1
|
Nguyen LT, Lau LY, Fortes MRS. Proteomic Analysis of Hypothalamus and Pituitary Gland in Pre and Postpubertal Brahman Heifers. Front Genet 2022; 13:935433. [PMID: 35774501 PMCID: PMC9237413 DOI: 10.3389/fgene.2022.935433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
The hypothalamus and the pituitary gland are directly involved in the complex systemic changes that drive the onset of puberty in cattle. Here, we applied integrated bioinformatics to elucidate the critical proteins underlying puberty and uncover potential molecular mechanisms from the hypothalamus and pituitary gland of prepubertal (n = 6) and postpubertal (n = 6) cattle. Proteomic analysis in the hypothalamus and pituitary gland revealed 275 and 186 differentially abundant (DA) proteins, respectively (adjusted p-value < 0.01). The proteome profiles found herein were integrated with previously acquired transcriptome profiles. These transcriptomic studies used the same tissues harvested from the same heifers at pre- and post-puberty. This comparison detected a small number of matched transcripts and protein changes at puberty in each tissue, suggesting the need for multiple omics analyses for interpreting complex biological systems. In the hypothalamus, upregulated DA proteins at post-puberty were enriched in pathways related to puberty, including GnRH, calcium and oxytocin signalling pathways, whereas downregulated proteins were observed in the estrogen signalling pathway, axon guidance and GABAergic synapse. Additionally, this study revealed that ribosomal pathway proteins in the pituitary were involved in the pubertal development of mammals. The reported molecules and derived protein-protein networks are a starting point for future experimental approaches that might dissect with more detail the role of each molecule to provide new insights into the mechanisms of puberty onset in cattle.
Collapse
Affiliation(s)
- Loan To Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- *Correspondence: Loan To Nguyen,
| | - Li Yieng Lau
- Agency of Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
2
|
Ran M, Huang H, Hu B, Hu S, Hu J, Li L, He H, Liu H, Wang J. Comparative Analysis of Testicular Histology and lncRNA-mRNA Expression Patterns Between Landes Geese ( Anser anser) and Sichuan White Geese ( Anser cygnoides). Front Genet 2021; 12:627384. [PMID: 33737948 PMCID: PMC7963104 DOI: 10.3389/fgene.2021.627384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Landes geese and Sichuan White geese are two important genetic materials for commercial goose breeding. However, the differences in the male reproductive capacity between these two breeds and the potential molecular mechanisms and associated key genes have not been reported to date. The present study compared the testicular histology and mRNA-long non-coding RNA (lncRNA) expression patterns to reveal the differences in male reproductive performance between Sichuan White geese and Landes geese, as well as to explore the underlying molecular mechanisms. Histological results showed that the testicular organ index, semen volume, and long diameter of seminiferous tubules of Landes geese were significantly larger than those of Sichuan White geese. Analyses of mRNA-lncRNA expression profile showed that compared with Sichuan White geese, a total of 462 differentially expressed mRNAs (DEGs) (173 up-regulated and 289 down-regulated) and 329 differentially expressed lncRNAs (DE lncRNAs) (280 up-regulated, 49 down-regulated) were identified in Landes geese. Among these DEGs, there were 10 spermatogenesis-related and highly expressed (FPKM > 10) DEGs. Except for SEPP1, all of these DEGs were significantly up-regulated in the testes of Landes geese. Functional enrichment analysis indicated that the pathway related to metabolism progress and phosphoinositol signal is vitally responsible for differences in male reproductive performance between Landes geese and Sichuan White geese. These results show that compared with Sichuan White geese, the spermatogenesis in the testis of Landes geese was more active, which may be mainly related to the inositol phosphate signal. These data contribute to a better understanding of the mechanisms underlying different male reproductive performances between Landes geese and Sichuan White geese. This knowledge might eventually provide a theoretical basis for improving male reproductive performance in geese.
Collapse
Affiliation(s)
- Mingxia Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huaxuan Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Ji H, Guo W, Niu C, Li Y, Lian S, Zhan X, Guo J, Zhen L, Yang H, Li S, Wang J. Metabonomics analysis of Zi goose follicular granulosa cells using ENO1 gene expression interference. J Anim Physiol Anim Nutr (Berl) 2019; 104:838-846. [PMID: 31821655 DOI: 10.1111/jpn.13254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
The Zi goose is native to North-east China and is noted for its high egg production. Alpha enolase (ENO1) is a glycolytic enzyme which functions as a plasminogen receptor in follicular granulosa cells (FGCs), with several studies showing that FGCs can support follicular development. By transfecting the ENO1 interfering plasmid (shRNA) into FGCs, ENO1 expression in these cells was downregulated, suggesting the successful knock-down of ENO1 in these cells. In this knock-down model, we detected 13 metabolites from FGCs using LC/MS. When compared with the non-coding shRNA (NC) group, the lower level metabolites were (R)-(+)-citronellic acid, altretamine, 3-hydroxycaproic acid, heptadecanoic acid, cholecalciferol vitamin D3, indole, benzoic acid, capric acid, caffeic acid, azelaic acid, 3,4-dihydroxyhydrocinnamic acid and cholic acid, while oleic acid was detected at high levels. To further examine the results of metabolomics, six key metabolites were verified by gas chromatography-mass spectrometry (GC-MS). We found that vitamin D3, indole, benzoic acid, capric acid and cholic acid were significantly downregulated in the shRNA group, while oleic acid was significantly upregulated. This observation was consistent with the metabolomics data. Through these studies, we found that decreased ENO1 levels altered certain metabolite levels in FGCs.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
4
|
Chang N, Yao S, Chen D, Zhang L, Huang J, Zhang L. The Hog1 positive regulated YCT1 gene expression under cadmium tolerance of budding yeast. FEMS Microbiol Lett 2019; 365:5049003. [PMID: 29982432 DOI: 10.1093/femsle/fny170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/30/2018] [Indexed: 12/24/2022] Open
Abstract
Cadmium (Cd) is a heavy metal that is the cause of irreversible hazards to living organisms. Cadmium ions can induce the phosphorylation of MAPKs pathway molecules such as Hog1 and Slt2, but downstream effectors and potential activation pathways are still unclear. In this study, the RNA-seq data analysis in Cd-stressed yeast was performed to predict and screen the signal transduction pathway and the potential effect molecules regulated by MAPKs. Based on differentially expressed genes and Venn diagrams, 31 genes regulated by Hog1p and two genes induced by Slt2p, which related to carbohydrate metabolism, oxidative damage, DNA replication stress and detoxification, were characterized under Cd exposure to yeast. A cysteine-specific transporter (Yct1) modulated by Hog1 was confirmed via RNA-seq results. Meanwhile, we tested the Cd-sensitivity, intracellular Cd concentrations and β-galactosidase assay, and results indicated that the hypersensitivity of the hog1 mutant to Cd was partly abrogated in YCT1 gene deletion, induction of YCT1 was dependent on Hog1 and its transcription factors, and Yct1p would be epistatic to the Hog1p in Cd-tolerance. The investigation of the transcriptome of MAPKs under Cd stress provided valuable information for future molecular studies of Cd-tolerance.
Collapse
Affiliation(s)
- Na Chang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Shunyu Yao
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Deguang Chen
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| |
Collapse
|
5
|
Starvation during pregnancy impairs fetal oogenesis and folliculogenesis in offspring in the mouse. Cell Death Dis 2018; 9:452. [PMID: 29670080 PMCID: PMC5906686 DOI: 10.1038/s41419-018-0492-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
Although it is becoming increasingly evident that maternal starvation during pregnancy can have permanent effects on a range of physiological processes in the offspring, scant information is available about the consequence of such condition for oogenesis and hence for lifetime reproductive success of progeny in mammals. In the present study, we address this topic by starving pregnant mice at the time of ovarian differentiation (12.5 days post coitum (dpc)) for three consecutive days and analyzed the consequence first on the survival of the fetal oocytes and their capability to progress throughout the stages of meiotic prophase I (MPI) and then on the postnatal folliculogenesis of the offspring. The results showed that maternal starvation increased apoptosis in the fetal ovaries, resulting in reduction of the oocyte number. Moreover, MPI progression was slowed down in the surviving oocytes and the expression of DNA repair players in the starved ovaries increased. Transcriptome analysis identified 61 differentially expressed genes between control and starved ovaries, the most part of these being involved in metabolic processes. A significant decrease in the percentage of oocytes enclosed in primordial follicles and the expression of oocyte genes critically involved in folliculogenesis such as Nobox, Lhx8 and Sohlh2 in the 3 days post partum (dpp) starved ovaries were found. Finally, at the time of juvenile period (21 dpp), the number of oocytes and antral follicles resulted significantly lower in the ovaries of the offspring from starved mothers in comparison to controls. Our findings support the notion that maternal starvation can affect ovary development in the offspring that could adversely affect their reproductive success in the adult life.
Collapse
|
6
|
Effect of Oaz1 overexpression on goose ovarian granulosa cells. Amino Acids 2017; 49:1123-1132. [DOI: 10.1007/s00726-017-2411-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
|
7
|
Characterization of OAZ1 and its potential functions in goose follicular development. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
8
|
Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing. PLoS One 2015; 10:e0131572. [PMID: 26181055 PMCID: PMC4504669 DOI: 10.1371/journal.pone.0131572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022] Open
Abstract
Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS) strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD) sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP) and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV) or low estimated breeding value (LEBV). A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the candidate laying-related SNP, including membrane associated guanylate kinase (MAGI-1), KIAA1462, Rho GTPase activating protein 21 (ARHGAP21), acyl-CoA synthetase family member 2 (ACSF2), astrotactin 2 (ASTN2). Collectively, our data suggests that 8 SNP and 5 genes might be promising candidate markers or targets for marker-assisted selection of egg numbers in geese.
Collapse
|