1
|
Choudhary RK, Choudhary S, Tripathi A. Emergence of the stromal vascular fraction and secretome in regenerative medicine. World J Stem Cells 2024; 16:896-899. [PMID: 39493826 PMCID: PMC11525647 DOI: 10.4252/wjsc.v16.i10.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
Recently, we read a mini-review published by Jeyaraman et al. The article explored the optimal methods for isolating mesenchymal stromal cells from adipose tissue-derived stromal vascular fraction (SVF). Key factors include tissue source, processing techniques, cell viability assessment, and the advantages/disadvantages of autologous vs allogeneic use. The authors emphasized the need for standardized protocols for SVF isolation, ethical and regulatory standards for cell-based therapy, and safety to advance mesenchymal stromal cell-based therapies in human patients. This manuscript shares our perspective on SVF isolation in canines. We discussed future directions to potentiate effective regenerative medicine therapeutics in human and veterinary medicine.
Collapse
Affiliation(s)
- Ratan Kumar Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India.
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | | |
Collapse
|
2
|
Sharma P, Sharma N, Choudhary S, Luhach P, Choudhary RK. Understanding, Status, and Therapeutic Potentials of Stem Cells in Goat. Curr Stem Cell Res Ther 2023; 18:947-957. [PMID: 36443983 DOI: 10.2174/1574888x18666221128152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
The utility of animal stem cells finds implications in enhancing milk, meat, and fiber production and serving animal models for human diseases. Stem cells are involved in tissue development, growth, and repair, and in regenerative therapy. Caprine embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and other tissue-specific adult stem cells (ASCs) have tremendous potential for their use in regenerative medicine. The application of goat ESCs, iPSCs, mammary stem cells (MaSC), mesenchymal stem cells (MSCs), spermatogonial stem cells (SSCs) and others can find their implication in increasing caprine production potential and human disease model. The onset of the disease and therapeutic effects of stem cells of many human diseases like sub-fertility, joint conditions, intervertebral disc defects, osteoarthritis, and chondrogenesis can be well studied in goats. Increasing evidence of MSCs and their secreted factors have drawn the attention of animal scientists in regenerative medicine. This review summarizes a comprehensive overview of research made on caprine stem cells and illustrates some potential applications of stem cells in caprine regenerative medicine and their utility as a model animal in understanding human diseases.
Collapse
Affiliation(s)
- Paramjeet Sharma
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Shanti Choudhary
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Priyanka Luhach
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ratan K Choudhary
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
3
|
Intramammary rapamycin administration to calves induces epithelial stem cell self-renewal and latent cell proliferation and milk protein expression. PLoS One 2022; 17:e0269505. [PMID: 35731738 PMCID: PMC9216576 DOI: 10.1371/journal.pone.0269505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022] Open
Abstract
Mammary epithelial stem cells differentiate to create the basal and luminal layers of the gland. Inducing the number of differentiating bovine mammary stem cells may provide compensating populations for the milk-producing cells that die during lactation. Inhibition of mTOR activity by rapamycin signals self-renewal of intestinal stem cells, with similar consequences in the mouse mammary gland and in bovine mammary implants maintained in mice. The implementation of these results in farm animals for better mammary development and production was studied in 3-month-old calves. mTOR activity decreased by ~50% in mammary epithelial cells subjected to 3-week rapamycin administration, with no negative consequences on mammary morphology or β-casein expression. Subsequently, stem cell self-renewal was induced, reflected by a higher propagation rate of cultures from rapamycin-treated glands compared to respective controls and higher expression of selected markers. Followed by 4-day estrogen and progesterone administration, rapamycin significantly induced proliferation rate. Higher numbers of basal and luminal PCNA+ cells were detected in small ducts near the elongating sites as compared to large ducts, in which only luminal cells were affected. Rapamycin administration resulted in induction of individual milk protein genes’ expression, which was negatively correlated to their endogenous levels. The inductive effect of rapamycin on luminal cell number was confirmed in organoid cultures, but milk protein expression decreased, probably due to lack of oscillation in rapamycin levels. In conclusion, intramammary rapamycin administration is an effective methodology to reduce mTOR activity in bovine mammary epithelial cells and consequently, induce stem cell self-renewal. The latent positive effect of rapamycin on epithelial cell proliferation and its potential to improve milk protein expression in calves may have beneficial implications for mature cows.
Collapse
|
4
|
Nascimento AV, Cardoso DF, Santos DJA, Romero ARS, Scalez DCB, Borquis RRA, Neto FRA, Gondro C, Tonhati H. Inbreeding coefficients and runs of homozygosity islands in Brazilian water buffalo. J Dairy Sci 2020; 104:1917-1927. [PMID: 33272579 DOI: 10.3168/jds.2020-18397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Characterization of autozygosity is relevant to monitor genetic diversity and manage inbreeding levels in breeding programs. Identification of autozygosity hotspots can unravel genomic regions targeted by selection for economically important traits and can help identify candidate genes for selection. In this study, we estimated the inbreeding levels of a Brazilian population of Murrah buffalo undergoing selection for milk production traits, particularly milk yield. We also studied the distribution of runs of homozygosity (ROH) islands and identified putative genes and quantitative trait loci (QTL) under selection. We genotyped 422 Murrah buffalo for 51,611 SNP; 350 of these had ROH longer than 10 Mb, indicating the occurrence of inbreeding in the last 5 generations. The mean length of the ROH per animal was 4.28 ± 1.85 Mb. Inbreeding coefficients were calculated from the genomic relationship matrix, the pedigree, and the ROH, with estimates varying between 0.242 and 0.035. Inbreeding estimates from the pedigree had a low correlation with the genomic estimates, and estimates from the genomic relationship matrix were much higher than those from the pedigree or the ROH. Signatures of selection were identified in 6 genomic regions, located on chromosomes 1, 2, 3, 5, 16, and 18, encompassing a total of 190 genes and 174 QTL. Many of the genes (e.g., APRT and ACSF3) and QTL identified are related to milk production traits, such as milk yield, milk fat yield and percentage, and milk protein yield and percentage. Other genes are associated with reproduction and immune response traits as well as morphological aspects of the buffalo species. Inbreeding levels in this population are still low but are increasing due to selection and should be managed to avoid future losses due to inbreeding depression. The proximity of genes linked to milk production traits with genes associated with reproduction and immune system traits suggests the need to include these latter genes in the breeding program to avoid negatively affecting them due to selection for production traits.
Collapse
Affiliation(s)
- A V Nascimento
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D F Cardoso
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D J A Santos
- Department of Animal Science, University of Maryland, College Park 20742
| | - A R S Romero
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D C B Scalez
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - R R A Borquis
- College of Agricultural Sciences, Federal University of Grande Dourados (UFGD), Dourados, 79804970, Brazil
| | - F R A Neto
- Goiano Federal Institute, Campus Rio Verde, Rio Verde, 75909120, Brazil
| | - C Gondro
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - H Tonhati
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil.
| |
Collapse
|
5
|
Thakur S, Choudhary S, Pathak D, Choudhary RK. High expression of aldehyde dehydrogenase 1 and tissue necrosis factor alpha may relate to chronic infection of buffalo mammary gland. Anim Biotechnol 2020; 31:276-281. [PMID: 30831051 DOI: 10.1080/10495398.2019.1579099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) and hepatocyte nuclear factor 4A (HNF4A) are the putative mammary stem cell markers. Tissue necrosis factor alpha (TNFA) is involved in inflammation-associated carcinogenesis and cell proliferation. In this study, the gene expression profile of ALDH1, HNF4A and TNFA of buffalo mammary tissue using real-time quantitative PCR (RT-qPCR). Analysis of RT-qPCR data revealed that the relative expression (log2 fold change) of ALDH1 and TNFA during mastitis (vs. lactation) was increased (P < .05) by 2.98 and 4.71, respectively. The relative expression (log2 fold change; -7.39) of stem cell marker, HNF4A was decreased (P < .05) during mastitis. Histological analysis of mammary tissue during mastitis showed thickening of stroma and occasionally hyperplasia, predominantly in prepubertal and non-lactating animals. Although, the level of expression of these genes may vary, depending upon the physiological stage of the animals, however expression of ALDH1 and TNFA was high during mastitis. A systematic study on large samples of buffalo mammary tissue with appropriate comparisons needs to be evaluated with these markers for prognosis of buffalo mammary health.
Collapse
Affiliation(s)
- Sheetal Thakur
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ratan K Choudhary
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, New Jersey, USA
| |
Collapse
|
6
|
Choudhary RK, Choudhary S, Mukhopadhyay CS, Pathak D, Verma R. Deciphering the transcriptome of prepubertal buffalo mammary glands using RNA sequencing. Funct Integr Genomics 2019; 19:349-362. [PMID: 30467802 DOI: 10.1007/s10142-018-0645-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Although water buffaloes are the main milk-producing animals in Indian subcontinent, only limited attempts have been made to identify canonical pathways and gene regulatory networks operating within the mammary glands of these animals. Such information is important for identifying unique transcriptome signatures in the mammary glands of diseased animals. In this report, we analyzed the transcription profile of 3 prepubertal buffalo mammary glands and identified common genes (mean FPKM > 0.2 in all samples) operating in the glands. Among 19,994 protein coding genes, 14,678 genes expressed and 5316 unique genes did not express in prepubertal buffalo mammary glands. Of these 14,678 expressed genes, 79% comprised a ubiquitous transcriptome that was dominated by very lowly expressed genes (51%). The percentage of rarely, moderately, and abundantly expressed genes was 25%, 2%, and 1%, respectively. Gene Ontology (GO) terms reflected in the expression of common genes (mean FPKM > 5.0) for molecular function were related to binding and catalytic activity. Products of these genes were involved in metabolic and cellular processes and belong to nucleic acid binding proteins. The canonical pathways for growth of mammary glands included integrin signaling, inflammation, GnRH and Wnt pathways. KEGG enriched pathways revealed many pathways of cancer including ribosome, splisosome, endocytosis, and ubiquitin-mediated proteolysis, pathways for viral infection, and bacterial invasion of epithelial. Highly expressed genes (mean FPKM > 500 included beta-actin (ACTB), beta-2 microglobulin (B2M), caseins (CSN2, CNS3), collagens (COL1A1, COL3A1), translation elongation factors (EEF1A1, EEF1G, EEF2), keratins (KRT15, KRT19), major histocompatibility complex genes (CD74, JSP.1), vimentin (VIM), and osteopontin (SPP1). Interestingly, expression of milk protein genes in prepubertal glands opens possible roles of these genes in development of mammary glands. We report the whole transcriptomic signature of prepubertal buffalo mammary gland and indicated its molecular signature is similar to cancer type.
Collapse
Affiliation(s)
- Ratan K Choudhary
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA.
| | - Shanti Choudhary
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - C S Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, 141004, India
| | - Ramneek Verma
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| |
Collapse
|