1
|
In vitro antioxidant and immunomodulation capacities of low-molecular weight-alginate- and laminaran-responsible gut indigenous bacteria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Shikano A, Kuda T, Shibayama J, Toyama A, Ishida Y, Takahashi H, Kimura B. Effects of Lactobacillus plantarum Uruma-SU4 fermented green loofah on plasma lipid levels and gut microbiome of high-fat diet fed mice. Food Res Int 2019; 121:817-824. [DOI: 10.1016/j.foodres.2018.12.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022]
|
4
|
Taniguchi M, Kuda T, Shibayama J, Sasaki T, Michihata T, Takahashi H, Kimura B. In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae. Mol Biol Rep 2019; 46:1775-1786. [PMID: 30694455 DOI: 10.1007/s11033-019-04628-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
To clarify the antioxidant, anti-glycation and immunomodulatory capacities of fermented blue-green algae Aphanizomenon flos-aquae (AFA), hot aqueous extract suspensions made from 10% AFA were fermented by Lactobacillus plantarum AN7 and Lactococcus lactis subsp. lactis Kushiro-L2 strains isolated from a coastal region of Japan. The DPPH and O2- radical scavenging capacities and Fe-reducing power were increased in the fermented AFA. The increased DPPH radical scavenging capacity of the fermented AFA was fractionated to mainly < 3 kDa and 30-100 kDa. The increased O2- radical scavenging capacities were fractionated to mainly < 3 kDa. Anti-glycation activity in BSA-fructose model rather than BSA-methylglyoxal model was increased by the fermentation. The increased anti-glycation activity was fractionated to mainly 30-100 kDa. The NO concentration in the murine macrophage RAW264.7 culture media was high with the fermented AFA. The increased immunomodulation capacity was also fractionated to mainly 30-100 kDa. These results suggest that the fermented AFA is a more useful material for health foods and supplements.
Collapse
Affiliation(s)
- Miyu Taniguchi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan.
| | - Junna Shibayama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Tetsuya Sasaki
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Toshihide Michihata
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| |
Collapse
|