1
|
Huang L, Liao Z, Zou Y, Liu Y, Wang H, Zou L, Liang S, Tong S, Kang Y, Chen T, Xiong X, Xing M. BnLPAT2 gene regulates oil accumulation in Brassica napus by modulating linoleic and linolenic acid levels in seeds. PLoS One 2025; 20:e0321548. [PMID: 40238837 PMCID: PMC12002453 DOI: 10.1371/journal.pone.0321548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 04/18/2025] Open
Abstract
Lysophosphatidate acyltransferase (LPAT) catalyzes the conversion of lysophosphatidic acid to phosphatidic acid, a key step in lipid biosynthesis. This study cloned four LPAT2 genes from Brassica napus: BnLPAT2-A04, A07, A09, and C08. Functional analysis using bioinformatics, qRT-PCR (Quantitative Reverse Transcription Polymerase Chain Reaction), CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), overexpression, and transcriptome sequencing revealed that these genes encode proteins containing the conserved PLN02380 domain. BnLPAT2-A07/A09/C08 showed strong conservation with Arabidopsis AtLPAT2. Promoter analysis revealed multiple cis-elements related to stress, light, and phytohormone responses, with the BnLPAT2-A09/C08 promoters containing the most diverse cis-elements. Expression analysis showed that BnLPAT2-A07/C08 was highly expressed in various tissues, with BnLPAT2-A07 peaking during seed development. Overexpression of these genes increased seed oil content and the proportion of C18:2/C18:3 fatty acids, with BnLPAT2-A07 achieving an increase in oil content ranging from 4.46% to 6.44%. Gene knockout reduced oil content by 7.5% and affected fatty acid accumulation. Transcriptome sequencing analysis suggested that the BnLPAT2 genes promote the production of long-chain fatty acids, such as Linoleic acid (C18:2) and Linolenic acid (C18:3), through biological processes, including fatty acid biosynthesis, very long-chain fatty acid biosynthesis, and very long-chain fatty acid metabolism, thereby improving seed oil content. This study provides valuable insights into lipid metabolism and offers a theoretical foundation for improving oil content and fatty acid composition in B. napus.
Collapse
Affiliation(s)
- Luyao Huang
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | | | - Yujing Zou
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Yong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Huihui Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Leping Zou
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Sun Liang
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Shan Tong
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Yu Kang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui, China
| | - Tuo Chen
- Anxiang County Agricultural and Rural Affairs Bureau, Anxiang, Hunan, China
| | - Xinghua Xiong
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui, China
| | - Man Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Manan S, Li P, Alfarraj S, Ansari MJ, Bilal M, Ullah MW, Zhao J. FUS3: Orchestrating soybean plant development and boosting stress tolerance through metabolic pathway regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108803. [PMID: 38885564 DOI: 10.1016/j.plaphy.2024.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Soybean research has gained immense attention due to its extensive use in food, feedstock, and various industrial applications, such as the production of lubricants and engine oils. In oil crops, the process of seed development and storage substances accumulation is intricate and regulated by multiple transcription factors (TFs). In this study, FUSCA3 (GmFUS3) was characterized for its roles in plant development, lipid metabolism, and stress regulation. Expressing GmFUS3 in atfus3 plants restored normal characteristics observed in wild-type plants, including cotyledon morphology, seed shape, leaf structure, and flower development. Additionally, its expression led to a significant increase of 25% triacylglycerols (TAG) and 33% in protein levels. Transcriptomic analysis further supported the involvement of GmFUS3 in various phases of plant development, lipid biosynthesis, lipid trafficking, and flavonoid biosynthesis. To assess the impact of stress on GmFUS3 expression, soybean plants were subjected to different stress conditions, and the its expression was assessed. Transcriptomic data revealed significant alterations in the expression levels of approximately 80 genes linked to reactive oxygen species (ROS) signaling and 40 genes associated with both abiotic and biotic stresses. Additionally, GmFUS3 was found to regulate abscisic acid synthesis and interact with nucleoside diphosphate kinase 1, which is responsible for plant cellular processes, development, and stress response. Overall, this research sheds light on the multifaceted functions of GmFUS3 and its potential applications in enhancing crop productivity and stress tolerance.
Collapse
Affiliation(s)
- Sehrish Manan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Misbah Bilal
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Muhammad Wajid Ullah
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Sahoo S, Dehury B, Narang PK, Raina V, Misra N, Suar M. Comprehensive sequence and structure analysis of algal lipid catabolic enzyme Triacylglycerol lipase: an in silico study to vitalize the development of optimum engineered strains with high lipid productivity. J Biomol Struct Dyn 2022; 40:11989-12007. [PMID: 34415234 DOI: 10.1080/07391102.2021.1967194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microalgae as an alternative renewable resource for biofuel production have captured much significance. Nonetheless, its economic viability is a field of major concern for researchers. Unraveling the lipid catabolic pathway and gaining insights into the sequence-structural features of its primary functioning enzyme, Triacylglycerol lipase, will impart valuable information to target microalgae for augmented lipid content. In the present study, a genome-wide comparative study on putative Triacylglycerol lipase (TAGL) enzyme from algal species belonging to varied phylogenetic lineages was performed. The comprehensive sequence analysis revealed that TAGL comprises of three distinct conserved domains, such as, Patatin, Class III Lipase, and Abhydro_lipase, and also confirmed the ubiquitous presence of GXSXG motif in the sequences analyzed. In the absence of a crystal structure of algal TAGL till date, we developed the first 3D model of patatin domain of TAGL from an oleaginous microalga, Phaedactylum tricornutum, employing homology modeling, docking and molecular dynamic simulations methods. The domain-substrate complex having the low-ranking docking score revealed the binding of palmitic acid to the TAGL patatin domain surface with strong hydrogen bond interactions. The simulation results implied that the substrate-complexed patatin domain and the free enzyme adopted a more stable conformation after 40 ns. This is the first ever attempt to provide in-silico insights into the structural and dynamical insights on catalytic mechanism of the TAGL patatin domain. Subsequently, these findings aided our understanding on their structural stability, folding mechanism and protein-substrate interactions, which could be further utilized to design site-specific mutagenic experiments for engineering microalgal strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Parminder Kaur Narang
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,SGTB Khalsa College, Delhi University, Delhi, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
4
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
5
|
Sarvas C, Puttick D, Forseille L, Cram D, Smith MA. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa. PLANTA 2021; 254:32. [PMID: 34287699 DOI: 10.1007/s00425-021-03682-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
A β-ketoacyl-ACP-synthase II (KAS2) like enzyme and a lysophosphatidic acid acyltransferase (LPAT2) from Consolida ajacis catalyze gondoic acid biosynthesis and incorporation into the sn-2 position of seed TAG in engineered Camelina sativa. Gondoic acid (cis-11 eicosenoic acid, 20:1∆11) is the predominant very-long-chain fatty acid (VLCFA) in camelina (Camelina sativa) seed oil accounting for 12-15% of total triacylglycerol fatty acids. To explore the feasibility of engineering increased levels of this fatty acid in camelina seed, oils from a range of plant species were analyzed to identify those producing 20-Carbon (C20) fatty acids as the only VLCFAs in their seed oil. Seeds of Consolida and Delphinium species (Ranunculaceae) were found to contain moderate levels (0.2% to 25.5%) of C20 fatty acids without accompanying longer chain fatty acids. The C20 fatty acids were abundant in both sn-2 and sn-1/3 positions of seed TAG in Consolida, but were largely absent from the sn-2 position in Delphinium seed TAG. Through generation of a developing seed transcriptome, sequences were identified and cDNAs amplified from Consolida ajacis encoding a β-ketoacyl-ACP-synthase II like protein (CaKAS2B) that lacked a predicted chloroplast transit peptide, and two homologues of Arabidopsis thaliana lysophosphatidic acid acyltransferase 2 (CaLPAT2a and CaLPAT2b). Expression of CaKAS2B in conventional (WT) camelina and a line previously engineered for high seed oleic acid content (HO) resulted in increased seed VLCFA content. Total VLCFA levels were raised from 24 to 35% and from 7 to 23% in T3 seed from representative transformants in the WT and HO backgrounds, respectively. Gondoic acid was the predominant VLCFA in transformed HO lines with low endogenous cytoplasmic fatty acid elongation activity, suggesting limited capacity of CaKAS2B to elongate beyond C20. Expression in camelina of CaLPAT2b resulted in significantly increased C20-VLCFA esterification at the sn-2 position of seed TAG with VLCFA levels of 33.8% in this position in one transformed line compared to 0.3% at sn-2 in the corresponding control line. Only small changes in total seed VLCFA content were observed in transformed lines implying that increased VLCFA esterification capacity in camelina results in positional redistribution of VLCFAs but does not significantly enhance flux through the fatty acid elongation pathway. The full potential of CaKAS2B and CaLPAT2a for the engineering of high gondoic acid levels in camelina remains to be determined. Seed fatty acid composition of Consolida and Delphinium also provides information that may be of value in the systematics of the Ranunculaceae.
Collapse
Affiliation(s)
- Carlene Sarvas
- Linnaeus Plant Sciences, 2024-110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Debbie Puttick
- Linnaeus Plant Sciences, 2024-110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Li Forseille
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Dustin Cram
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Mark A Smith
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
6
|
Sahoo S, Mahapatra SR, Das N, Parida BK, Rath S, Misra N, Suar M. Functional elucidation of hypothetical proteins associated with lipid accumulation: Prioritizing genetic engineering targets for improved algal biofuel production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Kuhalskaya A, Wijesingha Ahchige M, Perez de Souza L, Vallarino J, Brotman Y, Alseekh S. Network Analysis Provides Insight into Tomato Lipid Metabolism. Metabolites 2020; 10:metabo10040152. [PMID: 32295308 PMCID: PMC7240963 DOI: 10.3390/metabo10040152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Metabolic correlation networks have been used in several instances to obtain a deeper insight into the complexity of plant metabolism as a whole. In tomato (Solanum lycopersicum), metabolites have a major influence on taste and overall fruit quality traits. Previously a broad spectrum of metabolic and phenotypic traits has been described using a Solanum pennellii introgression-lines (ILs) population. To obtain insights into tomato fruit metabolism, we performed metabolic network analysis from existing data, covering a wide range of metabolic traits, including lipophilic and volatile compounds, for the first time. We provide a comprehensive fruit correlation network and show how primary, secondary, lipophilic, and volatile compounds connect to each other and how the individual metabolic classes are linked to yield-related phenotypic traits. Results revealed a high connectivity within and between different classes of lipophilic compounds, as well as between lipophilic and secondary metabolites. We focused on lipid metabolism and generated a gene-expression network with lipophilic metabolites to identify new putative lipid-related genes. Metabolite–transcript correlation analysis revealed key putative genes involved in lipid biosynthesis pathways. The overall results will help to deepen our understanding of tomato metabolism and provide candidate genes for transgenic approaches toward improving nutritional qualities in tomato.
Collapse
Affiliation(s)
- Anastasiya Kuhalskaya
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (A.K.); (M.W.A.); (L.P.d.S.); (J.V.); (Y.B.)
- Department of Life Sciences, Ben Gurion University of the Negev, 84105 Beersheva, Israel
| | - Micha Wijesingha Ahchige
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (A.K.); (M.W.A.); (L.P.d.S.); (J.V.); (Y.B.)
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (A.K.); (M.W.A.); (L.P.d.S.); (J.V.); (Y.B.)
| | - José Vallarino
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (A.K.); (M.W.A.); (L.P.d.S.); (J.V.); (Y.B.)
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (A.K.); (M.W.A.); (L.P.d.S.); (J.V.); (Y.B.)
- Department of Life Sciences, Ben Gurion University of the Negev, 84105 Beersheva, Israel
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (A.K.); (M.W.A.); (L.P.d.S.); (J.V.); (Y.B.)
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +49-(0)331-567-8211
| |
Collapse
|
8
|
Ding LN, Gu SL, Zhu FG, Ma ZY, Li J, Li M, Wang Z, Tan XL. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC PLANT BIOLOGY 2020; 20:21. [PMID: 31931712 PMCID: PMC6958636 DOI: 10.1186/s12870-020-2240-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Triacylglycerols (TAGs) are the main composition of plant seed oil. Long-chain acyl-coenzyme A synthetases (LACSs) catalyze the synthesis of long-chain acyl-coenzyme A, which is one of the primary substrates for TAG synthesis. In Arabidopsis, the LACS gene family contains nine members, among which LACS1 and LACS9 have overlapping functions in TAG biosynthesis. However, functional characterization of LACS proteins in rapeseed have been rarely reported. RESULTS An orthologue of the Arabidopsis LACS2 gene (BnLACS2) that is highly expressed in developing seeds was identified in rapeseed (Brassica napus). The BnLACS2-GFP fusion protein was mainly localized to the endoplasmic reticulum, where TAG biosynthesis occurs. Interestingly, overexpression of the BnLACS2 gene resulted in significantly higher oil contents in transgenic rapeseed plants compared to wild type, while BnLACS2-RNAi transgenic rapeseed plants had decreased oil contents. Furthermore, quantitative real-time PCR expression data revealed that the expression of several genes involved in glycolysis, as well as fatty acid (FA) and lipid biosynthesis, was also affected in transgenic plants. CONCLUSIONS A long chain acyl-CoA synthetase, BnLACS2, located in the endoplasmic reticulum was identified in B. napus. Overexpression of BnLACS2 in yeast and rapeseed could increase oil content, while BnLACS2-RNAi transgenic rapeseed plants exhibited decreased oil content. Furthermore, BnLACS2 transcription increased the expression of genes involved in glycolysis, and FA and lipid synthesis in developing seeds. These results suggested that BnLACS2 is an important factor for seed oil production in B. napus.
Collapse
Affiliation(s)
- Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shou-Lai Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fu-Ge Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhong-Yan Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Juan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Zuo JF, Niu Y, Cheng P, Feng JY, Han SF, Zhang YH, Shu G, Wang Y, Zhang YM. Effect of marker segregation distortion on high density linkage map construction and QTL mapping in Soybean (Glycine max L.). Heredity (Edinb) 2019; 123:579-592. [PMID: 31152165 PMCID: PMC6972858 DOI: 10.1038/s41437-019-0238-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/01/2023] Open
Abstract
Marker segregation distortion is a natural phenomenon. Severely distorted markers are usually excluded in the construction of linkage maps. We investigated the effect of marker segregation distortion on linkage map construction and quantitative trait locus (QTL) mapping. A total of 519 recombinant inbred lines of soybean from orthogonal and reciprocal crosses between LSZZH and NN493-1 were genotyped by specific length amplified fragment markers and seed linoleic acid content was measured in three environments. As a result, twenty linkage groups were constructed with 11,846 markers, including 1513 (12.77%) significantly distorted markers, on 20 chromosomes, and the map length was 2475.86 cM with an average marker-interval of 0.21 cM. The inclusion of distorted markers in the analysis was shown to not only improve the grouping of the markers from the same chromosomes, and the consistency of linkage maps with genome, but also increase genome coverage by markers. Combining genotypic data from both orthogonal and reciprocal crosses decreased the proportion of distorted markers and then improved the quality of linkage maps. Validation of the linkage maps was confirmed by the high collinearity between positions of markers in the soybean reference genome and in linkage maps and by the high consistency of 24 QTL regions in this study compared with the previously reported QTLs and lipid metabolism related genes. Additionally, linkage maps that include distorted markers could add more information to the outputs from QTL mapping. These results provide important information for linkage mapping, gene cloning and marker-assisted selection in soybean.
Collapse
Affiliation(s)
- Jian-Fang Zuo
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Niu
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Peng Cheng
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Ying Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi-Feng Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying-Hao Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoping Shu
- Center of Molecular Breeding and Biotechnology, Beijing Lantron Seed Corp., Beijing, 100081, China
| | - Yibo Wang
- Center of Molecular Breeding and Biotechnology, Beijing Lantron Seed Corp., Beijing, 100081, China
| | - Yuan-Ming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
PrLPAAT4, a Putative Lysophosphatidic Acid Acyltransferase from Paeonia rockii, Plays an Important Role in Seed Fatty Acid Biosynthesis. Molecules 2017; 22:molecules22101694. [PMID: 28994730 PMCID: PMC6151692 DOI: 10.3390/molecules22101694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
Lysophosphatidic acid acyltransferases (LPAATs) are essential for the acylation of lysophosphatidic acid (LPA) and the synthesis of phosphatidic acid (PA), a key intermediate in the synthesis of membrane phospholipids and storage lipids. Here, a putative lysophosphatidic acid acyltransferase gene, designated PrLPAAT4, was isolated from seed unsaturated fatty acid (UFA)-rich P. rockii. The complete PrLPAAT4 cDNA contained a 1116-bp open reading frame (ORF), encoding a 42.9 kDa protein with 371 amino acid residues. Bioinformatic analysis indicates that PrLPAAT4 is a plasma membrane protein belonging to acyl-CoA:1-acylglycerol-sn-3-phosphate acyltranferases (AGPAT) family. PrLPAAT4 shared high sequence similarity with its homologs from Citrus clementina, Populus trichocarpa, Manihot esculenta, and Ricinus communis. In Arabidopsis, overexpression of PrLPAAT4 resulted in a significant increase in the content of oleic acid (OA) and total fatty acids (FAs) in seeds. AtDGAT1, AtGPAT9, and AtOleosin, involved in TAG assembly, were upregulated in PrLPAAT4-overexpressing lines. These results indicated that PrLPAAT4 functions may be as a positive regulator in seed FA biosynthesis.
Collapse
|
12
|
Balamurugan S, Wang X, Wang HL, An CJ, Li H, Li DW, Yang WD, Liu JS, Li HY. Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:97. [PMID: 28435443 PMCID: PMC5397801 DOI: 10.1186/s13068-017-0786-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Microalgae have emerged as a potential feedstock for biofuels and bioactive components. However, lack of microalgal strains with promising triacylglycerol (TAG) content and desirable fatty acid composition have hindered its commercial feasibility. Attempts on lipid overproduction by metabolic engineering remain largely challenging in microalgae. RESULTS In this study, a microalgal 1-acyl-sn-glycerol-3-phosphate acyltransferase designated AGPAT1 was identified in the model diatom Phaeodactylum tricornutum. AGPAT1 contained four conserved acyltransferase motifs I-IV. Subcellular localization prediction and thereafter immuno-electron microscopy revealed the localization of AGPAT1 to plastid membranes. AGPAT1 overexpression significantly altered the primary metabolism, with increased total lipid content but decreased content of total carbohydrates and soluble proteins. Intriguingly, AGPAT1 overexpression coordinated the expression of other key genes such as DGAT2 and GPAT involved in TAG synthesis, and consequently increased TAG content by 1.81-fold with a significant increase in polyunsaturated fatty acids, particularly EPA and DHA. Moreover, besides increased lipid droplets in the cytosol, ultrastructural observation showed a number of TAG-rich plastoglobuli formed in plastids. CONCLUSION The results suggested that AGPAT1 overexpression could elevate TAG biosynthesis and, moreover, revealed the occurrence of plastidial TAG synthesis in the diatom. Overall, our data provide a new insight into microalgal lipid metabolism and candidate target for metabolic engineering.
Collapse
Affiliation(s)
- Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Hong-Lei Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Chun-Jing An
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Hui Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
13
|
Körbes AP, Kulcheski FR, Margis R, Margis-Pinheiro M, Turchetto-Zolet AC. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol Phylogenet Evol 2016; 96:55-69. [DOI: 10.1016/j.ympev.2015.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/21/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
|
14
|
Chen S, Lei Y, Xu X, Huang J, Jiang H, Wang J, Cheng Z, Zhang J, Song Y, Liao B, Li Y. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds. PLoS One 2015; 10:e0136170. [PMID: 26302041 PMCID: PMC4547709 DOI: 10.1371/journal.pone.0136170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts.
Collapse
Affiliation(s)
- Silong Chen
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Yong Lei
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Xian Xu
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Jiaquan Huang
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Jin Wang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Zengshu Cheng
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Jianan Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Yahui Song
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Boshou Liao
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
- * E-mail: (BSL); (YRL)
| | - Yurong Li
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
- * E-mail: (BSL); (YRL)
| |
Collapse
|