1
|
Watanabe T, La Shu S, Rio-Espinola AD, Ferreira JR, Bando K, Lemmens M, Pande P, de Wolf C, Chen CL, Elke E, Rao GK, van den Hoorn T, Mouriès LP, Myers MB, Yasuda S. Evaluating teratoma formation risk of pluripotent stem cell-derived cell therapy products: a consensus recommendation from the Health and Environmental Sciences Institute's International Cell Therapy Committee. Cytotherapy 2025:S1465-3249(25)00684-X. [PMID: 40392167 DOI: 10.1016/j.jcyt.2025.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 05/22/2025]
Abstract
Human pluripotent stem cells (hPSCs) can differentiate into any cell of choice and hold significant promise in regenerative medicine and for treating diseases that currently lack adequate therapies. However, hPSCs are intrinsically tumorigenic and can form teratomas. Therefore, the presence of residual undifferentiated hPSCs must be rigorously assessed using sensitive methodologies to mitigate the potential tumorigenicity risks of hPSC-derived cell therapy products (CTPs). In this comprehensive review, we describe methods for detecting residual undifferentiated hPSCs and discuss the relative value of current in vitro assays versus conventional in vivo assays. We highlight that in vitro assays such as digital PCR detection of hPSC-specific RNA and the highly efficient culture assay, have superior detection sensitivity. Additionally, we outline important considerations for validating in vitro assays when applying them to assess each product. This article lays the groundwork for guiding internationally harmonized procedures for evaluating the potential teratoma formation risk of hPSC-derived CTPs and increasing confidence in the safety of these products.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Shin La Shu
- Frederick National Laboratories for Cancer Research, Maryland, USA
| | | | - Joana Rita Ferreira
- Safety Sciences, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kiyoko Bando
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Kobe, Japan
| | - Myriam Lemmens
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Parimal Pande
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | | | - Connie L Chen
- Health & Environmental Sciences Institute (HESI), Washington DC, USA
| | - Ericson Elke
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gautham K Rao
- Department of Translational Safety, Genentech Inc., South San Francisco, California, USA
| | | | | | - Meagan B Myers
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arizona, USA
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
2
|
Sun J, Yates C, Dingwall S, Ongtengco C, Power D, Gray P, Prowse A. Analysis of three characterization assays reveals ddPCR of LIN28A as the most sensitive for the detection of residual pluripotent stem cells in cellular therapy products. Cytotherapy 2024; 26:1374-1381. [PMID: 38934983 DOI: 10.1016/j.jcyt.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AIMS With the continuous development and advancement of human pluripotent stem cell (PSC)-derived cell therapies, an ever-increasing number of clinical indications can benefit from their application. Due to the capacity for PSCs to form teratomas, safety testing is required to ensure the absence of residual PSCs in a cell product. To mitigate these limitations, in vitro analytical methods can be utilized as quality control after the production of a PSC-derived cell product. Sensitivity of these analytic methods is critical in accurately quantifying residual PSC in the final cell product. In this study, we compared the sensitivity of three in vitro assays: qPCR, ddPCR and RT-LAMP. METHODS The spike-in samples were produced from three independent experiments, each spiked with different PSC lines (PSC1, NH50191, and WA09 referred to as H9) into a background of primary fibroblasts (Hs68). These samples were then subjected to qPCR, ddPCR and RT-LAMP to determine their detection limit in measuring a commonly used PSC marker, LIN28A. RESULTS The results indicated that the three analytic methods all exhibited consistent results across different cell-line spiked samples, with ddPCR demonstrating the highest sensitivity of the three methods. The LIN28A ddPCR assay could confidently detect 10 residual PSCs in a million fibroblasts. DISCUSSION In our hand, ddPCR LIN28A assay demonstrated the highest sensitivity for detection of residual PSCs compared to the other two assays. Correlating such in vitro safety results with corresponding in vivo studies demonstrating the tumorigenicity profile of PSC-derived cell therapy could accelerate the safe clinical translation of cell therapy.
Collapse
Affiliation(s)
- Jinda Sun
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Clarissa Yates
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia; Ketim Therapeutics, Brisbane, Australia
| | - Steve Dingwall
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Cherica Ongtengco
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Dominique Power
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia; Viatris, Brisbane, Australia
| | - Peter Gray
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Andrew Prowse
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Yasuda S, Bando K, Henry MP, Libertini S, Watanabe T, Bando H, Chen C, Fujimori K, Harada K, Kuroda T, Lemmens M, Marginean D, Moss D, Pereira Mouriès L, Nicholas NS, Smart MJK, Terai O, Sato Y. Detection of residual pluripotent stem cells in cell therapy products utilizing droplet digital PCR: an international multisite evaluation study. Stem Cells Transl Med 2024; 13:1001-1014. [PMID: 39120125 PMCID: PMC11465167 DOI: 10.1093/stcltm/szae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
The presence of residual undifferentiated pluripotent stem cells (PSCs) in PSC-derived cell therapy products (CTPs) is a major safety issue for their clinical application, due to the potential risk of PSC-derived tumor formation. An international multidisciplinary multisite study to evaluate a droplet digital PCR (ddPCR) approach to detect residual undifferentiated PSCs in PSC-derived CTPs was conducted as part of the Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee. To evaluate the use of ddPCR in quantifying residual iPSCs in a cell sample, different quantities of induced pluripotent stem cells (iPSCs) were spiked into a background of iPSC-derived cardiomyocytes (CMs) to mimic different concentrations of residual iPSCs. A one step reverse transcription ddPCR (RT-ddPCR) was performed to measure mRNA levels of several iPSC-specific markers and to evaluate the assay performance (precision, sensitivity, and specificity) between and within laboratories. The RT-ddPCR assay variability was initially assessed by measuring the same RNA samples across all participating facilities. Subsequently, each facility independently conducted the entire process, incorporating the spiking step, to discern the parameters influencing potential variability. Our results show that a RT-ddPCR assay targeting ESRG, LINC00678, and LIN28A genes offers a highly sensitive and robust detection of impurities of iPSC-derived CMs and that the main contribution to variability between laboratories is the iPSC-spiking procedure, and not the RT-ddPCR. The RT-ddPCR assay would be generally applicable for tumorigenicity evaluation of PSC-derived CTPs with appropriate marker genes suitable for each CTP.
Collapse
Affiliation(s)
- Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | | | | | | | | | | | - Connie Chen
- Health and Environmental Sciences Institute, Washington, DC, United States
| | | | - Kosuke Harada
- Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | | | | | - David Moss
- Cell and Gene Therapy Catapult, London, United Kingdom
| | | | | | | | | | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
4
|
Wu Y, Zhang Z, Wu S, Chen Z, Pu Y. Estimating residual undifferentiated cells in human chemically induced pluripotent stem cell derived islets using lncRNA as biomarkers. Sci Rep 2023; 13:16435. [PMID: 37777562 PMCID: PMC10542758 DOI: 10.1038/s41598-023-43798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can generate insulin-producing beta cells for diabetes treatment, but residual undifferentiated cells may cause tumors. We developed a highly sensitive assay to detect these cells in islet cells derived from human chemically induced pluripotent stem cells (hCiPSCs), which are transgene-free and safer. We used RNA-seq data to find protein-coding and non-coding RNAs that were only expressed in hCiPSCs, not in islet cells. We confirmed these biomarkers by RT-qPCR and ddPCR. We chose long non-coding RNA (lncRNA) markers, which performed better than protein-coding RNA markers. We found that LNCPRESS2, LINC00678 and LOC105370482 could detect 1, 1 and 3 hCiPSCs in 106 islet cells by ddPCR, respectively. We tested our method on several hCiPSC lines, which could quantify 0.0001% undifferentiated cell in 106 islet cells by targeting hCiPSCs-specific lncRNA transcripts, ensuring the safety and quality of hCiPSC-derived islet cells for clinical use.
Collapse
Affiliation(s)
- Yandan Wu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Zhenzhen Zhang
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Shuangshuang Wu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Zhaolong Chen
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China.
| |
Collapse
|
5
|
Galiakberova AA, Brovkina OI, Kondratyev NV, Artyuhov AS, Momotyuk ED, Kulmukhametova ON, Lagunin AA, Shilov BV, Zadorozhny AD, Zakharov IS, Okorokova LS, Golimbet VE, Dashinimaev EB. Different iPSC-derived neural stem cells shows various spectrums of spontaneous differentiation during long term cultivation. Front Mol Neurosci 2023; 16:1037902. [PMID: 37201156 PMCID: PMC10186475 DOI: 10.3389/fnmol.2023.1037902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Culturing of human neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSC) is a promising area of research, as these cells have the potential to treat a wide range of neurological, neurodegenerative and psychiatric diseases. However, the development of optimal protocols for the production and long-term culturing of NSCs remains a challenge. One of the most important aspects of this problem is to determine the stability of NSCs during long-term in vitro passaging. To address this problem, our study was aimed at investigating the spontaneous differentiation profile in different iPSC-derived human NSCs cultures during long-term cultivation using. Methods Four different IPSC lines were used to generate NSC and spontaneously differentiated neural cultures using DUAL SMAD inhibition. These cells were analyzed at different passages using immunocytochemistry, qPCR, bulk transcriptomes and scRNA-seq. Results We found that various NSC lines generate significantly different spectrums of differentiated neural cells, which can also change significantly during long-term cultivation in vitro. Discussion Our results indicate that both internal (genetic and epigenetic) and external (conditions and duration of cultivation) factors influence the stability of NSCs. These results have important implications for the development of optimal NSCs culturing protocols and highlight the need to further investigate the factors influencing the stability of these cells in vitro.
Collapse
Affiliation(s)
- Adelya Albertovna Galiakberova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Igorevna Brovkina
- Federal Research and Clinical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | | - Alexander Sergeevich Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Dmitrievna Momotyuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Alexey Aleksandrovich Lagunin
- Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - Igor Sergeevitch Zakharov
- Department of Bioinformatics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Erdem Bairovich Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- *Correspondence: Erdem Bairovich Dashinimaev,
| |
Collapse
|
6
|
Identification of marker genes to monitor residual iPSCs in iPSC-derived products. Cytotherapy 2023; 25:59-67. [PMID: 36319564 DOI: 10.1016/j.jcyt.2022.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Engineered tissues and cell therapies based on human induced pluripotent stem cells (iPSCs) represent a promising approach for novel medicines. However, iPSC-derived cells and tissues may contain residual undifferentiated iPSCs that could lead to teratoma formation after implantation into patients. As a consequence, highly sensitive and specific methods for detecting residual undifferentiated iPSCs are indispensable for safety evaluations of iPSC-based therapies. The present study provides an approach for identifying potential marker genes for iPSC impurities in iPSC-derived cells using RNA sequencing data from iPSCs and various differentiated cell types. METHODS Identifying iPSC marker genes for each cell type individually provided a larger and more specific set of potential marker genes than considering all cell types in the analysis. Thus, the authors focused on identifying markers for iPSC impurities in iPSC-derived cardiomyocytes (iCMs) and validated the selected genes by reverse transcription quantitative polymerase chain reaction. The sensitivity of the candidate genes was determined by spiking different amounts of iPSCs into iCMs and their performance was compared with the previously suggested marker lin-28 homolog A (LIN28A). RESULTS Embryonic stem cell-related gene (ESRG), long intergenic non-protein coding RNA 678 (LINC00678), CaM kinase-like vesicle-associated (CAMKV), indoleamine 2,3-dioxygenase 1 (IDO1), chondromodulin (CNMD), LINE1-type transposase domain containing 1 (L1DT1), LIN28A, lymphocyte-specific protein tyrosine kinase (LCK), vertebrae development-associated (VRTN) and zinc finger and SCAN domain containing 10 (ZSCAN10) detected contaminant iPSCs among iCMs with a limit of detection that ranged from 0.001% to 0.1% depending on the gene and iCM batch used. CONCLUSIONS Using the example of iCMs, the authors provide a strategy for identifying a set of highly specific and sensitive markers that can be used for quality assessment of iPSC-derived products.
Collapse
|
7
|
Yasui R, Matsui A, Sekine K, Okamoto S, Taniguchi H. Highly Sensitive Detection of Human Pluripotent Stem Cells by Loop-Mediated Isothermal Amplification. Stem Cell Rev Rep 2022; 18:2995-3007. [PMID: 35661077 PMCID: PMC9622575 DOI: 10.1007/s12015-022-10402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
For safe regenerative medicines, contaminated or remaining tumorigenic undifferentiated cells in cell-derived products must be rigorously assessed through sensitive assays. Although in vitro nucleic acid tests offer particularly sensitive tumorigenicity-associated assays, the human pluripotent stem cell (hPSC) detectability is partly constrained by the small input amount of RNA per test. To overcome this limitation, we developed reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays that are highly gene specific and robust against interfering materials. LAMP could readily assay microgram order of input sample per test and detected an equivalent model of 0.00002% hiPSC contamination in a simple one-pot reaction. For the evaluation of cell-derived total RNA, RT-LAMP detected spiked-in hPSCs among hPSC-derived trilineage cells utilizing multiple pluripotency RNAs. We also developed multiplex RT-LAMP assays and further applied for in situ cell imaging, achieving specific co-staining of pluripotency proteins and RNAs. Our attempts uncovered the utility of RT-LAMP approaches for tumorigenicity-associated assays, supporting practical applications of regenerative medicine.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Fundamental Research Laboratory, Eiken Chemical Co., Ltd., Nogi, Tochigi, 329-0114, Japan
| | - Atsuka Matsui
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Ohtawara, Tochigi, 324-0036, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
8
|
Morita Y, Kishino Y, Fukuda K, Tohyama S. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy. Cell Prolif 2022; 55:e13248. [PMID: 35534945 PMCID: PMC9357358 DOI: 10.1111/cpr.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Basic research on human pluripotent stem cell (hPSC)‐derived cardiomyocytes (CMs) for cardiac regenerative therapy is one of the most active and complex fields to achieve this alternative to heart transplantation and requires the integration of medicine, science, and engineering. Mortality in patients with heart failure remains high worldwide. Although heart transplantation is the sole strategy for treating severe heart failure, the number of donors is limited. Therefore, hPSC‐derived CM (hPSC‐CM) transplantation is expected to replace heart transplantation. To achieve this goal, for basic research, various issues should be considered, including how to induce hPSC proliferation efficiently for cardiac differentiation, induce hPSC‐CMs, eliminate residual undifferentiated hPSCs and non‐CMs, and assess for the presence of residual undifferentiated hPSCs in vitro and in vivo. In this review, we discuss the current stage of resolving these issues and future directions for realizing hPSC‐based cardiac regenerative therapy.
Collapse
Affiliation(s)
- Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Chung L, Cogburn LA, Sui L, Dashnau JL. Development of an induced pluripotent stem cell–specific microRNA assay for detection of residual undifferentiated cells in natural killer cell therapy products. Cytotherapy 2022; 24:733-741. [DOI: 10.1016/j.jcyt.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 01/04/2023]
|