tags with minimal inter-domain linkers derived from multiple cloning sites; however, these fusion proteins expressed poorly and/or lacked robust function. Here, we tested the effect of inserting additional linkers between the fusion domains. Three linkers were tested, each 17 amino acids long with different physical and chemical properties: flexible hydrophilic, rigid extended or rigid helical. In the presence of any of the three linkers, GST-Zar1 and GST-Zar2 had fewer breakdown products. Moreover, in the presence of any of the linkers, MS2-Zar1 was expressed to higher levels, and in dual luciferase tethered assays, both MS2-Zar1 and MS2-Zar2 repressed luciferase translation to a greater extent. These data suggest that for Zar fusion proteins, increasing the length of linkers, regardless of their physical or chemical properties, improves stability, expression and bioactivity.
Collapse
Affiliation(s)
- Jonathan M Cook
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
20
|
Immune tolerance to an intestine-adapted bacteria, Chryseobacterium sp., injected into the hemocoel of Protaetia brevitarsis seulensis. Sci Rep 2016; 6:31722. [PMID: 27530146 PMCID: PMC4987663 DOI: 10.1038/srep31722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/22/2016] [Indexed: 11/11/2022] Open
Abstract
To explore the interaction of gut microbes and the host immune system, bacteria were isolated from the gut of Protaetia brevitarsis seulensis larvae. Chryseobacterium sp., Bacillus subtilis, Arthrobacter arilaitensis, Bacillus amyloliquefaciens, Bacillus megaterium, and Lysinibacillus xylanilyticus were cultured in vitro, identified, and injected in the hemocoel of P. brevitarsis seulensis larvae, respectively. There were no significant changes in phagocytosis-associated lysosomal formation or pathogen-related autophagosome in immune cells (granulocytes) from Chryseobacterium sp.-challenged larvae. Next, we examined changes in the transcription of innate immune genes such as peptidoglycan recognition proteins and antimicrobial peptides following infection with Chryseobacterium sp. PGRP-1 and -2 transcripts, which may be associated with melanization generated by prophenoloxidase (PPO), were either highly or moderately expressed at 24 h post-infection with Chryseobacterium sp. However, PGRP-SC2 transcripts, which code for bactericidal amidases, were expressed at low levels. With respect to antimicrobial peptides, only coleoptericin was moderately expressed in Chryseobacterium sp.-challenged larvae, suggesting maintenance of an optimum number of Chryseobacterium sp. All examined genes were expressed at significantly higher levels in larvae challenged with a pathogenic bacterium. Our data demonstrated that gut-inhabiting bacteria, the Chryseobacterium sp., induced a weaker immune response than other pathogenic bacteria, E. coli K12.
Collapse
|
21
|
cDNA cloning and molecular characterization of a defensin-like antimicrobial peptide from larvae of Protaetia brevitarsis seulensis (Kolbe). Mol Biol Rep 2016; 43:371-9. [PMID: 26970764 DOI: 10.1007/s11033-016-3967-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
We identified new defensin-like cDNA (called Psdefensin) by searching data set of high-throughput RNA sequencing (RNA-seq) expression profiling of immunized larva of white-spotted flower chafers, Protaetia brevitarsis seulensis. The length of the analyzed new defensin-like sequences were 240 base pair (bp) and encoded the deduced polypeptide of 79 amino acid residues with signal peptides (amino acids 1-20), pro-peptide region (amino acids 21-36), and mature peptide region (amino acids 37-79). The Psdefensin transcript levels were slightly up-regulated at 4 h post-infection and were highly expressed at 8 h post-infection compared to control larvae injected with sterile water. In addition, the Psdefensin did have antimicrobial activity against both Gram-negative bacteria, E. coli and Gram-positive bacteria, B. subtilis suggesting potentially pharmacologic agent.
Collapse
|
22
|
Bang K, Hwang S, Lee J, Cho S. Identification of immunity-related genes in the larvae of Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae) by a next-generation sequencing-based transcriptome analysis. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev120. [PMID: 26450592 PMCID: PMC4626668 DOI: 10.1093/jisesa/iev120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/06/2015] [Indexed: 05/11/2023]
Abstract
To identify immune-related genes in the larvae of white-spotted flower chafers, next-generation sequencing was conducted with an Illumina HiSeq2000, resulting in 100 million cDNA reads with sequence information from over 10 billion base pairs (bp) and >50× transcriptome coverage. A subset of 77,336 contigs was created, and ∼35,532 sequences matched entries against the NCBI nonredundant database (cutoff, e < 10(-5)). Statistical analysis was performed on the 35,532 contigs. For profiling of the immune response, samples were analyzed by aligning 42 base sequence tags to the de novo reference assembly, comparing levels in immunized larvae to control levels of expression. Of the differentially expressed genes, 3,440 transcripts were upregulated and 3,590 transcripts were downregulated. Many of these genes were confirmed as immune-related genes such as pattern recognition proteins, immune-related signal transduction proteins, antimicrobial peptides, and cellular response proteins, by comparison to published data.
Collapse
Affiliation(s)
- Kyeongrin Bang
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| | - Sejung Hwang
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| | - Jiae Lee
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| | - Saeyoull Cho
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
23
|
Kwon H, Bang K, Cho S. Characterization of the hemocytes in Larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. PLoS One 2014; 9:e103620. [PMID: 25083702 PMCID: PMC4118905 DOI: 10.1371/journal.pone.0103620] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022] Open
Abstract
Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in P. brevitarsis seulensis. The circulating hemocytes were classified based on their size, morphology, and dye-staining properties into six types, including granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. The percentages of circulating hemocyte types were as follows: 13% granulocytes, 20% plasmatocytes, 1% oenocytoids, 5% spherulocytes, 17% prohemocytes, and 44% adipohemocytes. Next, we identified the professional phagocytes, granulocytes, which mediate encapsulation and phagocytosis of pathogens. The granulocytes were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo. In addition, we showed that the phagocytosis by granulocytes is associated with autophagy, and that the activation of autophagy could be an efficient way to eliminate pathogens in this system. We also observed a high accumulation of autophagic vacuoles in activated granulocytes, which altered their shape and led to autophagic cell death. Finally, the granulocytes underwent mitotic division thus maintaining their number in vivo.
Collapse
Affiliation(s)
- Hyojung Kwon
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyeongrin Bang
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Saeyoull Cho
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
24
|
Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 2014; 98:5807-22. [PMID: 24811407 DOI: 10.1007/s00253-014-5792-6] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20-50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
Collapse
Affiliation(s)
- Hui-Yu Yi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | | | | |
Collapse
|
25
|
Design and high-level expression of a hybrid antimicrobial peptide LF15-CA8 in Escherichia coli. ACTA ACUST UNITED AC 2014; 41:527-34. [DOI: 10.1007/s10295-013-1382-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/06/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Antimicrobial peptides (AMPs) have been paid considerable attention owing to their broad-spectrum antimicrobial activity and have great potential as novel antimicrobials. In this study, a novel hybrid peptide LF15-CA8 was designed on the basis of bovine lactoferricin (LfcinB) and cecropin A. The gene segment encoding LF15-CA8 was synthesized and cloned into pGEX-4T-BH to form pGEX-4T-LC1 containing one copy of the LF15-CA8 coding region. A series of recombinant vectors containing up to six multiple-copy LF15-CA8 coding regions, i.e., pGEX-4T-LCn (n = 1–6), were subsequently constructed, and used for transformation in Escherichia coli BL21(DE3). After induction with IPTG, pGEX-4T-LC1 and pGEX-4T-LC2 transformants successfully expressed fusion proteins GST-LF15-CA8 and GST-(LF15-CA8)2 in the form of inclusion bodies, respectively. The inclusion bodies were dissolved and the peptide was successfully released in 70 % formic acid in a single step. After purification, about 10.0 mg of the recombinant peptide LF15-CA8 with purity more than 97 % was obtained from 1 l of bacteria culture of pGEX-4T-LC2 transformants. LF15-CA8 caused an increase in antibacterial activity against Gram-positive bacterium (Staphylococcus aureus ATCC 25923) compared with the parent peptides and did not show obvious hemolytic activity against human erythrocytes in the range of effective antibacterial concentration. These results suggest that the peptide LF15-CA8 could be a promising candidate for therapeutic applications, and may lead to a cost-effective solution for the large-scale production of AMPs.
Collapse
|