1
|
Páez-Pérez ED, Llamas-García ML, Montero-Morán GM, Lara-González S. The C-terminal end of PLIN1 displays structural disorder. Biochem Biophys Rep 2025; 42:101963. [PMID: 40109298 PMCID: PMC11914984 DOI: 10.1016/j.bbrep.2025.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Lipid droplets (LDs) serve as crucial organelles for lipid storage and metabolism, with their proteome significantly influencing their regulation. Perilipins (PLINs), in particular PLIN1, play vital role in LD metabolism by orchestrating lipolysis. The C-terminal end of PLIN1 regulates lipolysis through interactions with coactivators such as the CGI-58 protein. Despite its importance, the structural characterization of this domain remains limited. Here, we present a comprehensive bioinformatic and biophysical analysis of the C-terminal end of mouse PLIN1 (mPLIN1C). Our findings suggest that mPLIN1C behaves as an intrinsically disordered region (IDR), exhibiting context-dependent properties of the coil-like or pre-molten globule type. Structural analysis reveals a predominance of disordered secondary structure, with circular dichroism spectroscopy indicating a high coil content. Interaction studies with SDS micelles suggest a conformational transition towards a pre-molten globule state. Furthermore, the analysis of molecular recognition features (MoRFs) identifies the EPESE sequence spanning residues 413-417 as a potential binding site for partner molecules. Overall, our findings shed light on the structural properties and potential interaction mechanisms of mPLIN1C, providing insight into its functional role in LD metabolism.
Collapse
Affiliation(s)
- Edgar D Páez-Pérez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Biología Molecular, S.L.P, 78216, San Luis Potosí, Mexico
| | - Miriam Livier Llamas-García
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Biología Molecular, S.L.P, 78216, San Luis Potosí, Mexico
| | - Gabriela M Montero-Morán
- Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, S.L.P., 78216, San Luis Potosí, Mexico
| | - Samuel Lara-González
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Biología Molecular, S.L.P, 78216, San Luis Potosí, Mexico
| |
Collapse
|
2
|
Zakharova K, Liu M, Greenwald JR, Caldwell BC, Qi Z, Wysocki VH, Bell CE. Structural Basis for the Interaction of Redβ Single-Strand Annealing Protein with Escherichia coli Single-Stranded DNA-Binding Protein. J Mol Biol 2024; 436:168590. [PMID: 38663547 DOI: 10.1016/j.jmb.2024.168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork. Successful annealing in vivo requires the interaction of Redβ with E. coli single-stranded DNA-binding protein (SSB), which coats the ssDNA at the lagging strand to coordinate access of numerous replication proteins. Previous mutational analysis revealed that the interaction between Redβ and SSB involves the C-terminal domain (CTD) of Redβ and the C-terminal tail of SSB (SSB-Ct), the site for binding of numerous host proteins. Here, we have determined the x-ray crystal structure of Redβ CTD in complex with a peptide corresponding to the last nine residues of SSB (MDFDDDIPF). Formation of the complex is predominantly mediated by hydrophobic interactions between two phenylalanine side chains of SSB (Phe-171 and Phe-177) and an apolar groove on the CTD, combined with electrostatic interactions between the C-terminal carboxylate of SSB and Lys-214 of the CTD. Mutation of any of these residues to alanine significantly disrupts the interaction of full-length Redβ and SSB proteins. Structural knowledge of this interaction will help to expand the utility of Redβ-mediated recombination to a wider range of bacterial hosts for applications in synthetic biology.
Collapse
Affiliation(s)
- Katerina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Mengqi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jacelyn R Greenwald
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Brian C Caldwell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zihao Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Pipalović G, Filić Ž, Ćehić M, Paradžik T, Zahradka K, Crnolatac I, Vujaklija D. Impact of C-terminal domains of paralogous single-stranded DNA binding proteins from Streptomyces coelicolor on their biophysical properties and biological functions. Int J Biol Macromol 2024; 268:131544. [PMID: 38614173 DOI: 10.1016/j.ijbiomac.2024.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Single-stranded DNA-binding proteins (SSB) are crucial in DNA metabolism. While Escherichia coli SSB is extensively studied, the significance of its C-terminal domain has only recently emerged. This study explored the significance of C-domains of two paralogous Ssb proteins in S. coelicolor. Mutational analyses of C-domains uncovered a novel role of SsbA during sporulation-specific cell division and demonstrated that the C-tip is non-essential for survival. In vitro methods revealed altered biophysical and biochemical properties of Ssb proteins with modified C-domains. Determined hydrodynamic properties suggested that the C-domains of SsbA and SsbB occupy a globular position proposed to mediate cooperative binding. Only SsbA was found to form biomolecular condensates independent of the C-tip. Interestingly, the truncated C-domain of SsbA increased the molar enthalpy of unfolding. Additionally, calorimetric titrations revealed that C-domain mutations affected ssDNA binding. Moreover, this analysis showed that the SsbA C-tip aids binding most likely by regulating the position of the flexible C-domain. It also highlighted ssDNA-induced conformational mobility restrictions of all Ssb variants. Finally, the gel mobility shift assay confirmed that the intrinsically disordered linker is essential for cooperative binding of SsbA. These findings highlight the important role of the C-domain in the functioning of SsbA and SsbB proteins.
Collapse
Affiliation(s)
- Goran Pipalović
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Želimira Filić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Mirsada Ćehić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Tina Paradžik
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| | - Dušica Vujaklija
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| |
Collapse
|
4
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Bonde NJ, Henry C, Wood EA, Cox MM, Keck J. Interaction with the carboxy-terminal tip of SSB is critical for RecG function in E. coli. Nucleic Acids Res 2023; 51:3735-3753. [PMID: 36912097 PMCID: PMC10164576 DOI: 10.1093/nar/gkad162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
In Escherichia coli, the single-stranded DNA-binding protein (SSB) acts as a genome maintenance organizational hub by interacting with multiple DNA metabolism proteins. Many SSB-interacting proteins (SIPs) form complexes with SSB by docking onto its carboxy-terminal tip (SSB-Ct). An alternative interaction mode in which SIPs bind to PxxP motifs within an intrinsically-disordered linker (IDL) in SSB has been proposed for the RecG DNA helicase and other SIPs. Here, RecG binding to SSB and SSB peptides was measured in vitro and the RecG/SSB interface was identified. The results show that RecG binds directly and specifically to the SSB-Ct, and not the IDL, through an evolutionarily conserved binding site in the RecG helicase domain. Mutations that block RecG binding to SSB sensitize E. coli to DNA damaging agents and induce the SOS DNA-damage response, indicating formation of the RecG/SSB complex is important in vivo. The broader role of the SSB IDL is also investigated. E. coli ssb mutant strains encoding SSB IDL deletion variants lacking all PxxP motifs retain wildtype growth and DNA repair properties, demonstrating that the SSB PxxP motifs are not major contributors to SSB cellular functions.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Newcomb ESP, Douma LG, Morris LA, Bloom LB. The Escherichia coli clamp loader rapidly remodels SSB on DNA to load clamps. Nucleic Acids Res 2022; 50:12872-12884. [PMID: 36511874 PMCID: PMC9825162 DOI: 10.1093/nar/gkac1169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme-DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein-protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein-protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.
Collapse
Affiliation(s)
- Elijah S P Newcomb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Leslie A Morris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Linda B Bloom
- To whom correspondence should be addressed. Tel: +1 352 294 8379; Fax: +1 352 392 2953;
| |
Collapse
|
7
|
Bianco PR. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Front Mol Biosci 2022; 9:784451. [PMID: 35223988 PMCID: PMC8881015 DOI: 10.3389/fmolb.2022.784451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of genome stability requires the coordinated actions of multiple proteins and protein complexes, that are collectively known as genome guardians. Within this broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-binding folds (OB-fold). While OB-folds are widely associated with binding to single-stranded DNA this view is no longer an accurate depiction of how these domains are utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a variety of DNA substrates (both single- and double-stranded), phospholipids, and proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility accompanied by distinctive oligomerization states and quaternary structures enables OB-fold genome guardians to maintain the integrity of the genome via a myriad of complex and dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Bianco PR. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci 2021; 30:1757-1775. [PMID: 34089559 PMCID: PMC8376408 DOI: 10.1002/pro.4140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
The single-stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism in bacteria. This protein performs two distinct, but closely intertwined and indispensable functions in the cell. SSB binds to single-stranded DNA (ssDNA) and at least 20 partner proteins resulting in their regulation. These partners comprise a family of genome guardians known as the SSB interactome. Essential to interactome regulation is the linker/OB-fold network of interactions. This network of interactions forms when one or more PXXP motifs in the linker of SSB bind to an OB-fold in a partner, with interactome members involved in competitive binding between the linker and ssDNA to their OB-fold. Consequently, when linker-binding occurs to an OB-fold in an interactome partner, proteins are loaded onto the DNA. When linker/OB-fold interactions occur between SSB tetramers, cooperative ssDNA-binding results, producing a multi-tetrameric complex that rapidly protects the ssDNA. Within this SSB-ssDNA complex, there is an extensive and dynamic network of linker/OB-fold interactions that involves multiple tetramers bound contiguously along the ssDNA lattice. The dynamic behavior of these tetramers which includes binding mode changes, sliding as well as DNA wrapping/unwrapping events, are likely coupled to the formation and disruption of linker/OB-fold interactions. This behavior is essential to facilitating downstream DNA processing events. As OB-folds are critical to the essence of the linker/OB-fold network of interactions, and they are found in multiple interactome partners, the SSB interactome is classified as the first family of prokaryotic, oligosaccharide/oligonucleotide binding fold (OB-fold) genome guardians.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding, Competitive
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Gene Regulatory Networks
- Genome, Bacterial
- Klebsiella pneumoniae/chemistry
- Klebsiella pneumoniae/genetics
- Klebsiella pneumoniae/metabolism
- Models, Molecular
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Multimerization
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
9
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
10
|
Xu B, Liu D, Wang Z, Tian R, Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci 2021; 78:129-141. [PMID: 32642789 PMCID: PMC11072825 DOI: 10.1007/s00018-020-03594-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
AlkB homologs (ALKBH) are a family of specific demethylases that depend on Fe2+ and α-ketoglutarate to catalyze demethylation on different substrates, including ssDNA, dsDNA, mRNA, tRNA, and proteins. Previous studies have made great progress in determining the sequence, structure, and molecular mechanism of the ALKBH family. Here, we first review the multi-substrate selectivity of the ALKBH demethylase family from the perspective of sequence and structural evolution. The construction of the phylogenetic tree and the comparison of key loops and non-homologous domains indicate that the paralogs with close evolutionary relationship have similar domain compositions. The structures show that the lack and variations of four key loops change the shape of clefts to cause the differences in substrate affinity, and non-homologous domains may be related to the compatibility of multiple substrates. We anticipate that the new insights into selectivity determinants of the ALKBH family are useful for understanding the demethylation mechanisms.
Collapse
Affiliation(s)
- Baofang Xu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Dongyang Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerong Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruixia Tian
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
11
|
Ding W, Tan HY, Zhang JX, Wilczek LA, Hsieh KR, Mulkin JA, Bianco PR. The mechanism of Single strand binding protein-RecG binding: Implications for SSB interactome function. Protein Sci 2020; 29:1211-1227. [PMID: 32196797 PMCID: PMC7184773 DOI: 10.1002/pro.3855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023]
Abstract
The Escherichia coli single-strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single-stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide-oligonucleotide binding folds (OB-fold) present in SSB and its interactome partners. Not surprisingly, partner OB-fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB-fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C-terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C-terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB-folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB-folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB-fold genome guardians identified in prokaryotes.
Collapse
Affiliation(s)
- Wenfei Ding
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
| | - Hui Yin Tan
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Present address:
Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndianaUnited States
| | - Jia Xiang Zhang
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
| | - Luke A. Wilczek
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
- Present address:
Department of ChemistryBrown UniversityProvidenceRhode IslandUnited States
| | - Karin R. Hsieh
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
| | - Jeffrey A. Mulkin
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
| | - Piero R. Bianco
- Center for Single Molecule BiophysicsUniversity at BuffaloBuffaloNew YorkUnited States
- Department of BiochemistryUniversity at BuffaloBuffaloNew YorkUnited States
| |
Collapse
|
12
|
Bianco PR. DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication forks in Escherichia coli. Genes (Basel) 2020; 11:E471. [PMID: 32357475 PMCID: PMC7290993 DOI: 10.3390/genes11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023] Open
Abstract
In Escherichia coli, DNA replication forks stall on average once per cell cycle. When this occurs, replisome components disengage from the DNA, exposing an intact, or nearly intact fork. Consequently, the fork structure must be regressed away from the initial impediment so that repair can occur. Regression is catalyzed by the powerful, monomeric DNA helicase, RecG. During this reaction, the enzyme couples unwinding of fork arms to rewinding of duplex DNA resulting in the formation of a Holliday junction. RecG works against large opposing forces enabling it to clear the fork of bound proteins. Following subsequent processing of the extruded junction, the PriA helicase mediates reloading of the replicative helicase DnaB leading to the resumption of DNA replication. The single-strand binding protein (SSB) plays a key role in mediating PriA and RecG functions at forks. It binds to each enzyme via linker/OB-fold interactions and controls helicase-fork loading sites in a substrate-dependent manner that involves helicase remodeling. Finally, it is displaced by RecG during fork regression. The intimate and dynamic SSB-helicase interactions play key roles in ensuring fork regression and DNA replication restart.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, University at Buffalo, SUNY, Buffalo, NY 14221, USA
| |
Collapse
|
13
|
Single-stranded DNA damage: Protecting the single-stranded DNA from chemical attack. DNA Repair (Amst) 2020; 87:102804. [PMID: 31981739 DOI: 10.1016/j.dnarep.2020.102804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 01/08/2023]
Abstract
Cellular processes, such as DNA replication, recombination and transcription, require DNA strands separation and single-stranded DNA is formation. The single-stranded DNA is promptly wrapped by human single-stranded DNA binding proteins, replication protein A (RPA) complex. RPA binding not only prevent nuclease degradation and annealing, but it also coordinates cell-cycle checkpoint activation and DNA repair. However, RPA binding offers little protection against the chemical modification of DNA bases. This review focuses on the type of DNA base damage that occurs in single-stranded DNA and how the damage is rectified in human cells. The discovery of DNA repair proteins, such as ALKBH3, AGT, UNG2, NEIL3, being able to repair the damaged base in the single-stranded DNA, renewed the interest to study single-stranded DNA repair. These mechanistically different proteins work independently from each other with the overarching goal of increasing fidelity of recombination and promoting error-free replication.
Collapse
|
14
|
Mohan M, Akula D, Dhillon A, Goyal A, Anindya R. Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res 2019; 47:11729-11745. [PMID: 31642493 PMCID: PMC7145530 DOI: 10.1093/nar/gkz938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA. However, the molecular mechanism of ALKBH3-mediated damage recognition and repair is less understood. We report that ALKBH3 has a direct protein-protein interaction with human RAD51 paralogue RAD51C. We also provide evidence that RAD51C-ALKBH3 interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3'-tailed DNA, which serves as a substrate for the RAD51 recombinase. We further show that the lack of RAD51C-ALKBH3 interaction affects ALKBH3 function in vitro and in vivo. Our data provide a molecular mechanism underlying upstream events of alkyl adduct recognition and repair by ALKBH3.
Collapse
Affiliation(s)
- Monisha Mohan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Arun Dhillon
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
15
|
Huang YH, Lin ES, Huang CY. Complexed crystal structure of SSB reveals a novel single-stranded DNA binding mode (SSB)3:1: Phe60 is not crucial for defining binding paths. Biochem Biophys Res Commun 2019; 520:353-358. [DOI: 10.1016/j.bbrc.2019.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
16
|
Huang YH, Chen IC, Huang CY. Characterization of an SSB–dT25 complex: structural insights into the S-shaped ssDNA binding conformation. RSC Adv 2019; 9:40388-40396. [PMID: 35542687 PMCID: PMC9076272 DOI: 10.1039/c9ra09406g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
Single-stranded DNA (ssDNA)-binding proteins (SSBs) play an important role in all DNA-dependent cellular processes, such as DNA replication, recombination, repair, and replication restart. The N-terminal domain of SSBs forms an oligonucleotide/oligosaccharide-binding (OB) fold for ssDNA binding. The SSB–dC35 complex structure has revealed how an Escherichia coli SSB (EcSSB) tetramer binds to 65-nucleotide (nt)-long ssDNA, namely, the (SSB)65 binding mode. Knowledge on whether the ssDNA-binding mode for EcSSB is typical for all SSBs or is bacterial strain and length dependent is limited. Here, we studied the ssDNA-binding properties of a Pseudomonas aeruginosa SSB (PaSSB) and investigated its interaction mode through crystallographic analysis. The complex crystal structure containing a PaSSB tetramer with two ssDNA chains was solved at a resolution of 1.91 Å (PDB entry 6IRQ). Results revealed that each bound ssDNA dT25 adopts an S-shaped conformation. This binding mode, as shown by the complex structure of PaSSB, differs significantly from (SSB)65. ssDNA-binding contributions from aromatic residues in PaSSB, except the contribution of Trp54, were not significant. Using electrophoretic mobility shift analysis, we characterized the stoichiometry of PaSSB complexed with a series of ssDNA homopolymers. The minimal length of ssDNA required for PaSSB tetramer binding and the size of the ssDNA-binding site were 25 and 29 nt, respectively. These observations through structure–function analysis suggested that only two OB folds rather than four OB folds in PaSSB are enough for the formation of a stable complex with ssDNA. The PaSSB noninteracting OB folds proposed here may allow sliding via reptation in a dynamic ssDNA binding process. Single-stranded DNA (ssDNA)-binding proteins (SSBs) play an important role in all DNA-dependent cellular processes, such as DNA replication, recombination, repair, and replication restart.![]()
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
| | - I-Chen Chen
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences
- Chung Shan Medical University
- Taichung City
- Taiwan
- Department of Medical Research
| |
Collapse
|