1
|
Nesmeyanova VS, Shanshin DV, Murashkin DE, Shcherbakov DN. Construction of an Integration Vector with a Chimeric Signal Peptide for the Expression of Monoclonal Antibodies in Mammalian Cells. Curr Issues Mol Biol 2024; 46:14464-14475. [PMID: 39727996 DOI: 10.3390/cimb46120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Antibodies are complex protein structures, and producing them using eukaryotic expression systems presents significant challenges. One frequently overlooked aspect of expression vectors is the nucleotide sequence encoding the signal peptide, which plays a pivotal role in facilitating the secretion of recombinant proteins. This study presents the development of an integrative vector, pVEAL3, for expressing full-length recombinant monoclonal antibodies in mammalian cells. The vector features a distinctive nucleotide sequence that encodes an artificial chimeric signal peptide with the following amino acid sequence: MMRTLILAVLLVYFCATVHC. Additionally, the vector incorporates several regulatory elements to enhance antibody expression, including the Gaussia luciferase signal sequence, internal ribosome entry site (IRES), P2A peptide, and a furin cleavage site. These elements coordinate to regulate the synthesis levels of the antibody chains. The analysis of clones obtained via transfection with the developed vector showed that over 95% of them secreted antibodies at levels significantly higher than those of the control. The immunochemical analysis of the chimeric antibody produced by the CHO-K1-10H10ch cell line confirmed the preservation of its functional activity.
Collapse
Affiliation(s)
- Valentina S Nesmeyanova
- State Scientific Center of Virology and Biotechnology "Vector", Rospotrebnadzor, 630559 Koltsovo, Novosibirsk Region, Russia
| | - Daniil V Shanshin
- State Scientific Center of Virology and Biotechnology "Vector", Rospotrebnadzor, 630559 Koltsovo, Novosibirsk Region, Russia
| | - Denis E Murashkin
- State Scientific Center of Virology and Biotechnology "Vector", Rospotrebnadzor, 630559 Koltsovo, Novosibirsk Region, Russia
| | - Dmitriy N Shcherbakov
- State Scientific Center of Virology and Biotechnology "Vector", Rospotrebnadzor, 630559 Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
2
|
Abd-El-Hafeez HH, Alnasser SM, Baker ZM, Aref M, Alsafy MAM, El-Gendy SAA, Zahran E, A HMM, Alghamdi AH, Khalifa MO, Kamal BM, Alghamdi FA, Soliman SA, Massoud D. Characterization of giant endocrine cells in the fundic stomach of African catfish (Clarias gariepinus) demonstrated by histochemical, immunohistochemical and ultrastructure microscopy methods suggesting their role in immunity. BMC Vet Res 2024; 20:415. [PMID: 39272153 PMCID: PMC11401327 DOI: 10.1186/s12917-024-04237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Endocrine cells in the fundic stomach of Clarias gariepinus were characterized in this work using transmission electron microscopy, immunohistochemistry, and histochemistry. Performic acid mixed with alcian blue pH2.5 and silver stain were among the histochemical stains used for endocrine cells. Endocrine cells can be found in the epithelium, lamina propria, submucosa, muscular layer, serosa, and the area between the stomach glands. Endocrine cells with one or more nuclei were found. Endocrine cells were studied using CD3, CD21, and CD68 in an immunohistochemistry analysis. The expression of the lymphocyte marker CD3 by endocrine cells is remarkable. In addition, they had a strong immunological response to CD21 and CD68, which are characteristics of phagocytic cells. Granules of varied sizes and electron densities are packed densely into the cytoplasm of the cells, as seen by transmission electron microscopy. We propose that endocrine cells play a crucial role in immune defense. The role of endocrine cells in the gut's immune system is an area that needs further investigation.
Collapse
Affiliation(s)
- Hanan H Abd-El-Hafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Zyad M Baker
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Aref
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A M Alsafy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abis 10th, P.O. 21944, Alexandria, Egypt
| | - Samir A A El-Gendy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abis 10th, P.O. 21944, Alexandria, Egypt
| | - Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hams Mohamed M A
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ali H Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Alaqiq, Saudi Arabia
| | - Mahmoud Osman Khalifa
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Basma M Kamal
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 6010230, Egypt
| | - Fawzyah A Alghamdi
- Department of Biological Science, College of Science, University of Jeddah, P.O. Box 80327, 21589, Jeddah, Saudi Arabia
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| | - Diaa Massoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| |
Collapse
|
3
|
Yang CH, Li HC, Lo SY. Enhancing recombinant antibody yield in Chinese hamster ovary cells. Tzu Chi Med J 2024; 36:240-250. [PMID: 38993821 PMCID: PMC11236083 DOI: 10.4103/tcmj.tcmj_315_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 07/13/2024] Open
Abstract
A range of recombinant monoclonal antibodies (rMAbs) have found application in treating diverse diseases, spanning various cancers and immune system disorders. Chinese hamster ovary (CHO) cells have emerged as the predominant choice for producing these rMAbs due to their robustness, ease of transfection, and capacity for posttranslational modifications akin to those in human cells. Transient transfection and/or stable expression could be conducted to express rMAbs in CHO cells. To bolster the yield of rMAbs in CHO cells, a multitude of approaches have been developed, encompassing vector optimization, medium formulation, cultivation parameters, and cell engineering. This review succinctly outlines these methodologies when also addressing challenges encountered in the production process, such as issues with aggregation and fucosylation.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical, Hualien, Taiwan
| |
Collapse
|
4
|
Zhang J, Peng S, Xu F, Qiao Y, Ye X, Guan Y, Zhao X, Wang Y, Shao Z, Zhu T, Si W. IFN-α armed gE elicits superior immunogenicity compared to unmodified antigens and flagellin armed gE in mice. Vaccine X 2024; 17:100432. [PMID: 38299205 PMCID: PMC10825604 DOI: 10.1016/j.jvacx.2024.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Herpes zoster (HZ) induces significant pain and discomfort, which can seriously affect the quality of life of patients. At present, there is no specific treatment for HZ, and the mosteffective HZ control is vaccination. The main obstacle to developing an effective HZ vaccine is poorly induced cellular immune response. In this study, the IFN-α-gE-Fc fusion protein induced higher levels of humoral and cellular immunity compared to the unengineered gE antigen and higher levels of cellular immunity compared to the flagellin-gE-Fc fusion protein in a murine model. Compared with the marketed recombinant herpes zoster vaccine (Shingrix), IFN-α-gE-Fc can replace current used MPL adjuvant. At the same time, the immunogenicity of the IFN-α-gE-Fc + AQ was not weaker than that of the marketed recombinant zoster vaccine. The novel fusion protein provides a candidate entity for the development of a safe and effective novel HZ vaccine.
Collapse
Affiliation(s)
| | | | - Fang Xu
- CanSino Biologics, Tianjin 300457, China
| | - Ying Qiao
- CanSino Biologics, Tianjin 300457, China
| | - Xiaoke Ye
- CanSino Biologics, Tianjin 300457, China
| | - Yu Guan
- CanSino Biologics, Tianjin 300457, China
| | | | | | | | - Tao Zhu
- CanSino Biologics, Tianjin 300457, China
| | - Weixue Si
- CanSino Biologics, Tianjin 300457, China
| |
Collapse
|
5
|
Cheng J, Zhang Y, Tian Y, Cao L, Liu X, Miao S, Zhao L, Ye Q, Zhou Y, Tan WS. Development of a novel tyrosine-based selection system for generation of recombinant Chinese hamster ovary cells. J Biosci Bioeng 2024; 137:221-229. [PMID: 38220502 DOI: 10.1016/j.jbiosc.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes. This research investigated the enrichment effect of this system and advanced further in understanding its benefits for cell line development and rCHO cell culture. A novel tyrosine-based selection system that only used PCBD1 as a selection marker was designed to promote the enrichment effect. Post 9 days of starvation, positive transductants in the cell pool approached 100%. Applied the novel tyrosine-based selection system, rCHO cells expressing E2 protein were generated and named CHO TS cells. It could continue to grow, and the yield of E2 achieved 95.95 mg/L in a tyrosine-free and chemically-defined (CD) medium. Herein, we introduced an alternative to antibiotic-based selections for the establishment of CHO cell lines and provided useful insights for the design and development of CD medium.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanmin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Ltd, Shanghai 201203, China
| | - Shiwei Miao
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou 310051, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Hasebe Y, Yamada M, Utoh R, Seki M. Expansion of Chinese hamster ovary cells via a loose cluster-assisted suspension culture using cell-sized gelatin microcarriers. J Biosci Bioeng 2023; 135:417-422. [PMID: 36931921 DOI: 10.1016/j.jbiosc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
Technologies for efficiently expanding Chinese hamster ovary (CHO) cells, the primary host cells for antibody production, are of growing industrial importance. Various processes for the use of microcarriers in CHO suspension cultures have been developed, but there have been very few studies on cell-adhesive microcarriers that are similar in size to cells. In this study, we proposed a new approach to suspension cultures of CHO cells using cell-sized condensed and crosslinked gelatin microparticles (GMPs) as carriers. Unlike commercially available carriers with sizes typically greater than 100 μm, each cell can adhere to the surface of multiple particles and form loose clusters with voids. We prepared GMPs of different average diameters (27 and 48 μm) and investigated their effects on cell adhesion and cluster formation. In particular, small GMPs promoted cell proliferation and increased IgG4 production by the antibody-producing CHO cell line. The data obtained in this study suggest that cell-sized particles, rather than larger ones, enhance cell proliferation and function, providing useful insights for improving suspension-culture-based cell expansion and cell-based biologics production for a wide range of applications.
Collapse
Affiliation(s)
- Yuken Hasebe
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Colombo S, Alonso A, Real R, Goswami R, Suarez MC, Ogueta S, Almeida M, Adhikary L, Malmierca MG, de Melo IS. Improvement of monoclonal antibody stability by modulating trace metal iron concentration in cell culture media: A case study. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Wang Y, Qiu H, Minshull J, Tam W, Hu X, Mieczkowski C, Zheng W, Chu C, Liu W, Boldog F, Gustafsson C, Gries JM, Xu W. An innovative platform to improve asymmetric bispecific antibody assembly, purity, and expression level in stable pool and cell line development. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Yang Y, Li Z, Li Q, Ma K, Lin Y, Feng H, Wang T. Increase recombinant antibody yields through optimizing vector design and production process in CHO cells. Appl Microbiol Biotechnol 2022; 106:4963-4975. [PMID: 35788878 DOI: 10.1007/s00253-022-12051-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used host cells for the production of recombinant monoclonal antibodies (mAbs) due to their several advantages. Although the yields of recombinant mAbs can be greatly increased by some strategies, such as medium formulation, culture conditions, and cell engineering, most studies focused on either upstream design or downstream processes. In the present study, we first expressed recombinant adalimumab through combination of the vector design and production process optimization in CHO cells. Bicistronic vector, monocistronic vector, and dual promoter vector were constructed, and the production process was optimized using low-temperature and fed-batch culture. The results showed that the dual promoter vector exhibited the highest yield under the transient and stable transfected cells among three different vector systems in CHO cells. In addition, low-temperature and fed-batch culture could further improve the yields of adalimumab. The purified antibody displayed tumor necrosis factor-α (TNF-α) binding activity. In conclusion, combination of expression vector design and production process optimization can achieve higher expression of recombinant mAbs in CHO cells. KEY POINTS: • The dual promoter vector is more effective for expressing recombinant antibodies. • The yields of antibodies are related to the LC chain expression level. • Low-temperature and feed addition can promote antibody production.
Collapse
Affiliation(s)
- Yongxiao Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Zhengmei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Qin Li
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Kai Ma
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yan Lin
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Huigen Feng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.
| | - Tianyun Wang
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
10
|
Xu T, Zhang J, Wang T, Wang X. Recombinant antibodies aggregation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2022; 106:3913-3922. [PMID: 35608667 DOI: 10.1007/s00253-022-11977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modifications similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies (RTAs) are among the most important and promising RTPs for biomedical applications. A major limitation associated with the use of RTAs is their aggregation, which can be caused by a variety of factors; this results in a reduction of quality. RTA aggregations are especially concerning as they can trigger human immune responses in humans and may be fatal. Therefore, the mechanisms underlying RTA aggregation and measures for avoiding aggregation are interesting topics in RTAs research. In this review, we discuss recent progress in the field of RTAs aggregation, with a focus on factors that cause aggregation during RTA production and the development of strategies for overcoming RTA aggregation. KEY POINTS: • The recombinant antibody aggregation in mammalian cell systems is reviewed. • Intracellular environment and extracellular parameters influence recombinant antibody aggregation. • Reducing the aggregations can improve the quality of recombinant antibodies.
Collapse
Affiliation(s)
- Tingting Xu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jihong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoyin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
11
|
Wei M, Mi CL, Jing CQ, Wang TY. Progress of Transposon Vector System for Production of Recombinant Therapeutic Proteins in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:879222. [PMID: 35600890 PMCID: PMC9114503 DOI: 10.3389/fbioe.2022.879222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, mammalian cells have become the primary host cells for the production of recombinant therapeutic proteins (RTPs). Despite that the expression of RTPs in mammalian cells can be improved by directly optimizing or engineering the expression vectors, it is still influenced by the low stability and efficiency of gene integration. Transposons are mobile genetic elements that can be inserted and cleaved within the genome and can change their inserting position. The transposon vector system can be applied to establish a stable pool of cells with high efficiency in RTPs production through facilitating the integration of gene of interest into transcriptionally active sites under screening pressure. Here, the structure and optimization of transposon vector system and its application in expressing RTPs at high level in mammalian cells are reviewed.
Collapse
Affiliation(s)
- Mian Wei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chang-Qin Jing
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| |
Collapse
|
12
|
Zhang HY, Fan ZL, Wang TY. Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2021; 9:774175. [PMID: 34926421 PMCID: PMC8675083 DOI: 10.3389/fbioe.2021.774175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.
Collapse
Affiliation(s)
- Huan-Yu Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| |
Collapse
|
13
|
Zeh N, Schlossbauer P, Raab N, Klingler F, Handrick R, Otte K. Cell line development for continuous high cell density biomanufacturing: Exploiting hypoxia for improved productivity. Metab Eng Commun 2021; 13:e00181. [PMID: 34401326 PMCID: PMC8348152 DOI: 10.1016/j.mec.2021.e00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
Oxygen deficiency (hypoxia) induces adverse effects during biotherapeutic protein production leading to reduced productivity and cell growth. Hypoxic conditions occur during classical batch fermentations using high cell densities or perfusion processes. Here we present an effort to create novel engineered Chinese hamster ovary (CHO) cell lines by exploiting encountered hypoxic bioprocess conditions to reinforce cellular production capacities. After verifying the conservation of the hypoxia-responsive pathway in CHO cell lines by analyzing oxygen sensing proteins HIF1a, HIF1β and VDL, hypoxia-response-elements (HREs) were functionally analyzed and used to create hypoxia-responsive expression vectors. Subsequently engineered hypoxia sensitive CHO cell lines significantly induced protein expression (SEAP) during adverse oxygen limitation encountered during batch fermentations as well as high cell density perfusion processes (2.7 fold). We also exploited this novel cell system to establish a highly effective oxygen shift as innovative bioprocessing strategy using hypoxia induction to improve production titers. Thus, substantial improvements can be made to optimize CHO cell productivity for novel bioprocessing challenges as oxygen limitation, providing an avenue to establish better cell systems by exploiting adverse process conditions for optimized biotherapeutic production.
Collapse
Affiliation(s)
- Nikolas Zeh
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Nadja Raab
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Florian Klingler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
14
|
Hirano T, Adachi S, Ichimura N, Kasai A, Kobayashi M, Okuda T, Ogawa R, Kagiya G. Culturing Chinese hamster ovary cells on cyclo olefin polymer triggers epithelial-mesenchymal transition and spheroid formation, which increases the foreign gene expression driven by the Moloney murine leukemia virus long terminal repeat promoter. Biotechnol Prog 2021; 37:e3159. [PMID: 33913259 DOI: 10.1002/btpr.3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022]
Abstract
Chinese hamster ovary (CHO) cells are frequently used for recombinant protein production (RPP) as a host. While the RPP has been proven successful, there is still a compelling need for further improvement. Cyclo olefin polymer (COP) is a plastic material widely utilized due to its properties including its low protein absorption. We applied this as a raw material for RPP cell culture to see if the COP is suitable. A recombinant CHO cell line expressing the human erythropoietin (hEPO) gene under the control of the Moloney murine leukemia virus-long terminal repeat (MMLV-LTR) was established. When the cells were cultured in a dish made from COP, the cells attached to the bottom, and then started to float and form spheroids. RNASeq data analysis suggested the epithelial-mesenchymal transition (EMT) was triggered with receptor tyrosine kinase activation shortly after cultivation. It coincided with the hEPO transcription increase. After the cell floating, though EMT marker gene expression subsided, a hEPO expression increase sustained. When fibronectin was applied to COP dish surface, the cell floating was suppressed and hEPO expression decreased. We then treated cells with MβCD, a drug that destroys the lipid raft, eliminating molecules in the raft. This facilitated cell floating and spheroid formation coincided with hEPO expression enhancement. These results suggest interactions between a cell and COP surface might trigger the EMT and the subsequent event, both of which activated the MMLV-LTR promoter. Thus, employing COP for culturing cells, a potent RPP system could be established with its advantage for efficient protein purification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryohei Ogawa
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Go Kagiya
- School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
15
|
Ding M, Shen L, Xiao L, Liu X, Hu J. A cell line development strategy to improve a bispecific antibody expression purity in CHO cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|