1
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase-based therapies in haematological malignancies. Cell Biochem Funct 2022; 40:199-212. [PMID: 35103334 DOI: 10.1002/cbf.3687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023]
Abstract
Telomeres are specialized genetic structures present at the end of all eukaryotic linear chromosomes. They progressively get shortened after each cell division due to end replication problems. Telomere shortening (TS) and chromosomal instability cause apoptosis and massive cell death. Following oncogene activation and inactivation of tumour suppressor genes, cells acquire mechanisms such as telomerase expression and alternative lengthening of telomeres to maintain telomere length (TL) and prevent initiation of cellular senescence or apoptosis. Significant TS, telomerase activation and alteration in expression of telomere-associated proteins are frequent features of different haematological malignancies that reflect on the progression, response to therapy and recurrence of these diseases. Telomerase is a ribonucleoprotein enzyme that has a pivotal role in maintaining the TL. However, telomerase activity in most somatic cells is insufficient to prevent TS. In 85-90% of tumour cells, the critically short telomeric length is maintained by telomerase activation. Thus, overexpression of telomerase in most tumour cells is a potential target for cancer therapy. In this review, alteration of telomeres, telomerase and telomere-associated proteins in different haematological malignancies and related telomerase-based therapies are discussed.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Nogueira BMD, Machado CB, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. Telomere Length and Hematological Disorders: A Review. In Vivo 2020; 34:3093-3101. [PMID: 33144412 DOI: 10.21873/invivo.12142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
Telomeres compose the end portions of human chromosomes, and their main function is to protect the genome. In hematological disorders, telomeres are shortened, predisposing to genetic instability that may cause DNA damage and chromosomal rearrangements, inducing a poor clinical outcome. Studies from 2010 to 2019 were compiled and experimental studies using samples of patients diagnosed with hematological malignancies that reported the size of the telomeres were described. Abnormal telomere shortening is described in cancer, but in hematological neoplasms, telomeres are still shortened even after telomerase reactivation. In this study, we compared the sizes of telomeres in leukemias, myelodysplastic syndrome and lymphomas, identifying that the smallest telomeres are present in patients at relapse. In conclusion, the experimental and clinical data analyzed in this review demonstrate that excessive telomere shortening is present in major hematological malignancies and its analysis and measurement is a crucial step in determining patient prognosis, predicting disease risk and assisting in the decision for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Grandjenette C, Schnekenburger M, Gaigneaux A, Gérard D, Christov C, Mazumder A, Dicato M, Diederich M. Human telomerase reverse transcriptase depletion potentiates the growth-inhibitory activity of imatinib in chronic myeloid leukemia stem cells. Cancer Lett 2019; 469:468-480. [PMID: 31734352 DOI: 10.1016/j.canlet.2019.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Although tyrosine kinase inhibitors (TKIs) revolutionized the management of chronic myeloid leukemia (CML), resistance against TKIs and leukemia stem cell (LSC) persistence remain a clinical concern. Therefore, new therapeutic strategies combining conventional and novel therapies are urgently needed. Since telomerase is involved in oncogenesis and tumor progression but is silent in most human normal somatic cells, it may be an interesting target for CML therapy by selectively targeting cancer cells while minimizing effects on normal cells. Here, we report that hTERT expression is associated with CML disease progression. We also provide evidence that hTERT-deficient K-562 cells do not display telomere shortening and that telomere length is maintained through the ALT pathway. Furthermore, we show that hTERT depletion exerts a growth-inhibitory effect in K-562 cells and potentiates imatinib through alteration of cell cycle progression leading to a senescence-like phenotype. Finally, we demonstrate that hTERT depletion potentiates the imatinib-induced reduction of the ALDH+-LSC population. Altogether, our results suggest that the combination of telomerase and TKI should be considered as an attractive strategy to treat CML patients to eradicate cancer cells and prevent relapse by targeting LSCs.
Collapse
Affiliation(s)
- Cindy Grandjenette
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Anthoula Gaigneaux
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Christo Christov
- Service Commun de Microscopie, Université de Lorraine, 54000, Nancy, France
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, South Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, South Korea.
| |
Collapse
|
4
|
Houshmand M, Yazdi N, Kazemi A, Atashi A, Hamidieh AA, Anjam Najemdini A, Mohammadi Pour M, Nikougoftar Zarif M. Long non-coding RNA PVT1 as a novel candidate for targeted therapy in hematologic malignancies. Int J Biochem Cell Biol 2018; 98:54-64. [PMID: 29510227 DOI: 10.1016/j.biocel.2018.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Cancerous cells show resistance to various forms of therapy, so applying up to the minute targeted therapy is crucial. For this purpose, long non-coding RNA PVT1 as shown by recent studies is an important oncogene that interacts with vital cellular signaling pathways and different proteins such as c-Myc, NOP2 and LATS2. Due to the enormous role of long non-coding RNAs in development of leukemias, we aimed to show the role of PVT1 knock-down on fate of different hematologic cell lines. owing to this matter, various experiments such as Real-time PCR, cell cycle analysis and apoptosis assay were performed. Meanwhile, proliferation rate by CFSE, protein expression of c-Myc and hTERT by western blot and flow cytometry analysis were investigated. Our results demonstrated that PVT1 knock-down results in c-Myc degradation, proliferation down-regulation, induction of apoptosis and G0/G1 arrest. Simultaneously, for the first time, we posited the relation between this oncogene with hTERT that reduced after PVT1 knock-down. Considering these results, long non-coding RNA PVT1 may be a potential option for targeted therapy in hematologic malignancies.
Collapse
Affiliation(s)
- Mohammad Houshmand
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Narjes Yazdi
- Department of Molecular Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Ali Hamidieh
- Hematology, Oncology and Stem Cell Transplantation Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Anjam Najemdini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Mohammadi Pour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
5
|
Pan Y, Meng M, Zheng N, Cao Z, Yang P, Xi X, Zhou Q. Targeting of multiple senescence-promoting genes and signaling pathways by triptonide induces complete senescence of acute myeloid leukemia cells. Biochem Pharmacol 2017; 126:34-50. [PMID: 27908660 DOI: 10.1016/j.bcp.2016.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/26/2016] [Indexed: 01/08/2023]
Abstract
Leukemia cells aberrantly overexpress senescence-suppression telomerase reverse transcriptase (TERT) and down-regulate key senescence-promoting genes to escape complete senescence, resulting in immortalization and malignant progression. Accordingly, induction of complete senescence is a sensible strategy for anti-leukemia therapy. However, effective senescence-based anti-leukemia drugs with low toxicity are currently lacking. In this study, we found that triptonide (chemical name diterpene triepoxide), a small molecule derived from the herb Tripterygium wilfordii Hook, strongly induced complete senescence in cultured acute myeloid leukemia (AML) cell lines, and potently inhibited growth and colony formation of U937 and HL-60 AML cell line with IC50 values of 7.5 and 12nM, respectively. Strikingly, triptonide (4mg/kg) nearly completely suppressed human leukemia cell tumorigenicity (>99%) without obvious toxicity in a mouse xenograft model. Mechanistic studies showed that triptonide induced senescence followed by apoptosis mainly by suppressing transcription of TERT and oncogenic c-Myc, while concomitantly promoting transcription of senescence-promoting genes p16 and p21 and the pro-apoptotic gene encoding DNA damage-inducible transcript 3. These effects of triptonide are mediated by selective mitogen-activated protein kinase kinase-3/p38 signaling pathway activation. Our study provides a conceptual framework for inducing complete senescence as an effective anti-leukemia therapeutic strategy through a "multiple-hits" model and supports further development of triptonide as an anti-cancer agent.
Collapse
Affiliation(s)
- Yanyan Pan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Nana Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Allegra A, Innao V, Penna G, Gerace D, Allegra AG, Musolino C. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017; 56:60-74. [PMID: 28196338 DOI: 10.1016/j.leukres.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vanessa Innao
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppa Penna
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Demetrio Gerace
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Andrea G Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Caterina Musolino
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|