1
|
Dash M, Mahajan B, Dar GM, Sahu P, Saluja SS. An update on the cell-free DNA-derived methylome as a non-invasive biomarker for coronary artery disease. Int J Biochem Cell Biol 2024; 169:106555. [PMID: 38428633 DOI: 10.1016/j.biocel.2024.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/22/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases are the foremost contributor to global mortality, presenting a complex etiology and an expanding array of risk factors. Coronary artery disease characterized by atherosclerotic plaque build-up in the coronary arteries, imposes significant mortality and financial burdens, especially in low- and middle-income nations. The pathogenesis of coronary artery disease involves a multifaceted interplay of genetic, environmental, and epigenetic factors. Epigenetic regulation contributes to the dynamic control of gene expression without altering the underlying DNA sequence. The mounting evidence that highlights the pivotal role of epigenetic regulation in coronary artery disease development and progression, offering potential avenues for the development of novel diagnostic biomarkers and therapeutic targets. Abnormal DNA methylation patterns are linked to the modulation of gene expression involved in crucial processes like lipid metabolism, inflammation, and vascular function in the context of coronary artery disease. Cell-free DNA has become invaluable in tumor biology as a liquid biopsy, while its applications in coronary artery disease are limited, but intriguing. Atherosclerotic plaque rupture causes myocardial infarction, by depriving heart muscles of oxygen, releasing cell-free DNA from dead cardiac cells, and providing a minimally invasive source to explore tissue-specific epigenetic alterations. We discussed the methodologies for studying the global methylome and hydroxy-methylome landscape, their advantages, and limitations. It explores methylome alterations in coronary artery disease, considering risk factors and their relevance in coronary artery disease genesis. The review also details the implications of MI-derived cell-free DNA for developing minimally invasive biomarkers and associated challenges.
Collapse
Affiliation(s)
- Manoswini Dash
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; School of Medicine, Center for Aging, Tulane University, LA, United States
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Parameswar Sahu
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| |
Collapse
|
2
|
Banerjee S, Paradkar MU, Ponde CK, Rajani RM, Pillai S, Ashavaid TF. Does epigenetic markers of HLA gene show association with coronary artery disease in Indian subjects? Mol Biol Rep 2024; 51:173. [PMID: 38252175 DOI: 10.1007/s11033-023-08974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND DNA methylation, one of the most stable forms of epigenetic modification is associated with the development and progression of coronary artery disease (CAD). Our previously reported study on epigenome-wide microarray analysis showed significantly methylated CpG sites. Top 5 significant CpGs from HLA gene were selected and analysed by Pyrosequencing (PSQ) to determine their association with severity of CAD. METHODS Blood samples of 50-age matched angiographically CAD positive male cases with 50 angiographically CAD negative male controls were subjected to lipid profile estimation and PSQ for methylation level analysis. Findings and subgroup analysis were evaluated by Mann-Whitney U; Kruskal-Wallis' rank test and two-way ANOVA by MedCalc (v19.6). RESULTS Methylation levels in HLA-DQA1 for cg10217052 was 78.5 (37-85) and 76.5 (24-84); cg09411910 was 81 (72.0 to 93.0) and 81.5 (50.0 to 89.0) in cases and controls respectively. Levels in HLA-DQB1-cg03344051, were 28.88 + 9.41 for cases and 30.36 + 9.37 in controls. For HLA-DRB1-cg07889003, levels in cases and controls were 15.5 (5.00-39.00) and 10.5 (5.00-29.0); while in cg08269402 were 52 (16-65) and 42.5 (17-61) respectively. No association was observed between methylation levels and lipid profile. cg03344051, cg07889003 and cg08269402 were significantly differentiated in double or triple vessel disease (DVD or TVD) as compared to single vessel disease (SVD) suggesting an increase in the extent of methylation with the increase in CAD severity. CONCLUSION The present study shows significant increase in the extent of methylation in 3 CpG sites in DVD/TVD cases as compared to SVD cases. Additionally, a novel site, cg07889003 identified in our discovery phase has shown association with the severity of CAD.
Collapse
Affiliation(s)
- Shyamashree Banerjee
- Research Laboratories, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Minal U Paradkar
- Research Laboratories, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
- Department of Biochemistry, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | | | - Rajesh M Rajani
- Department of Cardiology, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Sudhir Pillai
- Department of Cardiology, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Tester F Ashavaid
- Research Laboratories, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India.
- Department of Biochemistry, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India.
| |
Collapse
|
3
|
Broyles D, Philibert R. Precision epigenetics provides a scalable pathway for improving coronary heart disease care globally. Epigenomics 2023; 15:805-818. [PMID: 37702023 DOI: 10.2217/epi-2023-0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Coronary heart disease (CHD) is the world's leading cause of death. Up to 90% of all CHD deaths are preventable, but effective prevention of this mortality requires more scalable, precise methods for assessing CHD status and monitoring treatment response. Unfortunately, current diagnostic methods have barriers to implementation, particularly in rural areas and lower-income countries. This gap may be bridged by highly scalable advances in DNA methylation testing methods and artificial intelligence. Herein, we review prior studies of CHD related to methylation alone and in combination with other biovariables. We compare these new methods with established methods for diagnosing CHD. Finally, we outline pathways through which methylation-based testing methods may allow the democratization of improved methods for assessing CHD globally.
Collapse
Affiliation(s)
- Damon Broyles
- Mercy Technology Services, St. Louis, MO 63127, USA
- Mercy Precision Medicine, Chesterfield, MO 63017, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
- Cardio Diagnostics Inc, Chicago, IL 60642, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chen Y, Li S, Xu Z, Zhang Y, Zhang H, Shi L. Aerobic training-mediated DNA hypermethylation of Agtr1a and Mas1 genes ameliorate mesenteric arterial function in spontaneously hypertensive rats. Mol Biol Rep 2021; 48:8033-8044. [PMID: 34743271 DOI: 10.1007/s11033-021-06929-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The imbalance of vasoconstrictor and vasodilator axes of the renin-angiotensin system (RAS) is observed in hypertension. Exercise regulates RAS level and improves vascular function. This study focused on the contribution of RAS axes in vascular function of mesenteric arteries and exercise-induced DNA methylation of the Agtr1a (AT1aR) and Mas1 (MasR) genes in hypertension. METHODS Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were randomized into exercise or sedentary group. Levels of plasma RAS components, vascular tone, and DNA methylation markers were measured. RESULTS Blood pressure of SHR was markedly reduced after 12 weeks of aerobic exercise. RAS peptides in plasma were all increased with an imbalanced upregulation of Ang II and Ang-(1-7) in SHR, exercise revised the level of RAS and increased Ang-(1-7)/Ang II. The vasoconstriction response induced by Ang II was mainly via type 1 receptors (AT1R), while this contraction was inhibited by Mas receptor (MasR). mRNA and protein of AT1R and MasR were both upregulated in SHR, whereas exercise significantly suppressed this imbalanced increase and increased MasR/AT1R ratio. Exercise hypermethylated Agtr1a and Mas1 genes, associating with increased DNMT1 and DNMT3b and SAM/SAH. CONCLUSIONS Aerobic exercise ameliorates vascular function via hypermethylation of the Agtr1a and Mas1 genes and restores the vasoconstrictor and vasodilator axes balance.
Collapse
Affiliation(s)
- Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Zhaoxia Xu
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Huirong Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China. .,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
6
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
7
|
de la Rocha C, Zaina S, Lund G. Is Any Cardiovascular Disease-Specific DNA Methylation Biomarker Within Reach? Curr Atheroscler Rep 2020; 22:62. [DOI: 10.1007/s11883-020-00875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Schiano C, Benincasa G, Infante T, Franzese M, Castaldo R, Fiorito C, Mansueto G, Grimaldi V, Della Valle G, Fatone G, Soricelli A, Nicoletti GF, Ruocco A, Mauro C, Salvatore M, Napoli C. Integrated analysis of DNA methylation profile of HLA-G gene and imaging in coronary heart disease: Pilot study. PLoS One 2020; 15:e0236951. [PMID: 32790754 PMCID: PMC7425923 DOI: 10.1371/journal.pone.0236951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Immune endothelial inflammation, underlying coronary heart disease (CHD) related phenotypes, could provide new insight into the pathobiology of the disease. We investigated DNA methylation level of the unique CpG island of HLA-G gene in CHD patients and evaluated the correlation with cardiac computed tomography angiography (CCTA) features. Methods Thirty-two patients that underwent CCTA for suspected CHD were enrolled for this study. Obstructive CHD group included fourteen patients, in which there was a stenosis greater than or equal to 50% in one or more of the major coronary arteries detected; whereas subjects with Calcium (Ca) Score = 0, uninjured coronaries and with no obstructive CHD (no critical stenosis, NCS) were considered as control subjects (n = 18). For both groups, DNA methylation profile of the whole 5’UTR-CpG island of HLA-G was measured. The plasma soluble HLA-G (sHLA-G) levels were detected in all subjects by specific ELISA assay. Statistical analysis was performed using R software. Results For the first time, our study reported that 1) a significant hypomethylation characterized three specific fragments (B, C and F) of the 5’UTR-CpG island (p = 0.05) of HLA-G gene in CHD patients compared to control group; 2) the hypomethylation level of one specific fragment of 161bp (+616/+777) positively correlated with coronary Ca score, a relevant parameter of CCTA (p<0.05) between two groups evaluated and was predictive for disease severity. Conclusions Reduced levels of circulating HLA-G molecules could derive from epigenetic marks. Epigenetics phenomena induce hypomethylation of specific regions into 5'UTR-CpG island of HLA-G gene in CHD patients with obstructive non critical stenosis vs coronary stenosis individuals.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “L. Vanvitelli”, Naples, Italy
- * E-mail:
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “L. Vanvitelli”, Naples, Italy
| | - Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “L. Vanvitelli”, Naples, Italy
| | | | | | - Carmela Fiorito
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], University of Campania "L. Vanvitelli", Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “L. Vanvitelli”, Naples, Italy
| | - Vincenzo Grimaldi
- Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Clinical Department of Internal Medicine and Specialistic Units, Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), Naples, Italy
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Gerardo Fatone
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Andrea Soricelli
- IRCCSSDN, Naples, Italy
- Department of Exercise and Wellness Sciences, University of Naples Parthenope, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Antonio Ruocco
- Cardiovascular Diseases Department, “Cardarelli Hospital”, Naples, Italy
| | - Ciro Mauro
- Cardiovascular Diseases Department, “Cardarelli Hospital”, Naples, Italy
| | | | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “L. Vanvitelli”, Naples, Italy
- IRCCSSDN, Naples, Italy
| |
Collapse
|
9
|
Sommese L, Benincasa G, Schiano C, Marfella R, Grimaldi V, Sorriento A, Lucchese R, Fiorito C, Sardu C, Nicoletti GF, Napoli C. Genetic and epigenetic-sensitive regulatory network in immune response: a putative link between HLA-G and diabetes. Expert Rev Endocrinol Metab 2019; 14:233-241. [PMID: 31131681 DOI: 10.1080/17446651.2019.1620103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Human leukocyte antigen-G (HLA-G) gene encodes for a tolerogenic molecule constitutively expressed in human pancreas and upregulated upon inflammatory signals. The 14 bp INS/DEL polymorphism in the 3'UTR of HLA-G may influence the susceptibility for diabetes and coronary heart diseases (CHD), thus suggesting a novel candidate gene. DNA hypomethylation at HLA-G promoter may be a putative useful clinical biomarker for CHD onset. Upregulation of soluble HLA-G isoform (sHLA-G) was detected in prediabetic and diabetic subjects, suggesting a putative role in metabolic dysfunctions. AREAS COVERED We conducted a scoping literature review of genetic and epigenetic-sensitive mechanisms regulating HLA-G in diabetes. English-language manuscripts published between 1997 and 2019, were identified through PubMed, Google Scholar, and Web of Science database searches. After selecting 14 original articles representing case-control studies, we summarized and critically evaluated their main findings. EXPERT COMMENTARY Although epigenetic modifications are involved in the onset of hyperglycemic conditions evolving into diabetes and CHD, it is still difficult to obtain simple and useful clinical biomarkers. Inflammatory-induced KDM6A/INF-β/HLA-G axis might be a part of the epigenetic network leading to overexpression of HLA-G at pancreatic level. Network medicine may show whether HLA-G is involved in diabetes and CHD.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Giuditta Benincasa
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | | | - Raffaele Marfella
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Vincenzo Grimaldi
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Antonio Sorriento
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Roberta Lucchese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Carmela Fiorito
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Celestino Sardu
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Giovanni Francesco Nicoletti
- d Multidisciplinary Department of Medical-Surgical and Dental Specialties , Università degli Studi della Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
- c IRCCS SDN , Naples , Italy
| |
Collapse
|