1
|
Gao F, Liu S, Sun Y, Yu C, Zheng L, Sun L, Wang G, Sun Y, Bao Y, Song Z, Yang X, Ke C. Testes-specific protease 50 heightens stem-like properties and improves mitochondrial function in colorectal cancer. Life Sci 2025; 370:123560. [PMID: 40086746 DOI: 10.1016/j.lfs.2025.123560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
AIMS The progression of colorectal cancer (CRC) is driven by a small subset of cancer stem-like cells (CSCs), and mitochondrial function is essential for maintaining their stemness. TSP50, a novel identified oncogene, has been found to promote cell proliferation in multiple cancer types. In this study, we detected the regulatory role of TSP50 in regulating CSC-like properties and mitochondrial mass in CRC. MATERIALS AND METHODS First, TSP50 expression and clinical relevance were analyzed via clinical databases and immunohistochemical (IHC). Subsequently, bioinformatic analyses, CRC cell lines, tumorsphere cultures, and mouse xenograft models were utilized to evaluate the relationship between TSP50 and CSC-like properties as well as mitochondrial mass. Finally, immunofluorescence, immunoprecipitation, and Western blotting were performed to dissect the regulatory mechanisms of TSP50, followed by rescue experiments conducted both in vitro and in vivo. KEY FINDINGS TSP50 was overexpressed in CRC tissues, correlating with poor drug response and shorter overall survival (OS). Meanwhile, TSP50 was shown to enhance CSC-like properties in both CRC cells and mouse xenograft models, while concurrently increasing mitochondrial mass and reducing ROS levels, these effects were partially reversed by inhibition of the PI3K/AKT pathway. Mechanistic investigations revealed that TSP50-induced activation of PI3K/AKT signaling is primarily mediated by the enhanced catalytic activity of PI3K p110α subunit. SIGNIFICANCE Collectively, TSP50 drives CRC malignancy by promoting CSC-like properties and enhancing mitochondrial function through PI3K/AKT signaling. These findings identify TSP50 as a potential therapeutic target for eliminating CSC-like cells and improving clinical outcomes in CRC treatment.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China; China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130024, China
| | - Sichen Liu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Engineering Laboratory for Thyroid Disease Control, Jilin, Changchun 130033, China; Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Yue Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Lihua Zheng
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Guannan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongli Bao
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Xiaoguang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China.
| | - Chao Ke
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
2
|
Gao F, Zhang X, Wang S, Zheng L, Sun Y, Wang G, Song Z, Bao Y. TSP50 promotes the Warburg effect and hepatocyte proliferation via regulating PKM2 acetylation. Cell Death Dis 2021; 12:517. [PMID: 34016961 PMCID: PMC8138007 DOI: 10.1038/s41419-021-03782-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming is a hallmark of malignancy. Testes-specific protease 50 (TSP50), a newly identified oncogene, has been shown to play an important role in tumorigenesis. However, its role in tumor cell metabolism remains unclear. To investigate this issue, LC-MS/MS was employed to identify TSP50-binding proteins and pyruvate kinase M2 isoform (PKM2), a known key enzyme of aerobic glycolysis, was identified as a novel binding partner of TSP50. Further studies suggested that TSP50 promoted aerobic glycolysis in HCC cells by maintaining low pyruvate kinase activity of the PKM2. Mechanistically, TSP50 promoted the Warburg effect by increasing PKM2 K433 acetylation level and PKM2 acetylation site (K433R) mutation remarkably abrogated the TSP50-induced aerobic glycolysis, cell proliferation in vitro and tumor formation in vivo. Our findings indicate that TSP50-mediated low PKM2 pyruvate kinase activity is an important determinant for Warburg effect in HCC cells and provide a mechanistic link between TSP50 and tumor metabolism.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaojun Zhang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Guannan Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| | - Yongli Bao
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
3
|
Wang Y, Xu S, Wang S, Song Z, Zheng L, Wang G, Sun Y, Bao Y. miR-4709-3p Inhibits Cell Proliferation by Downregulating TSP50 Expression in Breast Cancer Cells. DNA Cell Biol 2021; 40:969-978. [PMID: 33956530 DOI: 10.1089/dna.2020.6260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Breast cancer is a serious threat to the physical and mental health of women all over the world. Our previous results have shown that Serine protease 50 (TSP50), an oncogene overexpressed in breast cancer, can promote proliferation, migration, and invasion of breast cancer cells. Mechanistic studies have revealed that TSP50 promoted tumorigenesis mainly by activating NF-kappa B (NF-κB) and inhibiting activin signaling pathway, indicating that TSP50 played a critical role in the occurrence and development of breast cancer. However, there are few reports on the regulation of TSP50 expression in breast cancer. MicroRNAs (miRNAs) have emerged as an essential posttranscriptional regulator in gene expression and they played a significant role in breast cancer regulation. In the present study, bioinformatics software miRBase and TargetScan were first used to predict and analyze miRNAs that could target TSP50 mRNA 3'UTR and six miRNAs were found. Results from quantitative real-time PCR (qRT-PCR) and western blot suggested that miR-4709-3p could bind to TSP50 mRNA 3'UTR and significantly inhibit the expression of TSP50 protein. Moreover, the effects of miR-4709-3p on the proliferation of breast cancer cells and mammary epithelial cells were detected in vitro. Our data suggested that overexpression of miR-4709-3p mimic greatly inhibited the proliferation of breast cancer cells, whereas overexpression of miR-4709-3p inhibitors significantly promoted the proliferation of breast epithelial cells. Furthermore, the effect of miR-4709-3p on the tumorigenicity of breast cancer cells in vivo was tested, and the results showed that miR-4709-3p significantly reduced the volume and weight of tumor in nude mice. All these results suggested that miR-4709-3p could inhibit the tumorigenesis of breast cancer cells by targeting TSP50. Finally, the underlying molecular mechanisms were investigated and we found that both NF-κB and activin signaling were involved in miR-4709-3p-related tumor inhibitory effect.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Shifeng Xu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yongli Bao
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
4
|
Ai HH, Liu B, Yang MT, Zuo QQ, Song ZB, Bao YL, Sun LG, Zhou L, Li YX. Expression and effects of TSP50 in mouse embryo and cardiac myocyte development. Biochem Biophys Res Commun 2018; 502:283-288. [PMID: 29842883 DOI: 10.1016/j.bbrc.2018.05.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
TSP50, a testis-specific gene encoding a serine protease-like protein, was specifically expressed in the spermatocytes of testes but abnormally activated and expressed in many different kinds of cancers. Here, we aimed to analyze the expression of TSP50 in mouse embryo and its function in early embryonic development. Firstly, the distribution of TSP50 in oocytes and embryonic development was characterized by immunofluorescence, RT-PCR and western blotting, and the results showed that TSP50 was detected at all studied stages with a dynamic expression pattern. When overexpressed TSP50 in zygotes by microinjection, the zygotes development was highly accelerated. On the contrary, knocking down TSP50 expression by RNA interference greatly retarded the zygote development. Furthermore, TSP50 expression at embryonic day 6.5 (E6.5), day 8.5 (E8.5) and day 10.5 (E10.5) were increasingly enhanced, However, the expression of TSP50 decreased gradually in the development and differentiation of cardiac myocyte from E12.5 to postnatal (P0). Additionally, we found that TSP50 expression was decreased during cardiac myocyte differentiation of P19 cells. Overexpression of TSP50 could decrease the expression of GATA-4, and knockdown of TSP50 markedly increase the expression of GATA-4. Taken together, our data indicate that TSP50 may play an important role during the process of mouse embryonic development as well as myocardial cell differentiation.
Collapse
Affiliation(s)
- Hui-Han Ai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Biao Liu
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Mei-Ting Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Qian-Qian Zuo
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Zhen-Bo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Lu-Guo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Liang Zhou
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yu-Xin Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
5
|
Lu S, Lin C, Cheng X, Hua H, Xiang T, Huang Y, Huang X. Cardamonin reduces chemotherapy resistance of colon cancer cells via the TSP50/NF-κB pathway in vitro. Oncol Lett 2018; 15:9641-9646. [PMID: 29928339 PMCID: PMC6004643 DOI: 10.3892/ol.2018.8580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
It has previously been reported that cardamonin is able to regulate glycometabolism and vasodilation whilst also exhibiting anti-inflammatory and antitumor properties. The antitumor effect of cardamonin is multifaceted, and so it is necessary to investigate the antitumor mechanisms of cardamonin at the molecular level. Cardamonin alters chemotherapy-resistant colon cancer cell growth; however, the underlying mechanism is unknown. The present study was conducted to investigate the effect of cardamonin on chemotherapy-resistant colon cancer cells and the possible mechanisms of action. Cardamonin significantly suppressed the growth of chemotherapy-resistant colon cancer cells, induced apoptosis and promoted caspase-3/9 activity and Bax protein expression in 5-fluorouracil (5-FU)-resistant HCT-116 cells. Cardamonin significantly suppressed c-MYC, octamer-binding transcription factor 4, cyclin E, testes-specific protease 50 and nuclear factor-κB protein expression in 5-FU-resistant HCT-116 cells. The findings of the present study demonstrate that cardamonin suppresses chemotherapy-colon cancer cell via the NF-κB pathway in vitro.
Collapse
Affiliation(s)
- Sen Lu
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Caizhao Lin
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Xiaobin Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Hanju Hua
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Yu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| | - Xi Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
6
|
Testes-specific protease 50 as an independent risk factor for poor prognosis in patients with non-small cell lung cancer. Oncol Lett 2018; 15:8796-8804. [PMID: 29805619 DOI: 10.3892/ol.2018.8387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
Testes-specific protease 50 (TSP50) is normally expressed in the testes and is overexpressed in various types of human cancers, including breast cancer, colorectal carcinoma and laryngocarcinoma. However, little has been reported on the association between TSP50 and non-small cell lung cancer (NSCLC). The present study aimed to detect TSP50 expression in 198 strict follow-up cases of paired NSCLC and 15 cases of normal lung parenchymal specimens using immunohistochemical staining. The expression levels of TSP50 were then correlated with the clinicopathological factors of NSCLC to assess its potential diagnostic and prognostic value. The relationship between TSP50 expression and the clinicopathological parameters of NSCLC was evaluated using χ2 and Fisher's exact tests. Survival rates for the overall population (n=198) were calculated using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox's proportional hazards regression model. P<0.05 was considered to indicate a statistically significant difference. The expression of TSP50 was significantly increased in NSCLC tissue compared with in adjacent non-tumor or normal lung parenchymal tissue (P<0.001). A significant association was revealed between high expression levels of TSP50 and clinicopathological characteristics including tumor differentiation (P=0.012), late tumor status (P=0.004) and late tumor node metastasis stage (P=0.026), as well as a reduced disease free survival (P=0.009) and overall survival rate (P=0.002) in all patients with NSCLC. Multivariate analyses demonstrated that high TSP50 expression in tumor tissues was significantly associated with a shorter disease-free survival rate [hazard ratio (HR) =1.590, 95% confidence interval (CI): 1.035-2.441], and with a shorter overall survival rate (HR=1.814; 95% CI: 1.156-2.846). In conclusion, the present data demonstrated that increased TSP50 protein expression may be a potential predictor of early recurrence and poor prognosis in NSCLC, and that TSP50 expression levels possess the potential to be used as a biomarker and therapeutic target for the treatment of patients with NSCLC.
Collapse
|
7
|
Cao QH, Liu F, Li CZ, Liu N, Shu M, Lin Y, Ding L, Xue L. Testes-specific protease 50 (TSP50) promotes invasion and metastasis by inducing EMT in gastric cancer. BMC Cancer 2018; 18:94. [PMID: 29361914 PMCID: PMC5781268 DOI: 10.1186/s12885-018-4000-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background TSP50 (testes-specific protease 50) has been reported to be a candidate oncogene and is overexpressed in various cancers. Our previous study demonstrated that TSP50 protein is elevated in gastric cancer, and its high expression is associated with unfavorable prognosis and lymph node metastasis. However, the role of TSP50 in gastric cancer remains elusive. Methods qRT-PCR, western blot were used to determine TSP50 expression in gastric cancer cell lines. Role of TSP50 in proliferation and invasion was examined by BrdU incorporation assay, cell count, wound healing and transwell assay. Immunohistochemistry and western blot were performed to identify the potential mechanisms involved. Results TSP50 was highly expressed in most of the gastric cancer cell lines at both mRNA and protein levels. Up-regulation of TSP50 in gastric cancer cells enhanced proliferation and invasiveness, whereas down-regulation of TSP50 by its specific shRNA decreased it. A negative correlation between TSP50 and E-Cadherin was found in gastric cancer tissues, and combination of them improves the prediction for prognosis and lymph node metastasis. Mechanistic studies revealed that overexpression of TSP50 increased the expression of epithelial-to-mesenchymal transition (EMT) markers including Vimentin, and Twist, and decreased the epithelial marker E-Cadherin. NF-κB signaling pathway is involved in the regulatory effects of TSP50 on EMT, migration and invasion in gastric cancer cells. Conclusion TSP50 promotes the proliferation, migration and invasion of gastric cancer cells involving NF-κB dependent EMT activation. Targeting TSP50 may provide a novel therapeutic strategy for the management of gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4000-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing-Hua Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Fang Liu
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Chang-Zhao Li
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Alabama, USA
| | - Ni Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Li Ding
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Ling Xue
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
8
|
He HJ, Bing H, Liu G. TSR2 Induces laryngeal cancer cell apoptosis through inhibiting NF-κB signaling pathway. Laryngoscope 2017; 128:E130-E134. [PMID: 29280495 DOI: 10.1002/lary.27035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/24/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES/HYPOTHESIS Human laryngeal squamous cell carcinoma (LSCC) is a malignancy that was discovered originally in the epithelial tissue of laryngeal mucosa. However, the underlying molecular mechanism is still not clear. In this study, we aimed to investigate the potential molecular mechanisms of TSR2 in the LSCC cell apoptosis. STUDY DESIGN The expression of TSR2 was first analyzed in LSCC tissues. Then functional effects of TSR2 on Hep-2 and AMC-HN-8 cell lines were performed by overexpression pcDNA3.1-TSR2. METHODS We investigated the expression level of TSR2 in LSCC tissues and cells by performing quantitative real-time polymerase chain reaction (qRT-PCR). The pcDNA3.1-TSR2 was constructed to explore the effect of overexpressing TSR2 in Hep-2 cells and AMC-HN-8 cells. We further investigated the effect of overexpressing TSR2 on cell apoptosis-related protein and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 nuclear translocation through Western blot and terminal dUTP nick end-labeling assays. RESULTS We found that TSR2 was downregulated in LSSC tissues and cells compared with the controls, and the overexpression of TSR2 in Hep-2 and AMC-HN-8 cells could promote cell apoptosis and related apoptosis proteins. The Western blot/qRT-PCR data further indicated that overexpression of TSR2 in Hep-2 and AMC-HN-8 cells could lead to a block of NF-κB signaling pathway via decreasing nuclear NF-κB p65 and increasing cytoplasm NF-κB p65. Moreover, overexpression of TSR2 significantly inhibited the phosphorylation of IκBα and IKKα/β. CONCLUSIONS The results indicated that TSR2-induced apoptosis was mediated by inhibiting the NF-κB signaling pathway, which may provide an effective target in gene therapy for LSCC. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E130-E134, 2018.
Collapse
Affiliation(s)
- Hong-Jiang He
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Han Bing
- Department of Ophthalmology, Hospital of Heilongjiang Province, Harbin, China
| | - Guijun Liu
- Heilongjiang University of Chinese Medicine, Heilongjiang Province, China
| |
Collapse
|
9
|
Giopanou I, Lilis I, Papadaki H, Papadas T, Stathopoulos GT. A link between RelB expression and tumor progression in laryngeal cancer. Oncotarget 2017; 8:114019-114030. [PMID: 29371965 PMCID: PMC5768382 DOI: 10.18632/oncotarget.23109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Laryngeal cancer is a frequent malignancy originating from the squamous vocal epithelium in a multi-stage fashion in response to environmental carcinogens. Although most cases can be cured by surgery and/or radiotherapy, advanced and relapsing disease is common, and biomarkers of such dismal cases are urgently needed. The cancer genome of laryngeal cancers was recently shown to feature a signature of aberrant nuclear factor (NF)-κB activation, but this finding has not been clinically exploited. We analyzed primary tumor samples of 96 well-documented and longitudinally followed patients covering the whole spectrum of laryngeal neoplasia, including 21 patients with benign laryngeal diseases, 15 patients with dysplasia, 43 patients with early-stage carcinoma, and 17 patients with locally advanced carcinoma, for immunoreactivity of RelA, RelB, P50, and P52/P100, the main NF-κB subunits that activate transcription. Results were cross-examined with indices of tumor progression and survival. Interestingly, RelB expression increased with tumor stage, grade, and local extent. Moreover, patients displaying high RelB immunoreactivity exhibited statistically significantly poorer survival compared with patients featuring low levels of RelB expression (P = 0.018 by log-rank test). Using Cox regression analyses and tumor stage, local extent, grade and RelA/RelB immunoreactivity, we develop a new score that can independently predict survival of patients with laryngeal cancer. Hence we provide a simple and affordable NF-κB-based test to predict prognosis in laryngeal cancer.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Helen Papadaki
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Theodoros Papadas
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz ZentrumMünchen, Member of The German Center for Lung Research (DZL), Munich, Bavaria 81377, Germany
| |
Collapse
|
10
|
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF- κB. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4751260. [PMID: 28409156 PMCID: PMC5376929 DOI: 10.1155/2017/4751260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/25/2022]
Abstract
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF-κB activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF-κB inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF-α-induced NF-κB activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF-κB.
Collapse
|
11
|
QIAO WENLIANG, HU HAIYANG, SHI BOWEN, ZANG LIJUAN, JIN WEI, LIN QIANG. Lentivirus-mediated knockdown of TSP50 suppresses the growth of non-small cell lung cancer cells via G0/G1 phase arrest. Oncol Rep 2016; 35:3409-18. [DOI: 10.3892/or.2016.4763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 11/05/2022] Open
|