1
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
2
|
Liu Y, Zhang C, Wang Z, Lin M, Wang J, Wu M. Pleiotropic roles of late embryogenesis abundant proteins of Deinococcus radiodurans against oxidation and desiccation. Comput Struct Biotechnol J 2021; 19:3407-3415. [PMID: 34188783 PMCID: PMC8213827 DOI: 10.1016/j.csbj.2021.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022] Open
Abstract
Deinococcus radiodurans, an important extremophile, possesses extraordinary stress tolerance ability against lethal and mutagenic effects of DNA-damaging agents, such as γ-rays, ultraviolet, oxidation, and desiccation. How global regulators of this bacterium function in response to oxidation and desiccation has been an intense topic as elucidating such mechanisms may help to facilitate some beneficial applications in agriculture or medicine. Particularly, a variety of functional proteins have been characterized for D. radiodurans' behaviors under abiotic stresses. Interestingly, a group of Late Embryogenesis Abundant proteins (LEAs) in D. radiodurans have been characterized both biochemically and physiologically, which are shown indispensable for stabilizing crucial metabolic enzymes in a chaperone-like manner and thereby maintaining the metal ion homeostasis under oxidation and desiccation. The rapid progress in understanding deinococcal LEA proteins has substantially extended their functions in both plants and animals. Herein, we discuss the latest studies of radiodurans LEA proteins ranging from the classification to structures to functions. Importantly, the harnessing of these proteins may have unlimited potential for biotechnology, engineering and disease treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Chen Zhang
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| |
Collapse
|
3
|
Ectopic Overexpression of Histone H3K4 Methyltransferase CsSDG36 from Tea Plant Decreases Hyperosmotic Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22105064. [PMID: 34064673 PMCID: PMC8150943 DOI: 10.3390/ijms22105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/05/2023] Open
Abstract
Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar ‘Fuding Dabaicha’. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.
Collapse
|
4
|
Jin X, Cao D, Wang Z, Ma L, Tian K, Liu Y, Gong Z, Zhu X, Jiang C, Li Y. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Sci Rep 2019; 9:14123. [PMID: 31575979 PMCID: PMC6773783 DOI: 10.1038/s41598-019-50645-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are widely known to be present in higher plants and are believed to play important functional roles in embryonic development and abiotic stress responses. However, there is a current lack of systematic analyses on the LEA protein gene family in tea plant. In this study, a total of 48 LEA genes were identified using Hidden Markov Model profiles in C. sinensis, and were classified into seven distinct groups based on their conserved domains and phylogenetic relationships. Genes in the CsLEA_2 group were found to be the most abundant. Gene expression analyses revealed that all the identified CsLEA genes were expressed in at least one tissue, and most had higher expression levels in the root or seed relative to other tested tissues. Nearly all the CsLEA genes were found to be involved in seed development, and thirty-nine might play an important role in tea seed maturation concurrent with dehydration. However, only sixteen CsLEA genes were involved in seed desiccation, and furthermore, most were suppressed. Additionally, forty-six CsLEA genes could be induced by at least one of the tested stress treatments, and they were especially sensitive to high temperature stress. Furthermore, it was found that eleven CsLEA genes were involved in tea plant in response to all tested abiotic stresses. Overall, this study provides new insights into the formation of CsLEA gene family members and improves our understanding on the potential roles of these genes in normal development processes and abiotic stress responses in tea plant, particularly during seed development and desiccation. These results are beneficial for future functional studies of CsLEA genes that will help preserve the recalcitrant tea seeds for a long time and genetically improve tea plant.
Collapse
Affiliation(s)
- Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhongjie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kunhong Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ziming Gong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiangxiang Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Changjun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Shen J, Zhang D, Zhou L, Zhang X, Liao J, Duan Y, Wen B, Ma Y, Wang Y, Fang W, Zhu X. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. TREE PHYSIOLOGY 2019; 39:1583-1599. [PMID: 31135909 DOI: 10.1093/treephys/tpz059] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
To determine the mechanisms in tea plants responding to temperature stresses (heat and cold), we examined the global transcriptomic and metabolomic profiles of the tea plant cultivar 'Suchazao' under moderately low temperature stress (ML), severely low temperature stress (SL), moderately high temperature stress (MH) and severely high temperature stress (SH) using RNA-seq and high performance liquid chromatography tandem mass spectrometry/mass spectrometry (HPLC-MS/MS), respectively. The identified differentially expressed genes indicated that the synthesis of stress-resistance protein might be redirected to cope with the temperature stresses. We found that heat shock protein genes Hsp90 and Hsp70 played more critical roles in tea plants in adapting to thermal stress than cold, while late embryogenesis abundant protein genes (LEA) played a greater role under cold than heat stress, more types of zinc finger genes were induced under cold stress as well. In addition, energy metabolisms were inhibited by SH, SL and ML. Furthermore, the mechanisms of anthocyanin synthesis were different under the cold and heat stresses. Indeed, the CsUGT75C1 gene, encoding UDP-glucose:anthocyanin 5-O-glucosyl transferase, was up-regulated in the SL-treated leaves but down-regulated in SH. Metabolomics analysis also showed that anthocyanin monomer levels increased under SL. These results indicate that the tea plants share certain foundational mechanisms to adjust to both cold and heat stresses. They also developed some specific mechanisms for surviving the cold or heat stresses. Our study provides effective information about the different mechanisms tea plants employ in surviving cold and heat stresses, as well as the different mechanisms of anthocyanin synthesis, which could speed up the genetic breeding of heat- and cold-tolerant tea varieties.
Collapse
Affiliation(s)
- Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Dayan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Lin Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| | | | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
6
|
Wang W, Gao T, Chen J, Yang J, Huang H, Yu Y. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:277-286. [PMID: 30593000 DOI: 10.1016/j.plaphy.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 05/20/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a large and highly diverse family of polypeptides that play important roles in plant growth, development and stress responses. At present, LEA gene families have been identified and systematically characterized in many plant species. However, the LEA gene family in tea plant has not been revealed, and the biological functions of the members of this family remain unknown. In this study, 33 CsLEA genes were identified from tea plant via a genome-wide study, and they were clustered into seven groups according to analyses of their phylogenetic relationships, gene structures and protein conserved motifs. In addition, expression analysis revealed that the CsLEA genes were specifically expressed in one or more tissues and significantly induced under cold and dehydration stresses, implying that CsLEA genes play important roles in tea plant growth, development and response to cold and dehydration stresses. Furthermore, a potential transcriptional regulatory network, including DREB/CBF, MYB, bZIP, bHLH, BPC and other transcription factors, is directly associated with the expression of CsLEA genes, which may be ubiquitous and important in the above mentioned processes. This study could help to increase our understanding of CsLEA proteins and their contributions to stress tolerance in tea plant.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiangfei Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiankun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiyu Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Zeng X, Ling H, Yang J, Li Y, Guo S. LEA proteins from Gastrodia elata enhance tolerance to low temperature stress in Escherichia coli. Gene 2018; 646:136-142. [DOI: 10.1016/j.gene.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023]
|
8
|
Kashyap P, Deswal R. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:62-70. [PMID: 28483054 DOI: 10.1016/j.plantsci.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 05/23/2023]
Abstract
Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
9
|
Wang X, Zhang L, Zhang Y, Bai Z, Liu H, Zhang D. Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS One 2017; 12:e0171340. [PMID: 28207772 PMCID: PMC5313140 DOI: 10.1371/journal.pone.0171340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
WRAB18, an ABA-inducible protein belongs to the third family of late embryogenesis abundant (LEA) proteins which can be induced by different biotic or abiotic stresses. In the present study, WRAB18 was cloned from the Zhengyin 1 cultivar of Triticum aestivum and overexpressed in Escherichia coli to explore its effects on the growth of E. coli under different abiotic stresses. Results suggested the enhanced exhibition of tolerance of E. coli to these stresses. Meanwhile, the WRAB18-transgenic tobacco plants were obtained to analyze the stress-related enzymatic activities of ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD), and to quantify the content of malonaldehyde (MDA) under osmotic stress, high salinity, and low and high temperature stress. The activities of APX, POD and SOD in the transgenic tobacco lines were higher while the content of MDA was lower than those of WT lines. Moreover, plastid localization of WRAB18 in Nicotiana benthamiana plasma cells were found fusing with GFP. In addition, purified WRAB18 protein protected LDH (Lactate dehydrogenase) enzyme activity in vitro from various stress conditions. In brief, WRAB18 protein shows protective action behaving as a "molecular shield" in both prokaryotic and eukaryotic cells under various abiotic stresses, not only during ABA stress.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Yane Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Zhenqing Bai
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Hao Liu
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Dapeng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| |
Collapse
|
10
|
Ling H, Zeng X, Guo S. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci Rep 2016; 6:39693. [PMID: 28004781 PMCID: PMC5177895 DOI: 10.1038/srep39693] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins, a diverse family, accumulate during seed desiccation in the later stages of embryogenesis. LEA proteins are associated with tolerance to abiotic stresses, such as drought, salinity and high or cold temperature. Here, we report the first comprehensive survey of the LEA gene family in Dendrobium officinale, an important and widely grown medicinal orchid in China. Based on phylogenetic relationships with the complete set of Arabidopsis and Oryza LEA proteins, 17 genes encoding D. officinale LEAs (DofLEAs) were identified and their deduced proteins were classified into seven groups. The motif composition of these deduced proteins was correlated with the gene structure found in each LEA group. Our results reveal the DofLEA genes are widely distributed and expressed in tissues. Additionally, 11 genes from different groups were introduced into Escherichia coli to assess the functions of DofLEAs. Expression of 6 and 7 DofLEAs in E. coli improved growth performance compared with the control under salt and heat stress, respectively. Based on qPCR data, all of these genes were up-regulated in various tissues following exposure to salt and heat stresses. Our results suggest that DofLEAs play an important role in responses to abiotic stress.
Collapse
Affiliation(s)
- Hong Ling
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xu Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
11
|
Characterization of OsLEA1a and its inhibitory effect on the resistance of E. coli to diverse abiotic stresses. Int J Biol Macromol 2016; 91:1010-7. [PMID: 27339321 DOI: 10.1016/j.ijbiomac.2016.06.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/23/2022]
Abstract
OsLEA1a is a late embryogenesis abundant (LEA) protein gene from Oryza sativa L, which contains an open reading frame of 282-bp that encodes a putative polypeptide of 93 amino acids. OsLEA1a protein contains abundant of Lys, Ala, Glu, Asp, Gly, Arg and Leu, but depleted in Cys, His, Phe, Trp and Tyr residues; and is strongly hydrophilic. OsLEA1a includes six helical domains and a β-sheet domain. Real-time PCR analysis showed that OsLEA1a was expressed in roots, leaves and panicles of rice, with no or only a few transcripts in stem tissues, and remained at a relatively higher level in leaves during the tillering period, the heading period, the filling period and the full ripe period. To make sense of OsLEA1a functions, TrxA-OsLEA1a fusion protein expression vector and OsLEA1a protein expression vector were transformed into Escherichia coli DL21 (DE3), respectively. The accumulation of the TrxA-OsLEA1a fusion protein or OsLEA1a protein interfered with the resistance of E. coli to high salinity, metal ions, hyperosmotic, oxidation, heat and freeze-thaw stresses. The purified TrxA-OsLEA1a fusion protein reduced stabilization of LDH and increased damage of diverse abiotic stresses to LDH. The findings suggested that the OsLEA1a may confor antibacterial activity under abiotic stresses.
Collapse
|
12
|
Gao J, Lan T. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 2016; 6:19467. [PMID: 26781930 PMCID: PMC4726009 DOI: 10.1038/srep19467] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Ting Lan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China
| |
Collapse
|
13
|
Paul A, Rao S, Mathur S. The α-Crystallin Domain Containing Genes: Identification, Phylogeny and Expression Profiling in Abiotic Stress, Phytohormone Response and Development in Tomato (Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2016; 7:426. [PMID: 27066058 PMCID: PMC4814718 DOI: 10.3389/fpls.2016.00426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/18/2016] [Indexed: 05/19/2023]
Abstract
The α-crystallin domain (ACD) is an ancient domain conserved among all kingdoms. Plant ACD proteins have roles in abiotic stresses, transcriptional regulation, inhibiting virus movement, and DNA demethylation. An exhaustive in-silico analysis using Hidden Markov Model-based conserved motif search of the tomato proteome yielded a total of 50 ACD proteins that belonged to four groups, sub-divided further into 18 classes. One of these groups belongs to the small heat shock protein (sHSP) class of proteins, molecular chaperones implicated in heat tolerance. Both tandem and segmental duplication events appear to have shaped the expansion of this gene family with purifying selection being the primary driving force for evolution. The expression profiling of the Acd genes in two different heat stress regimes suggested that their transcripts are differentially regulated with roles in acclimation and adaptive response during recovery. The co-expression of various genes in response to different abiotic stresses (heat, low temperature, dehydration, salinity, and oxidative stress) and phytohormones (abscisic acid and salicylic acid) suggested possible cross-talk between various members to combat a myriad of stresses. Further, several genes were highly expressed in fruit, root, and flower tissues as compared to leaf signifying their importance in plant development too. Evaluation of the expression of this gene family in field grown tissues highlighted the prominent role they have in providing thermo-tolerance during daily temperature variations. The function of three putative sHSPs was established as holdase chaperones as evidenced by protection to malate-dehydrogenase against heat induced protein-aggregation. This study provides insights into the characterization of the Acd genes in tomato and forms the basis for further functional validation in-planta.
Collapse
|