1
|
Song J, Qiao J, Cheng Z, Guo J, Wang Q, Zhou Z, Han L. Computational design of coevolutionary residues for improved stability and activity of nitrile hydratase. Biochem Biophys Res Commun 2025; 750:151400. [PMID: 39889624 DOI: 10.1016/j.bbrc.2025.151400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nitrile Hydratase (NHase), an industrially significant enzyme, catalyzes the conversion of nitriles into amides. High activity and thermostability are crucial for its broad applications. Compared with classical evaluation and subsequent combination of single-point mutations, redesigning coevolutionary residues offers a more precise approach by targeting key functional sites and facilitating efficient computational design and iteration. Here, we proposed an optimized strategy for redesigning coevolutionary residues to enhance the robustness of NHase, a heterotetrameric protein. We conducted an extensive analysis of 80 coevolutionary residue pairs in NHase from Pseudonocardia thermophila JCM3095 (PtNHase) and identified 21 hotspot designable residue pairs lacking explicit interactions. Virtual saturating combinatorial mutations were applied to these pairs, yielding 27 positive candidates from 8379 theoretical mutations based on changes in folding free energy. After screening and iterative combinations, the optimal mutant A3 (αG86Y/αK57L/αE183F) was obtained, whose specific activity toward acrylonitrile and half-life at 65 °C were increased from 1656.8 ± 21.2 U/mg and 20.1 min in WT to 2370.1 ± 102.7 U/mg and 62.3 min, respectively. Benefiting from higher activity and thermostability, the whole-cell catalyst of A3 significantly facilitated the bioconversion of acrylonitrile to acrylamide. Molecular dynamics simulations further revealed that the newly formed inter-residue interactions stabilized the active site and enhanced the flexibility of the substrate channel, thereby improving both activity and thermostability. This study not only developed a highly robust NHase, but also established a framework for the design of other industrial enzymes.
Collapse
Affiliation(s)
- Jiaen Song
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Qiao
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiong Wang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China.
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Feng C, Chen J, Ye W, Wang Z. Nitrile hydratase as a promising biocatalyst: recent advances and future prospects. Biotechnol Lett 2024; 46:1171-1185. [PMID: 39269672 DOI: 10.1007/s10529-024-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Zhao YX, Yuan J, Song KW, Yin CJ, Chen LW, Yang KY, Yang J, Dai YJ. Efficient Biodegradation of the Neonicotinoid Insecticide Flonicamid by Pseudaminobacter salicylatoxidans CGMCC 1.17248: Kinetics, Pathways, and Enzyme Properties. Microorganisms 2024; 12:1063. [PMID: 38930445 PMCID: PMC11205548 DOI: 10.3390/microorganisms12061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Nitrile-containing insecticides can be converted into their amide derivatives by Pseudaminobacter salicylatoxidans. N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) is converted to 4-(trifluoromethyl) nicotinoyl glycine (TFNG) using nitrile hydratase/amidase. However, the amidase that catalyzes this bioconversion has not yet been fully elucidated. In this study, it was discovered that flonicamid (FLO) is degraded by P. salicylatoxidans into the acid metabolite TFNG via the intermediate TFNG-AM. A half-life of 18.7 h was observed for P. salicylatoxidans resting cells, which transformed 82.8% of the available FLO in 48 h. The resulting amide metabolite, TFNG-AM, was almost all converted to TFNG within 19 d. A novel amidase-encoding gene was cloned and overexpressed in Escherichia coli. The enzyme, PmsiA, hydrolyzed TFNG-AM to TFNG. Despite being categorized as a member of the amidase signature enzyme superfamily, PsmiA only shares 20-30% identity with the 14 previously identified members of this family, indicating that PsmiA represents a novel class of enzyme. Homology structural modeling and molecular docking analyses suggested that key residues Glu247 and Met242 may significantly impact the catalytic activity of PsmiA. This study contributes to our understanding of the biodegradation process of nitrile-containing insecticides and the relationship between the structure and function of metabolic enzymes.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Jing Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Ke-Wei Song
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Chi-Jie Yin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; (Y.-X.Z.); (K.-W.S.); (C.-J.Y.)
| | - Li-Wen Chen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Kun-Yan Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Ju Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China; (L.-W.C.); (K.-Y.Y.)
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
4
|
Zhao YX, Chen KX, Wang L, Yuan PP, Dai YJ. Biodegradation of sulfoxaflor and photolysis of sulfoxaflor by ultraviolet radiation. Biodegradation 2023; 34:341-355. [PMID: 36808271 DOI: 10.1007/s10532-023-10020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
Sulfoxaflor (SUL, [N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl] ethyl]-λ4-sulfanylidene] cyanamide]) is a widely used systemic insecticide, and its residue has frequently been detected in the environment, posing a potential threat to the environment. In this study, Pseudaminobacter salicylatoxidans CGMCC 1.17248 rapidly converted SUL into X11719474 via a hydration pathway mediated by two nitrile hydratases (AnhA and AnhB). Extensive (96.4%) degradation of 0.83 mmol/L SUL was achieved by P. salicylatoxidans CGMCC 1.17248 resting cells within 30 min (half-life of SUL 6.4 min). Cell immobilization by entrapment into calcium alginate remediated 82.8% of the SUL in 90 min, and almost no SUL was observed in surface water after incubation for 3 h. P. salicylatoxidans NHases AnhA and AnhB both hydrolyzed SUL to X11719474, although AnhA exhibited much better catalytic performance. The genome sequence of P. salicylatoxidans CGMCC 1.17248 revealed that this strain could efficiently eliminate nitrile-containing insecticides and adapt to harsh environments. We firstly found that UV irradiation transforms SUL to the derivatives X11719474 and X11721061, and the potential reaction pathways were proposed. These results further deepen our understanding of the mechanisms of SUL degradation as well as the environmental fate of SUL.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Pan-Pan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Schwartz SL, Rangel LT, Payette JG, Fournier GP. A Proterozoic microbial origin of extant cyanide-hydrolyzing enzyme diversity. Front Microbiol 2023; 14:1130310. [PMID: 37065136 PMCID: PMC10098168 DOI: 10.3389/fmicb.2023.1130310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
In addition to its role as a toxic environmental contaminant, cyanide has been hypothesized to play a key role in prebiotic chemistry and early biogeochemical evolution. While cyanide-hydrolyzing enzymes have been studied and engineered for bioremediation, the extant diversity of these enzymes remains underexplored. Additionally, the age and evolution of microbial cyanide metabolisms is poorly constrained. Here we provide comprehensive phylogenetic and molecular clock analyses of the distribution and evolution of the Class I nitrilases, thiocyanate hydrolases, and nitrile hydratases. Molecular clock analyses indicate that bacterial cyanide-reducing nitrilases were present by the Paleo- to Mesoproterozoic, and were subsequently horizontally transferred into eukaryotes. These results present a broad diversity of microbial enzymes that could be optimized for cyanide bioremediation.
Collapse
Affiliation(s)
- Sarah L. Schwartz
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Sarah L. Schwartz,
| | - L. Thiberio Rangel
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jack G. Payette
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Moraes MI, Iglesias C, Teixeira IS, Milagre HM, Giordano SR, Milagre CD. Biotransformations of nitriles mediated by in vivo nitrile hydratase of Rhodococcus erythropolis ATCC 4277 heterologously expressed in E. Coli. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
7
|
"Toolbox" construction of an extremophilic nitrile hydratase from Streptomyces thermoautotrophicus for the promising industrial production of various amides. Int J Biol Macromol 2022; 221:1103-1111. [PMID: 36108746 DOI: 10.1016/j.ijbiomac.2022.09.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Nitrile hydratase (NHase; EC 4.2.1.84) is widely used to synthesize the corresponding amides from nitriles, which is the most successful green biocatalyst. However, the limited acceptability of substrates and instability under harsh reaction conditions have hindered its widespread industrial application. Here, a gene encoding an extremophilic NHase from Streptomyces thermoautotrophicus (S.t NHase) was successfully overexpressed in Escherichia coli. The enzyme exhibited excellent thermostability, retaining >50 % of residual activity after heat treatment at 65 °C for 252 min. To further improve the catalytic performance of S.t NHase, semi-rational engineering of its substrate access tunnel was performed. A mutant βL48D showed a specific activity of 566.18 ± 18.86 U/mg towards 3-cyanopyridine, which was 7.7 times higher than its parent enzyme (73.80 ± 5.76 U/mg). Molecular dynamics simulation showed that the introduction of aspartic acid into βLeu48 resulted in a larger and more frequent opening of the substrate access tunnel entrance. On this basis, a "toolbox" containing various mutants on the substrate access tunnel was further established, whose catalytic activity towards various nitrile substrates was extensively improved, showing great potential for efficient synthesis of multiple high-value amides.
Collapse
|
8
|
High-Level Expression of Nitrile Hydratase in Escherichia coli for 2-Amino-2,3-Dimethylbutyramide Synthesis. Processes (Basel) 2022. [DOI: 10.3390/pr10030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the synthesis of imidazolinone herbicides, 2-Amino-2,3-dimethylbutyramide (ADBA) is an important intermedium. In this study, the recombinant production of nitrile hydratase (NHase) in Escherichia coli for ADBA synthesis was explored. A local library containing recombinant NHases from various sources was screened using a colorimetric method. NHase from Pseudonocardia thermophila JCM3095 was selected, fused with a His-tag and one-step purified. The enzymatic properties of recombinant NHase were studied and indicated robust thermal stability and inhibition of cyanide ions due to substrate degradation. After systematic optimization of fermentation conditions, the OD600 (optical density at 600 nm), enzyme activity and specific activity of recombinant strain E. coli BL21(DE3)/pET-28a+NHase reached 19.4, 3.72 U/mL and 1.04 U/mg protein at 42 h, representing 5.86-, 26.6- and 4-fold increases, respectively. These results offered an efficient recombinant whole-cell biocatalyst for ADBA synthesis.
Collapse
|
9
|
Sun S, Zhou J, Jiang J, Dai Y, Sheng M. Nitrile Hydratases: From Industrial Application to Acetamiprid and Thiacloprid Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10440-10449. [PMID: 34469128 DOI: 10.1021/acs.jafc.1c03496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application of neonicotinoid insecticides (NEOs) in agriculture causes a series of environmental and ecological problems. Microbial remediation is a popular approach to relieve these negative impacts, but the associated molecular mechanisms are rarely explored. Nitrile hydratase (NHase), an enzyme commonly used in industry for amide production, was discovered to be responsible for the degradation of acetamiprid (ACE) and thiacloprid (THI) by microbes. Since then, research into NHases in NEO degradation has attracted increasing attention. In this review, microbial degradation of ACE and THI is briefly described. We then focus on NHase evolution, gene composition, maturation mechanisms, expression, and biochemical properties with regard to application of NHases in NEO degradation for bioremediation.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Miaomiao Sheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| |
Collapse
|
10
|
Crochet P, Cadierno V. Access to
α
‐ and
β
‐Hydroxyamides and Ureas Through Metal‐Catalyzed C≡N Bond Hydration and Transfer Hydration Reactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pascale Crochet
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Victorio Cadierno
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
11
|
Zhao YX, Wang L, Chen KX, Jiang ND, Sun SL, Ge F, Dai YJ. Biodegradation of flonicamid by Ensifer adhaerens CGMCC 6315 and enzymatic characterization of the nitrile hydratases involved. Microb Cell Fact 2021; 20:133. [PMID: 34256737 PMCID: PMC8278588 DOI: 10.1186/s12934-021-01620-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinamide insecticide that regulates insect growth. Because of its wide application in agricultural production and high solubility in water, it poses potential risks to aquatic environments and food chain. RESULTS In the present study, Ensifer adhaerens CGMCC 6315 was shown to efficiently transform FLO into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) via a hydration pathway mediated by two nitrile hydratases, PnhA and CnhA. In pure culture, resting cells of E. adhaerens CGMCC 6315 degraded 92% of 0.87 mmol/L FLO within 24 h at 30 °C (half-life 7.4 h). Both free and immobilized (by gel beads, using calcium alginate as a carrier) E. adhaerens CGMCC 6315 cells effectively degraded FLO in surface water. PnhA has, to our knowledge, the highest reported degradation activity toward FLO, Vmax = 88.7 U/mg (Km = 2.96 mmol/L). Addition of copper ions could increase the enzyme activity of CnhA toward FLO by 4.2-fold. Structural homology modeling indicated that residue β-Glu56 may be important for the observed significant difference in enzyme activity between PnhA and CnhA. CONCLUSIONS Application of E. adhaerens may be a good strategy for bioremediation of FLO in surface water. This work furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and provides effective transformation strategies for microbial remediation of FLO contamination.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| | - Shi-Lei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116 People’s Republic of China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042 People’s Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023 People’s Republic of China
| |
Collapse
|
12
|
Sun S, Fan Z, Zhao J, Dai Z, Zhao Y, Dai Y. Copper stimulates neonicotinoid insecticide thiacloprid degradation by Ensifer adhaerens TMX-23. J Appl Microbiol 2021; 131:2838-2848. [PMID: 34075672 DOI: 10.1111/jam.15172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022]
Abstract
AIMS Aims of this study are to elucidate the molecular mechanism of copper-improved thiacloprid (THI) degradation by Ensifer adhaerens TMX-23 and characterize copper resistance of this strain. METHODS AND RESULTS Resting cells of E. adhaerens TMX-23 were used to degrade THI, with formation of THI amide and 98·31% of 0·59 mmol l-1 THI was degraded in 100 min. The addition of copper improved the degradation of THI and showed little inhibitory effects on the growth of E. adhaerens TMX-23. E. adhaerens TMX-23 degraded THI to THI amide by nitrile hydratases (NhcA and NhpA). QPCR analysis indicated that the expression of nhpA was up-regulated in the presence of copper. E. adhaerens TMX-23 nitrile hydratases were purified, and enzyme assay of NhpA exhibited the highest NHase activity toward THI. The addition of copper activated the activity of NhcA. Soil degradation experiment indicated that E. adhaerens TMX-23 could quickly eliminate THI residual in copper-added soil. CONCLUSIONS Copper improved THI degradation by E. adhaerens TMX-23 was attributed to the induced expression of nhpA and activated NhcA. SIGNIFICANCE AND IMPACT OF THE STUDY This study broadens the investigation of regulatory mechanism of NHase expression and provided theoretical basis for using metal-resistant microbes to degrade pesticide in heavy metal co-contaminated environments.
Collapse
Affiliation(s)
- S Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China.,The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Z Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - J Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. New insights into the degradation of synthetic pollutants in contaminated environments. CHEMOSPHERE 2021; 268:128827. [PMID: 33162154 DOI: 10.1016/j.chemosphere.2020.128827] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
The environment is contaminated by synthetic contaminants owing to their extensive applications globally. Hence, the removal of synthetic pollutants (SPs) from the environment has received widespread attention. Different remediation technologies have been investigated for their abilities to eliminate SPs from the ecosystem; these include photocatalysis, sonochemical techniques, nanoremediation, and bioremediation. SPs, which can be organic or inorganic, can be degraded by microbial metabolism at contaminated sites. Owing to their diverse metabolisms, microbes can adapt to a wide variety of environments. Several microbial strains have been reported for their bioremediation potential concerning synthetic chemical compounds. The selection of potential strains for large-scale removal of organic pollutants is an important research priority. Additionally, novel microbial consortia have been found to be capable of efficient degradation owing to their combined and co-metabolic activities. Microbial engineering is one of the most prominent and promising techniques for providing new opportunities to develop proficient microorganisms for various biological processes; here, we have targeted the SP-degrading mechanisms of microorganisms. This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions. The degradation of these pollutants is investigated using abiotic and biotic approaches; interestingly, biotic approaches based on microbial methods are preferable owing to their high potential for pollutant removal and cost-effectiveness.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, 248161, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology, Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
He L, Zhu C, Su Z. Two New γ-Mangostin Glycosides Through Microbial Transformation by Cunninghamella blakesleana. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03338-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Zhao YX, Yang WL, Guo L, Jiang HY, Cheng X, Dai YJ. Bioinformatics of a Novel Nitrile Hydratase Gene Cluster of the N 2-Fixing Bacterium Microvirga flocculans CGMCC 1.16731 and Characterization of the Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9299-9307. [PMID: 32786837 DOI: 10.1021/acs.jafc.0c03702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microvirga flocculans CGMCC 1.16731 can degrade many cyano group-containing neonicotinoid insecticides. Here, its genome was sequenced, and a novel nitrile hydratase gene cluster was discovered in a plasmid. The NHase gene cluster (pnhF) has gene structure β-subunit 1, α-subunit, and β-subunit 2, which is different from previously reported NHase gene structures. Phylogenetic analysis of α-subunits indicated that NHases containing the three subunit (β1αβ2) structure are independent from NHases containing two subunits (αβ). pnhF was successfully expressed in Escherichia coli, and the purified PnhF could convert the nitrile-containing insecticide flonicamid to N-(4-trifluoromethylnicotinoyl)glycinamide. The enzymatic properties of PnhF were investigated using flonicamid as a substrate. Homology models revealed that amino acid residue β1-Glu56 may strongly affect the catalytic activity of PnhF. This study expands our understanding of the structures and functions of NHases and the enzymatic mechanism of the environmental fate of flonicamid.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Huo-Yong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xi Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
16
|
Wang L, Liu S, Du W, Dou T, Liang C. High Regioselectivity Production of 5-Cyanovaleramide from Adiponitrile by a Novel Nitrile Hydratase Derived from Rhodococcus erythropolis CCM2595. ACS OMEGA 2020; 5:18397-18402. [PMID: 32743216 PMCID: PMC7392519 DOI: 10.1021/acsomega.0c02188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
5-Cyanovaleramide (5-CVAM) is an important intermediate of a herbicide and chemical raw material. Herein, we found a novel nitrile hydratase from the strain Rhodococcus erythropolis CCM2595, exhibiting high regioselectivity with higher substrate specificity toward dinitriles than mononitriles. In the past, the strain was shown to degrade only phenol, hydroxybenzoate, p-chlorophenol, aniline, and other aromatic compounds. In our study, 20 mM adiponitrile was completely consumed within 10 min with 95% selectivity to 5-CVAM and 5% selectivity to adipamide. In addition to its high regioselectivity, our recombinant Escherichia coli showed a higher substrate tolerance of up to 200 mM adiponitrile even after 3 h when compared with two reported strains with their cyano-tolerance concentrations of up to 100 mM, which is considered to be the highest cyano-tolerance. Such a robust biocatalyst is a desirable attribute of a biocatalyst intended for use in commercial applications of 5-CVAM.
Collapse
Affiliation(s)
- Li Wang
- School
of Life and Pharmaceutical Sciences, Dalian
University of Technology, Panjin 124221, China
| | - Shengxian Liu
- School
of Life and Pharmaceutical Sciences, Dalian
University of Technology, Panjin 124221, China
| | - Wenjing Du
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Tongyi Dou
- School
of Life and Pharmaceutical Sciences, Dalian
University of Technology, Panjin 124221, China
| | - Changhai Liang
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Grill B, Glänzer M, Schwab H, Steiner K, Pienaar D, Brady D, Donsbach K, Winkler M. Functional Expression and Characterization of a Panel of Cobalt and Iron-Dependent Nitrile Hydratases. Molecules 2020; 25:molecules25112521. [PMID: 32481666 PMCID: PMC7321127 DOI: 10.3390/molecules25112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from Escherichia coli BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from Afipia broomeae and Roseobacter sp. and a new Fe-type NHase from Gordonia hydrophobica were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(p-toluoyl)propanenitrile. The Co-dependent NHases from Caballeronia jiangsuensis and Microvirga lotononidis, as well as two Fe-dependent NHases from Pseudomonades, were—in addition—able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts.
Collapse
Affiliation(s)
- Birgit Grill
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Maximilian Glänzer
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Helmut Schwab
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Kerstin Steiner
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Daniel Pienaar
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits 2050, Johannesburg, South Africa; (D.P.); (D.B.)
| | - Dean Brady
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits 2050, Johannesburg, South Africa; (D.P.); (D.B.)
| | | | - Margit Winkler
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-9333
| |
Collapse
|
18
|
Cheng Z, Xia Y, Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front Bioeng Biotechnol 2020; 8:352. [PMID: 32391348 PMCID: PMC7193024 DOI: 10.3389/fbioe.2020.00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is one type of metalloenzyme participating in the biotransformation of nitriles into amides. Given its catalytic specificity in amide production and eco-friendliness, NHase has overwhelmed its chemical counterpart during the past few decades. However, unclear catalytic mechanism, low thermostablity, and narrow substrate specificity limit the further application of NHase. During the past few years, numerous studies on the theoretical and industrial aspects of NHase have advanced the development of this green catalyst. This review critically focuses on NHase research from recent years, including the natural distribution, gene types, posttranslational modifications, expression, proposed catalytic mechanism, biochemical properties, and potential applications of NHase. The developments of NHase described here are not only useful for further application of NHase, but also beneficial for the development of the fields of biocatalysis and biotransformation.
Collapse
Affiliation(s)
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Han L, Cui W, Lin Q, Chen Q, Suo F, Ma K, Wang Y, Hao W, Cheng Z, Zhou Z. Efficient Overproduction of Active Nitrile Hydratase by Coupling Expression Induction and Enzyme Maturation via Programming a Controllable Cobalt-Responsive Gene Circuit. Front Bioeng Biotechnol 2020; 8:193. [PMID: 32266230 PMCID: PMC7105576 DOI: 10.3389/fbioe.2020.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
A robust and portable expression system is of great importance in enzyme production, metabolic engineering, and synthetic biology, which maximizes the performance of the engineered system. In this study, a tailor-made cobalt-induced expression system (CIES) was developed for low-cost and eco-friendly nitrile hydratase (NHase) production. First, the strong promoter Pveg from Bacillus subtilis, the Ni(II)/Co(II) responsive repressor RcnR, and its operator were reorganized to construct a CIES. In this system, the expression of reporter green fluorescent protein (GFP) was specifically triggered by Co(II) over a broad range of concentration. The performance of the cobalt-induced system was evolved to version 2.0 (CIES 2.0) for adaptation to different concentrations of Co(II) through programming a homeostasis system that rebalances cobalt efflux and influx with RcnA and NiCoT, respectively. Harnessing these synthetic platforms, the induced expression of NHase was coupled with enzyme maturation by Co(II) in a synchronizable manner without requiring additional inducers, which is a unique feature relative to other induced systems for production of NHase. The yield of NHase was 111.2 ± 17.9 U/ml using CIES and 114.9 ± 1.4 U/ml using CIES 2.0, which has a producing capability equivalent to that of commonly used isopropyl thiogalactoside (IPTG)-induced systems. In a scale-up system using a 5-L fermenter, the yielded enzymatic activity reached 542.2 ± 42.8 U/ml, suggesting that the designer platform for NHase is readily applied to the industry. The design of CIES in this study not only provided a low-cost and eco-friendly platform to overproduce NHase but also proposed a promising pipeline for development of synthetic platforms for expression of metalloenzymes.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Feiya Suo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Ke Ma
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Yang Wang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Wenliang Hao
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| |
Collapse
|
20
|
Jiao S, Li F, Yu H, Shen Z. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol 2019; 104:1001-1012. [DOI: 10.1007/s00253-019-10284-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023]
|
21
|
Pandey D, Patel SKS, Singh R, Kumar P, Thakur V, Chand D. Solvent-Tolerant Acyltransferase from Bacillus sp. APB-6: Purification and Characterization. Indian J Microbiol 2019; 59:500-507. [PMID: 31762514 DOI: 10.1007/s12088-019-00836-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
Amidase from Bacillus sp. APB-6 with very good acyltransferase activity was purified to homogeneity with a purification fold of 3.68 and 53.20% enzyme yield. The purified protein's subunit molecular mass was determined approximately 42 kDa. Hyperactivity of the enzyme was observed at pH 7.5 (150 mM, potassium-phosphate buffer) and 50 °C of incubation. An enhancement in activity up to 42% was recorded with ethylenediaminetetraacetic acid and dithiothreitol. The kinetic parameter K m values for substrates: acetamide and hydroxylamine-hydrochloride were 73.0 and 153 mM, respectively. Further, the V max for acyltransferase activity was 1667 U/mg of protein and the K i for acetamide was calculated as 37.0 mM. The enzyme showed tolerance to various organic solvents (10%, v/v) and worked well in the biphasic reaction medium. The acyltransferase activity in presence of solvents i.e. biphasic medium may prove highly favorable for the transformation of hydrophobic amides, which otherwise is not possible in simple aqueous phase.
Collapse
Affiliation(s)
- Deepak Pandey
- 1Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sanjay K S Patel
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| | - Rajendra Singh
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| | - Pradeep Kumar
- 3Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, HP 173229 India
| | - Vikram Thakur
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| | - Duni Chand
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| |
Collapse
|