1
|
Baptista RM, Rodrigues MA, Roselet F, Costa CSB, da Silva PEA, Ramos DF. Coastal natural products: a review applied to antimycobacterial activity. Nat Prod Res 2025; 39:1607-1621. [PMID: 38832530 DOI: 10.1080/14786419.2024.2361333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Despite the many advances in drug research, natural products are still being explored as a promising source for discovering new bioactive compounds to treat global diseases such as tuberculosis. However, there is a lack of studies and information about coastal natural products, which thrive in the transitional environment between two different ecosystems and produce unique secondary metabolites. Mangroves, estuaries, and mudflats make up areas for coastal species and have shown promising results in antituberculosis research, some of them are present in hotspot areas. This review focuses on research conducted in coastal environments and explores the reasons why these natural products tend to outperform non-coastal ones against the causative agent of tuberculosis, Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Rodolfo Moreira Baptista
- Laboratório de Bioprospecção de Produtos Naturais Costeiros, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Marcos Alaniz Rodrigues
- Laboratório de Bioprospecção de Produtos Naturais Costeiros, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Fabio Roselet
- Instituto de Oceanologia, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | | | | | - Daniela Fernandes Ramos
- Laboratório de Bioprospecção de Produtos Naturais Costeiros, Universidade Federal do Rio Grande, Rio Grande, Brasil
| |
Collapse
|
2
|
Kaushik A, Peshrana A, Barapatre R, Pansheriya S, Kaushal RS. Unveiling the properties of ascorbic acid against M. tb through in silico approach: A comparative drug-based study. J Mol Model 2025; 31:94. [PMID: 39992434 DOI: 10.1007/s00894-025-06322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
CONTEXT Tuberculosis (TB) is a highly contagious and potentially life-threatening disease caused by Mycobacterium tuberculosis (M. tb). According to the World Health Organization (WHO), 7.5 million people were diagnosed with TB in 2022. Combating this disease requires ongoing efforts in TB drug discovery and the development of new treatment regimens. Identifying novel drug targets and inhibitory molecules is crucial in the fight against latent TB, particularly due to the rising issue of M. tb drug resistance. In modern drug discovery, the focus has shifted towards identifying new, safe natural compounds with enhanced biological activity against TB. One promising compound is ascorbic acid (Vitamin C), which possesses pro-oxidant properties that generate free radicals along with the first and second-line anti-TB drugs, aiding in the eradication of M. tb during latent infections. METHODS In the current research, extensive in silico studies have been conducted to investigate the potential of ascorbic acid as an inhibitor of various M. tb pathways, especially those involving protein folding (chaperone-mediated) and detoxification pathways. The proteins were analysed by various physicochemical and pharmacological parameters. Molecular docking of the selected proteins with existing first-line, second-line drugs and ascorbic acid was performed. Furthermore, the top-scoring molecular docking of ascorbic acid was subjected to Molecular Dynamics Simulation. The 500 ns Molecular Dynamics Simulation studies were carried out by GROMACS v2024.1 using CHARMM27 force field, TIP3P water model and using triclinic box for solvation. The obtained trajectories were analysed through XMGRACE tool.
Collapse
Affiliation(s)
- Aviral Kaushik
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Arti Peshrana
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Rohit Barapatre
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Shreya Pansheriya
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India.
- Department of Life Sciences, Parul Institute of Applied Sciences and Research & Development, Cell, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
3
|
Tay JJJ, Karve NRO, Chan KH. Design, Synthesis, and Stability of (1-Amino-4-(3-bromopropoxy)anthracene-9,10-dione)pentacarbonylrhenium(I) Triflate: First X-ray Crystallographic Structure of A Re(CO)5(N-donor). J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Tapfuma KI, Nyambo K, Adu-Amankwaah F, Baatjies L, Smith L, Allie N, Keyster M, Loxton AG, Ngxande M, Malgas-Enus R, Mavumengwana V. Antimycobacterial activity and molecular docking of methanolic extracts and compounds of marine fungi from Saldanha and False Bays, South Africa. Heliyon 2022; 8:e12406. [PMID: 36582695 PMCID: PMC9793266 DOI: 10.1016/j.heliyon.2022.e12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The number and diversity of drugs in the tuberculosis (TB) drug development process has increased over the years, yet the attrition rate remains very high, signaling the need for continued research in drug discovery. In this study, crude secondary metabolites from marine fungi associated with ascidians collected from Saldanha and False Bays (South Africa) were investigated for antimycobacterial activity. Isolation of fungi was performed by sectioning thin inner-tissues of ascidians and spreading them over potato dextrose agar (PDA). Solid state fermentation of fungal isolates on PDA was then performed for 28 days to allow production of secondary metabolites. Afterwards, PDA cultures were dried and solid-liquid extraction using methanol was performed to extract fungal metabolites. Profiling of metabolites was performed using untargeted liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The broth microdilution method was used to determine antimycobacterial activity against Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv, while in silico flexible docking was performed on selected target proteins from M. tuberculosis. A total of 16 ascidians were sampled and 46 fungi were isolated. Only 32 fungal isolates were sequenced, and their sequences submitted to GenBank to obtain accession numbers. Metabolite profiling of 6 selected fungal extracts resulted in the identification of 65 metabolites. The most interesting extract was that of Clonostachys rogersoniana MGK33 which inhibited Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv growth with minimum inhibitory concentrations (MICs) of 0.125 and 0.2 mg/mL, respectively. These results were in accordance with those from in silico molecular docking studies which showed that bionectin F produced by C. rogersoniana MGK33 is a potential inhibitor of M. tuberculosis β-ketoacyl-acyl carrier protein reductase (MabA, PDB ID = 1UZN), with the docking score observed as -11.17 kcal/mol. These findings provided evidence to conclude that metabolites from marine-derived fungi are potential sources of bioactive metabolites with antimycobacterial activity. Even though in silico studies showed that bionectin F is a potent inhibitor of an essential enzyme, MabA, the results should be validated by performing purification of bionectin F from C. rogersoniana MGK33 and in vitro assays against MabA and whole cells (M. tuberculosis).
Collapse
Affiliation(s)
- Kudzanai Ian Tapfuma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kudakwashe Nyambo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lucinda Baatjies
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liezel Smith
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nasiema Allie
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory (EBL), Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Andre G. Loxton
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science University of Stellenbosch, Matieland, South Africa
| | - Rehana Malgas-Enus
- Department of Chemistry and Polymer Science, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Vuyo Mavumengwana
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,Corresponding author.
| |
Collapse
|
5
|
Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study. Antibiotics (Basel) 2022; 11:antibiotics11081038. [PMID: 36009907 PMCID: PMC9405319 DOI: 10.3390/antibiotics11081038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb.) enoyl-acyl carrier protein (ACP) reductase (InhA) is validated as a useful target for tuberculosis therapy and is considered an attractive enzyme to drug discovery. This study aimed to identify the novel inhibitor of the InhA enzyme, a potential target of M.tb. involved in the type II fatty acid biosynthesis pathway that controls mycobacterial cell envelope synthesis. We compiled 80 active compounds from Ruta graveolens and citrus plants belonging to the Rutaceae family for pharmacokinetics and molecular docking analyses. The chemical structures of the 80 phytochemicals and the 3D structure of the target protein were retrieved from the PubChem database and RCSB Protein Data Bank, respectively. The evaluation of druglikeness was performed based on Lipinski’s Rule of Five, while the computed phytochemical properties and molecular descriptors were used to predict the ADMET of the compounds. Amongst these, 11 pharmacokinetically-screened compounds were further examined by performing molecular docking analysis with an InhA target using AutoDock 4.2. The docking results showed that gravacridonediol, a major glycosylated natural alkaloid from Ruta graveolens, might possess a promising inhibitory potential against InhA, with a binding energy (B.E.) of −10.80 kcal/mole and inhibition constant (Ki) of 600.24 nM. These contrast those of the known inhibitor triclosan, which has a B.E. of −6.69 kcal/mole and Ki of 12.43 µM. The binding efficiency of gravacridonediol was higher than that of the well-known inhibitor triclosan against the InhA target. The present study shows that the identified natural compound gravacridonediol possesses drug-like properties and also holds promise in inhibiting InhA, a key target enzyme of M.tb.
Collapse
|
6
|
Hafez Ghoran S, Taktaz F, Ayatollahi SA, Kijjoa A. Anthraquinones and Their Analogues from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2022; 20:474. [PMID: 35892942 PMCID: PMC9394430 DOI: 10.3390/md20080474] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones are an interesting chemical class of polyketides since they not only exhibit a myriad of biological activities but also contribute to managing ecological roles. In this review article, we provide a current knowledge on the anthraquinoids reported from marine-derived fungi, isolated from various resources in both shallow waters such as mangrove plants and sediments of the mangrove habitat, coral reef, algae, sponges, and deep sea. This review also tentatively categorizes anthraquinone metabolites from the simplest to the most complicated scaffolds such as conjugated xanthone-anthraquinone derivatives and bianthraquinones, which have been isolated from marine-derived fungi, especially from the genera Apergillus, Penicillium, Eurotium, Altenaria, Fusarium, Stemphylium, Trichoderma, Acremonium, and other fungal strains. The present review, covering a range from 2000 to 2021, was elaborated through a comprehensive literature search using the following databases: ACS publications, Elsevier, Taylor and Francis, Wiley Online Library, MDPI, Springer, and Thieme. Thereupon, we have summarized and categorized 296 anthraquinones and their derivatives, some of which showed a variety of biological properties such as enzyme inhibition, antibacterial, antifungal, antiviral, antitubercular (against Mycobacterium tuberculosis), cytotoxic, anti-inflammatory, antifouling, and antioxidant activities. In addition, proposed biogenetic pathways of some anthraquinone derivatives are also discussed.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran; (S.H.G.); (S.A.A.)
- Medicinal Plant Breeding & Development Research Institute, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Biology, Faculty of Sciences, University of Hakim Sabzevari, Sabzevar 96179-76487, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran; (S.H.G.); (S.A.A.)
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Gomes NGM, Madureira-Carvalho Á, Dias-da-Silva D, Valentão P, Andrade PB. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed Pharmacother 2021; 140:111756. [PMID: 34051618 DOI: 10.1016/j.biopha.2021.111756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Áurea Madureira-Carvalho
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.
| | - Diana Dias-da-Silva
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Li J, Shi L, Xu S, Gu S, Wen X, Xu D, Luo J, Huang Y, Wang M. Optimal fermentation time for Nigrospora-fermented tea rich in bostrycin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2483-2490. [PMID: 33058154 DOI: 10.1002/jsfa.10874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bostrycin has many biological functions, such as anticancer activity, and is becoming increasingly popular. Nigrospora sphaerica HCH285, which has the ability to produce high levels of bostrycin, can be used to ferment sun-dried green tea of Camellia sinensis through acclimation, resulting in the development of a Nigrospora-fermented tea. The effects of fermentation time on the production of bostrycin by the HCH285 strain were investigated. RESULTS After 45 days of fermentation, the bostrycin content reached 3.18 g kg-1 , which is the highest level during the whole fermentation. At 50 days, the tea liquor was red, had a strong mushroom odour and a sweet taste, and presented optimal quality. The contents of free amino acids, tea polyphenols and soluble sugars in the fermented tea decreased generally during the fermentation, although the content of water-soluble substances increased. Additionally, the results of a 14-day acute oral toxicity test showed that Nigrospora-fermented tea was nontoxic. CONCLUSION The optimum fermentation time of Nigrospora-fermented tea was concluded to be 45-50 days. These results provide insights with respect to the development of tea biotechnology and new tea products with active ingredients. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinhan Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Le Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyao Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Siyi Gu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue Wen
- Ministry of Education Key Laboratory of Horticultural Plant Biology, State Key Laboratory of Agricultural Microbiology, and Tea Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan, China
| | - Danyan Xu
- College of Economics & Management, Huazhong Agricultural University, Wuhan, China
| | - Junyan Luo
- College of Humanity & Law, Huazhong Agricultural University, Wuhan, China
| | - Youyi Huang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, State Key Laboratory of Agricultural Microbiology, and Tea Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan, China
| | - Mo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|