1
|
Marino C, Malotaux V, Giudicessi A, Aguillon D, Sepulveda-Falla D, Lopera F, Quiroz YT. Protective genetic variants against Alzheimer's disease. Lancet Neurol 2025; 24:524-534. [PMID: 40409316 DOI: 10.1016/s1474-4422(25)00116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/25/2025]
Abstract
Genetic studies can offer powerful insights for the development of disease-modifying therapies for Alzheimer's disease. Protective genetic variants that delay the onset of cognitive impairment have been found in people with sporadic Alzheimer's disease and in carriers of mutations that usually cause autosomal-dominant Alzheimer's disease in mid-life. The study of families who carry autosomal dominant mutations provides a unique opportunity to uncover genetic modifiers of disease progression, including rare variants in genes such as APOE and RELN. Understanding how these variants confer protection can help identify the biological pathways that contribute to cognitive resilience, such as the heparan-sulphate proteoglycan-APOE receptor pathway, the TREM-2-driven signalling pathways in the microglia, and phagocytosis. Therapies able to replicate the beneficial effects of these natural defences could provide novel strategies for slowing or preventing the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia Marino
- The Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA, USA; Department of Neurology, Sealy Institute for Drug Discovery and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| | - Vincent Malotaux
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Averi Giudicessi
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Boston University, Department of Psychological and Brain Sciences, Boston, MA, USA
| | - David Aguillon
- The Neuroscience Group of Antioquia, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Diego Sepulveda-Falla
- The Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Francisco Lopera
- The Neuroscience Group of Antioquia, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Boston University, Department of Psychological and Brain Sciences, Boston, MA, USA; The Neuroscience Group of Antioquia, School of Medicine, University of Antioquia, Medellín, Colombia; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ghiyamihoor F, Rad AA, Marzban H. The Nuclear Transitory Zone: A Key Player in the Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2025; 24:92. [PMID: 40314748 DOI: 10.1007/s12311-025-01848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
The nuclear transitory zone (NTZ), while crucial during cerebellar development, has remained elusive due to its transient nature and the technical limitations in observing this dynamic structure in vivo. Traditionally considered an assembly point for immature neurons of the prospective cerebellar nuclei, recent studies highlight the NTZ's rich cellular and molecular heterogeneity in the early-developing region at the rostral end of the cerebellar primordium. While much is known about its molecular diversity, the precise functional role of NTZ in cerebellar development remains unclear. This review synthesizes current knowledge of the NTZ, focusing on its developmental origin, cellular and molecular composition, and potential role in regulating cerebellar development. We explore studies primarily conducted in mice, exploring the NTZ development from the rhombic lip, the ventricular zone, and possibly the mesencephalon. Special attention is given to molecules such as TLX3, Contactin-1 (CNTN1), OLIG2, Reelin (RELN), LMX1A, and TBR2, which are prominently expressed in the NTZ during early cerebellar development. Evidence suggests that the NTZ is more than just a neuronal assembly site; its molecular markers and gene expression profile indicate a role in circuit formation and regulation within the cerebellar primordium. We suggest that the NTZ may contribute to early cerebellar circuit formation, potentially acting as a regulator or organizer of cerebellar development. However, caution is necessary in attributing developmental roles solely based on gene expression patterns. Future studies should focus on the functional consequences of gene expression in the NTZ and its interactions with developing cerebellar circuits.
Collapse
Affiliation(s)
- Farshid Ghiyamihoor
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine Rady Faculty of Health Sciences, University of Manitoba, Room 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Azam Asemi Rad
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine Rady Faculty of Health Sciences, University of Manitoba, Room 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine Rady Faculty of Health Sciences, University of Manitoba, Room 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
3
|
Reive BS, Lau V, Sánchez-Lafuente CL, Henri-Bhargava A, Kalynchuk LE, Tremblay MÈ, Caruncho HJ. The Inflammation-Induced Dysregulation of Reelin Homeostasis Hypothesis of Alzheimer's Disease. J Alzheimers Dis 2024; 100:1099-1119. [PMID: 38995785 PMCID: PMC11380287 DOI: 10.3233/jad-240088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Alzheimer's disease (AD) accounts for most dementia cases, but we lack a complete understanding of the mechanisms responsible for the core pathology associated with the disease (e.g., amyloid plaque and neurofibrillary tangles). Inflammation has been identified as a key contributor of AD pathology, with recent evidence pointing towards Reelin dysregulation as being associated with inflammation. Here we describe Reelin signaling and outline existing research involving Reelin signaling in AD and inflammation. Research is described pertaining to the inflammatory and immunological functions of Reelin before we propose a mechanism through which inflammation renders Reelin susceptible to dysregulation resulting in the induction and exacerbation of AD pathology. Based on this hypothesis, it is predicted that disorders of both inflammation (including peripheral inflammation and neuroinflammation) and Reelin dysregulation (including disorders associated with upregulated Reelin expression and disorders of Reelin downregulation) have elevated risk of developing AD. We conclude with a description of AD risk in various disorders involving Reelin dysregulation and inflammation.
Collapse
Affiliation(s)
- Brady S Reive
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Victor Lau
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexandre Henri-Bhargava
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Vancouver Island Health Authority, Victoria, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
4
|
Huang JK, Lee HC. Emerging Evidence of Pathological Roles of Very-Low-Density Lipoprotein (VLDL). Int J Mol Sci 2022; 23:4300. [PMID: 35457118 PMCID: PMC9031540 DOI: 10.3390/ijms23084300] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Embraced with apolipoproteins (Apo) B and Apo E, triglyceride-enriched very-low-density lipoprotein (VLDL) is secreted by the liver into circulation, mainly during post-meal hours. Here, we present a brief review of the physiological role of VLDL and a systemic review of the emerging evidence supporting its pathological roles. VLDL promotes atherosclerosis in metabolic syndrome (MetS). VLDL isolated from subjects with MetS exhibits cytotoxicity to atrial myocytes, induces atrial myopathy, and promotes vulnerability to atrial fibrillation. VLDL levels are affected by a number of endocrinological disorders and can be increased by therapeutic supplementation with cortisol, growth hormone, progesterone, and estrogen. VLDL promotes aldosterone secretion, which contributes to hypertension. VLDL induces neuroinflammation, leading to cognitive dysfunction. VLDL levels are also correlated with chronic kidney disease, autoimmune disorders, and some dermatological diseases. The extra-hepatic secretion of VLDL derived from intestinal dysbiosis is suggested to be harmful. Emerging evidence suggests disturbed VLDL metabolism in sleep disorders and in cancer development and progression. In addition to VLDL, the VLDL receptor (VLDLR) may affect both VLDL metabolism and carcinogenesis. Overall, emerging evidence supports the pathological roles of VLDL in multi-organ diseases. To better understand the fundamental mechanisms of how VLDL promotes disease development, elucidation of the quality control of VLDL and of the regulation and signaling of VLDLR should be indispensable. With this, successful VLDL-targeted therapies can be discovered in the future.
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
5
|
Dong MH, Zhou LQ, Tang Y, Chen M, Xiao J, Shang K, Deng G, Qin C, Tian DS. CSF sTREM2 in neurological diseases: a two-sample Mendelian randomization study. J Neuroinflammation 2022; 19:79. [PMID: 35382840 PMCID: PMC8985278 DOI: 10.1186/s12974-022-02443-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been described as a biomarker for microglial activation, which were observed increased in a variety of neurological disorders. Objective Our objective was to explore whether genetically determined CSF sTREM2 levels are causally associated with different neurological diseases by conducting a two-sample Mendelian randomization (MR) study. Methods Single nucleotide polymorphisms significantly associated with CSF sTREM2 levels were selected as instrumental variables to estimate the causal effects on clinically common neurological diseases, including stroke, Alzheimer’s diseases, Parkinson’s diseases, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy and their subtypes. Summary-level statistics of both exposure and outcomes were applied in an MR framework. Results Genetically predicted per 1 pg/dL increase of CSF sTREM2 levels was associated with higher risk of multiple sclerosis (OR = 1.038, 95%CI = 1.014–1.064, p = 0.002). Null association was found in risk of other included neurological disorders. Conclusions These findings provide support for a potential causal relationship between elevated CSF sTREM2 levels and higher risk of multiple sclerosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02443-9.
Collapse
Affiliation(s)
- Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|