1
|
Yu Y, Yang Y, Guo Y, Pan M, Hao W. Exogenous selenium enhances cadmium stress tolerance by improving physiological characteristics of Artemisia argyi seedlings. Sci Rep 2025; 15:3450. [PMID: 39870703 PMCID: PMC11772690 DOI: 10.1038/s41598-025-87340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.5, 1, and 2 mg kg⁻1) under varying levels of Cd stress (0, 0.6 and 4 mg kg⁻1). The findings revealed that Cd stress markedly impaired seedling growth, biomass, and physiological characteristics in Artemisia argyi. Regardless of Cd levels, exogenous Se significantly enhanced seedling biomass, improved antioxidant enzyme activity, and increased the plant's antioxidant capacity, thereby mitigating Cd stress. Additionally, exogenous Se promoted A. argyi plant growth, decreased malondialdehyde (MDA) content in the shoots, and under two Cd stress environments of 0.6 and 4 mg kg⁻1, the application of 1 mg kg⁻1 Se reduced the Cd content in the aboveground parts of seedlings by 31.99 and 82.21%, respectively. We conclude 1 mg kg⁻1 Se could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 0.6 and 4 mg kg⁻1. These results indicate that exogenous Se activates physiological and biochemical defense mechanisms in A. argyi seedlings against Cd stress, offering a foundation for cultivating high-yield, high-quality A. argyi in Cd-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Yu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yingbin Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yu Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meiqi Pan
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenfang Hao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Zhang X, Ma X, Wang S, Liu S, Shi S. Physiological and Genetic Aspects of Resistance to Abiotic Stresses in Capsicum Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3013. [PMID: 39519932 PMCID: PMC11548056 DOI: 10.3390/plants13213013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Abiotic stress is one of the key factors harming global agriculture today, seriously affecting the growth and yield of vegetables. Pepper is the most widely grown vegetable in the world, with both high nutritional and economic values. Currently, the increase in global extreme weather events has heightened the frequency of abiotic stresses, such as drought, high and low temperatures, waterlogging, and high salt levels, which impairs pepper growth and development, leading to its reduced yield and quality. In this review, we summarize the research progress on the responses of pepper to abiotic stress in recent years in terms of physiology, biochemistry, molecular level, and mitigation measures. We then explore the existing problems and propose future research directions. This work provides a reference for the cultivation and development of new pepper varieties resistant to abiotic stress.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiuming Ma
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shihui Wang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shumei Liu
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shaochuan Shi
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
3
|
Yang W, Wen D, Yang Y, Li H, Yang C, Yu J, Xiang H. Metabolomics and transcriptomics combined with physiology reveal key metabolic pathway responses in tobacco roots exposed to NaHS. BMC PLANT BIOLOGY 2024; 24:680. [PMID: 39020266 PMCID: PMC11256483 DOI: 10.1186/s12870-024-05402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Hydrogen sulfide (H2S) has emerged as a novel endogenous gas signaling molecule, joining the ranks of nitric oxide (NO) and carbon monoxide (CO). Recent research has highlighted its involvement in various physiological processes, such as promoting root organogenesis, regulating stomatal movement and photosynthesis, and enhancing plant growth, development, and stress resistance. Tobacco, a significant cash crop crucial for farmers' economic income, relies heavily on root development to affect leaf growth, disease resistance, chemical composition, and yield. Despite its importance, there remains a scarcity of studies investigating the role of H2S in promoting tobacco growth. This study exposed tobacco seedlings to different concentrations of NaHS (an exogenous H2S donor) - 0, 200, 400, 600, and 800 mg/L. Results indicated a positive correlation between NaHS concentration and root length, wet weight, root activity, and antioxidant enzymatic activities (CAT, SOD, and POD) in tobacco roots. Transcriptomic and metabolomic analyses revealed that treatment with 600 mg/L NaHS significantly effected 162 key genes, 44 key enzymes, and two metabolic pathways (brassinosteroid synthesis and aspartate biosynthesis) in tobacco seedlings. The addition of exogenous NaHS not only promoted tobacco root development but also potentially reduced pesticide usage, contributing to a more sustainable ecological environment. Overall, this study sheds light on the primary metabolic pathways involved in tobacco root response to NaHS, offering new genetic insights for future investigations into plant root development.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Dingxin Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China.
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Gao S, Zhou M, Xu J, Xu F, Zhang W. The application of organic selenium (SeMet) improve the photosynthetic characteristics, yield and quality of hybrid rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108457. [PMID: 38428159 DOI: 10.1016/j.plaphy.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Rice is an important food in the world, and selenium (Se) is a necessary trace element for the human. So the effects of selenomethionine (SeMet) on photosynthetic capacity, yield and quality of rice at different stages were studied. The results show that SeMet can increase the Ppotosynthetic capacity of rice leaves during each growth stage, the effect of 5 mg/L SeMet treatment was the most significant. At the mature stage of rice, SeMet significantly increased rice yield and total plant biomass, 7.5and 5 mg/L SeMet treatments had the most significant effects, respectively. In addition, SeMet significantly improved the content of Se and processing quality of rice, decreased chalkiness, inhibited amylose synthesis, and optimized flavor. The above indices showed the best results after treatment with 5 mg/L SeMet. It is hoped that this study will provide a theoretical basis for the application of organic selenium in rice production.
Collapse
Affiliation(s)
- Shang Gao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Meng Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Jinghua Xu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
5
|
Liu C, Zhou G, Qin H, Guan Y, Wang T, Ni W, Xie H, Xing Y, Tian G, Lyu M, Liu J, Wang F, Xu X, Zhu Z, Jiang Y, Ge S. Metabolomics combined with physiology and transcriptomics reveal key metabolic pathway responses in apple plants exposure to different selenium concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132953. [PMID: 37952334 DOI: 10.1016/j.jhazmat.2023.132953] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Selenium (Se) can be absorbed by plants, thereby affects plant physiological activity, interferes gene expression, alters metabolite content and influences plant growth. However, the molecular mechanism underlying the plant response to Se remains unclear. In this study, apple plants were exposed to Se at concentrations of 0, 3, 6, 9, 12, 24, and 48 μM. Low concentrations of Se promoted plant growth, while high Se concentrations (≥24 μM) reduced photosynthesis, disturbed carbon and nitrogen metabolism, damaged the antioxidant system, and ultimately inhibited plant growth. The transcriptome and metabolome revealed that Se mainly affected three pathways, namely the 'biosynthesis of amino acids', 'starch and sucrose metabolism', and 'phenylpropanoid biosynthesis' pathways. 9 μM Se improved the synthesis, catabolism and utilization of amino acids and sugars, ultimately promoted plant growth. However, 24 μM Se up-regulated the related genes expression of PK, GPT, P5CS, SUS, SPS and CYP98A, and accumulated a large number of osmoregulation substances, such as citric acid, L-proline, D-sucrose and chlorogenic acid in the roots, ultimately affected the balance between plant growth and defense. In conclusion, this study reveals new insights into the key metabolic pathway in apple plants responses to Se.
Collapse
Affiliation(s)
- Chunling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Guangjin Zhou
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Hanhan Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Tianyu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Hongmei Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Ge Tian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Mengxue Lyu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Fen Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang 261061, China
| | - Xinxiang Xu
- Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China.
| |
Collapse
|
6
|
Barman F, Kundu R. Foliar application of selenium affecting pollen viability, grain chalkiness, and transporter genes in cadmium accumulating rice cultivar: A pot study. CHEMOSPHERE 2023; 313:137538. [PMID: 36521741 DOI: 10.1016/j.chemosphere.2022.137538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Under Cadmium (Cd) stress, rice grain quality and quantity are compromised, affecting human health. Application of Selenium (Se) mitigating Cd stress in rice was already reported, but its role in rescuing Cd induced damage in the reproductive parts in rice plants has not been studied before. To investigate the underlying mechanism, Se mediated alleviation of Cd-stress induced damage to pollen viability, germination rate, and grain chalkiness were studied. A grain Cd accumulating rice genotype was selected and treated with 10 μM Cd and sprayed with 5 μM Se during tillering, elongating and heading stages. A significant reduction in pollen viability, germination percentage, and accumulation of higher amount of ROS in the reproductive parts were observed in Cd treated plants. However, Se supplementation (i.e. Cd + Se), decreased the ROS accumulation in anther, pistil, pollen and enhanced the pollen viability and germination percentage. Cd translocation was prevented from flag leaf to grains, under Se treatment. As a result, a significantly higher seed setting rate, and yield were observed. Additionally, Se improved grain nutrient content and grain quality. Therefore, the recent study suggests that the use of foliar spray of Se could be a cost-effective strategy to prevent Cd-induced yield loss and quality in rice.
Collapse
Affiliation(s)
- Falguni Barman
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
7
|
Golob A, Novak T, Maršić NK, Šircelj H, Stibilj V, Jerše A, Kroflič A, Germ M. Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes) and increases their contents in tubers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:234-243. [PMID: 32169793 DOI: 10.1016/j.plaphy.2020.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 05/21/2023]
Abstract
Kohlrabi (Brassica oleracea L. var. gongylodes L.) was biofortified with selenium (Se), as selenite and selenate, and iodine (I), as iodide and iodate, and their combinations through foliar spraying, to study absorption of these elements by the plants, separately and in combination. The effects on selected physiological and morphological traits and optical characteristics were monitored. Treatments with Se positively affected total chlorophylls and carotenoids, and leaf stomata dimensions. Addition of I decreased total chlorophylls and increased anthocyanins. In reflectance spectra of the leaves, specific colour regions differed significantly due to the different treatments. Reflectance in the UV correlated positively with Se and I contents of the leaves, which indicated lower demand for production of phenolic compounds. Differences in reflectance in UV part of the spectra could be a consequence of changes in the cuticle. The Se and I levels increased markedly in leaves and tubers, without loss of biomass or yield. Se had antagonistic effects on accumulation of I in leaves. The similar levels of Se and I in the leaves and tubers suggest that the transport of both elements in these plants occurs from the leaves to the tubers through the phloem. According to the Se and I contents in the kohlrabi tubers, biofortification with both elements simultaneously is feasible for human nutrition.
Collapse
Affiliation(s)
- Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Novak
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Helena Šircelj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Vekoslava Stibilj
- Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Jerše
- Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Kroflič
- Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Wu C, Dun Y, Zhang Z, Li M, Wu G. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110091. [PMID: 31881404 DOI: 10.1016/j.ecoenv.2019.110091] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 05/10/2023]
Abstract
Due to the large area of agricultural soils contaminated by Cd worldwide, cost-effective and practical method for safety food production are necessary. The roles of micronutrient on reducing Cd accumulation in crops are recently introduced. In the current study, a pot-culture experiment in the greenhouse was conducted to study the foliar spraying of Se (Na2SeO4) and Zn (ZnSO4) on physiological and growth parameters, as well as Cd concentrations in wheat plants grown in Cd-contaminated soil. The foliar was sprayed with four concentration of Se and Zn (0, 10, 20, and 40 mg L-1) at different growth stage (tillering, elongating and heading) and whole wheat plants were collected after maturity. Both foliar spraying with Se and Zn significantly enhanced the photosynthesis, tissue biomass and antioxidant enzyme activity. Additionally, Se and Zn application can also increase Se and Zn concentrations in different plant tissues. Selenium and Zn decreased malondialdehyde (MDA) and Cd concentrations in wheat grains, hulks, leaves, stalks and root in a dose-additive manner. Overall, Se and Zn both efficiently enhanced the wheat growth and Se and Zn concentrations, and simultaneously decreased the Cd concentration in wheat plant. Compared with Zn, Se more efficiently improved wheat growth and reduced Cd concentration in the wheat in a Cd-contaminated soil. Present results suggest that use of foliar spraying, especially Se, could be a cost-effective strategy and could be recommended for remediation of light-or moderate-polluted soils contaminated by Cd.
Collapse
Affiliation(s)
- Chao Wu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Hebei Key Laboratory of Groundwater Remediation, Shijiazhuang, Hebei, 050061, China
| | - Yu Dun
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Hebei Key Laboratory of Groundwater Remediation, Shijiazhuang, Hebei, 050061, China.
| | - Zhaoji Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China
| | - Minlan Li
- Hebei Chendi Environmental Protection Engineering Co., Ltd., Shijiazhuang, Hebei, 050085, China
| | - Guoqing Wu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Hebei Key Laboratory of Groundwater Remediation, Shijiazhuang, Hebei, 050061, China
| |
Collapse
|