1
|
Li X, Zhao W, Wang Z, Moura AK, Roudbari K, Zuo R, Hu JZ, Wang YT, Li PL, Zhang Y. Acid Sphingomyelinase Regulates AdipoRon-Induced Differentiation of Arterial Smooth Muscle Cells via TFEB Activation. Int J Mol Sci 2025; 26:2147. [PMID: 40076784 PMCID: PMC11899876 DOI: 10.3390/ijms26052147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
AdipoRon is a selective adiponectin receptor agonist that inhibits vascular remodeling by promoting the differentiation of arterial smooth muscle cells (SMCs). Our recent studies have demonstrated that activation of TFEB and its downstream autophagy-lysosomal signaling contribute to adipoRon-induced differentiation of SMCs. The present study was designed to examine whether acid sphingomyelinase (ASM; gene symbol Smpd1) is involved in mediating adipoRon-induced activation of TFEB-autophagy signaling and inhibition of proliferation/migration in arterial SMCs. Our results showed that adipoRon induced ASM expression and ceramide production in Smpd1+/+ SMCs, which were abolished in Smpd1-/- SMCs. Compared to Smpd1+/+ SMCs, Smpd1-/- SMCs exhibited less TFEB nuclear translocation and activation of autophagy signaling induced by adipoRon stimulation. SMC differentiation was further characterized by retarded wound healing, reduced proliferation, F-actin reorganization, and MMP downregulation. The results showed that Smpd1-/- SMCs were less responsive to adipoRon-induced differentiation than Smpd1+/+ SMCs. Mechanistically, adipoRon increased the expression of protein phosphatases such as calcineurin and PP2A in Smpd1+/+ SMCs. The calcineurin inhibitor FK506/cyclosporin A or PP2A inhibitor okadaic acid significantly attenuated adipoRon-induced activation of TFEB-autophagy signaling. In addition, adipoRon-induced expressions of calcineurin and PP2A were not observed in Smpd1-/- SMCs. However, activation of calcineurin by lysosomal TRPML1-Ca2+ channel agonist ML-SA1 rescued the activation of TFEB-autophagy signaling and the effects of adipoRon on cell differentiation in Smpd1-/- SMCs. Taken together, these data suggested that ASM regulates adipoRon-induced SMC differentiation through TFEB activation. This study provided novel mechanistic insights into the therapeutic effects of adipoRon on TFEB signaling and pathological vascular remodeling.
Collapse
MESH Headings
- Sphingomyelin Phosphodiesterase/metabolism
- Sphingomyelin Phosphodiesterase/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Cell Differentiation/drug effects
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Piperidines/pharmacology
- Signal Transduction/drug effects
- Autophagy/drug effects
- Mice
- Cells, Cultured
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Ceramides/metabolism
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Wei Zhao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Yang Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
2
|
Luo Z, Wu A, Robson S, Alper SL, Yu W. Adiponectin signaling regulates urinary bladder function by blunting smooth muscle purinergic contractility. JCI Insight 2025; 10:e188780. [PMID: 39989457 PMCID: PMC11949013 DOI: 10.1172/jci.insight.188780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025] Open
Abstract
Lower urinary tract symptoms (LUTS) affect approximately 50% of the population over 40 years of age and are strongly associated with obesity and metabolic syndrome. Adipose tissue plays a key role in obesity/metabolic syndrome by releasing adipokines that regulate systemic energy/lipid metabolism, insulin resistance, and inflammation. Adiponectin (ADPN), the most abundant adipokine, modulates energy/metabolism homeostasis through its insulin-sensitizing and antiinflammatory effects. Human plasma ADPN levels are inversely associated with obesity and diabetes. To the best of our knowledge, the role of adipokines such as ADPN in the LUTS associated with obesity/metabolic syndrome remains unknown. We have tested such a possible role in a global ADPN-knockout (Adpn-/-) mouse model. Adpn-/- mice exhibited increased voiding frequency, small voids, and reduced bladder smooth muscle (BSM) contractility, with absence of purinergic contraction. Molecular examination indicated significantly altered metabolic and purinergic pathways. The ADPN receptor agonist AdipoRon was found to abolish acute BSM contraction. Intriguingly, both AMPK activators and inhibitors also abolished BSM purinergic contraction. These data indicate the important contribution of what we believe is a novel ADPN signaling pathway to the regulation of BSM contractility. Dysregulation of this ADPN signaling pathway might be an important mechanism leading to LUTS associated with obesity/metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Simon Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L. Alper
- Division of Nephrology
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Weiqun Yu
- Division of Nephrology
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Luo Z, Wu A, Robson S, Alper S, Yu W. Adiponectin Signaling Regulates Urinary Bladder Function by Blunting Smooth Muscle Purinergic Contractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620328. [PMID: 39554160 PMCID: PMC11565761 DOI: 10.1101/2024.10.25.620328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Lower urinary tract symptoms (LUTS) affect ∼ 50% of the population aged >40 years and are strongly associated with obesity and metabolic syndrome. Adipose tissue plays a key role in obesity/metabolic syndrome by releasing adipokines that regulate systemic energy/lipid metabolism, insulin resistance, and inflammation. Adiponectin (ADPN), the most abundant adipokine, modulates energy/metabolism homeostasis through its insulin-sensitizing and anti-inflammatory effects. Human plasma ADPN levels are inversely associated with obesity and diabetes. The role of adipokines such as ADPN in the LUTS associated with obesity/metabolic syndrome remains unknown. We have tested such a possible role in a global ADPN knockout mouse model ( Adpn -/- ). Adpn -/- mice exhibited increased voiding frequency, small voids, and reduced bladder smooth muscle (BSM) contractility with absence of purinergic contraction. Molecular examination indicated significantly altered metabolic and purinergic pathways. The ADPN receptor agonist AdipoRon was found to abolish acute BSM contraction. Intriguingly, both AMPK activators and inhibitors also abolished BSM purinergic contraction. These data indicate the important contribution of a novel ADPN signaling pathway to the regulation of BSM contractility. Dysregulation of this ADPN signaling pathway might be an important mechanism leading to LUTS associated with obesity/metabolic syndrome. ARTICLE HIGHLIGHTS Lower urinary tract symptom (LUTS) is strongly associated with obesity and metabolic syndrome, however, the underlying molecular mechanisms are missing. Dysregulation of adipokine signaling could be the link for this association.Whether adiponectin, the most abundant adipokine, plays a role in regulating bladder function and dysfunction.Mice null for adiponectin exhibited increased voiding frequency, small voids, and reduced bladder smooth muscle contractility, with corresponding metabolic and purinergic pathway changes.Dysregulation of adiponectin signaling might be an important mechanism leading to LUTS associated with obesity/metabolic syndrome.
Collapse
|
4
|
Zhang ML, Zhang MN, Chen H, Wang X, Zhao K, Li X, Song X, Tong F. Salvianolic Acid B Alleviates High Glucose-Induced Vascular Smooth Muscle Cell Inflammation by Upregulating the miR-486a-5p Expression. Mediators Inflamm 2024; 2024:4121166. [PMID: 38405620 PMCID: PMC10890902 DOI: 10.1155/2024/4121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
The macrovascular complications of diabetes cause high mortality and disability in patients with type 2 diabetes mellitus (T2DM). The inflammatory response of vascular smooth muscle cell (VSMC) runs through its pathophysiological process. Salvianolic acid B (Sal B) exhibits beneficial effects on the cardiovascular system. However, its role and mechanism in diabetic vascular inflammatory response remain unclear. In this study, we found that Sal B reduced vascular inflammation in diabetic mice and high glucose- (HG-) induced VSMC inflammation. Subsequently, we found that Sal B reduced HG-induced VSMC inflammation by downregulating FOXO1. Furthermore, miR-486a-5p expression was obviously reduced in HG-treated VSMC. Sal B attenuated HG-induced VSMC inflammation by upregulating miR-486a-5p. Loss- and gain-of-function experiments had proven that the transfection of the miR-486a-5p mimic inhibited HG-induced VSMC inflammation whereas that of the miR-486a-5p inhibitor promoted HG-induced VSMC inflammation, thereby leading to the amelioration of vascular inflammation in the diabetic mice. Furthermore, studies had shown that miR-486a-5p inhibited FOXO1 expression by directly targeting its 3'-UTR. In conclusion, Sal B alleviates the inflammatory response of VSMC by upregulating miR-486a-5p and aggravating its inhibition of FOXO1 expression. Sal B exerts a significant anti-inflammatory effect in HG-induced VSMC inflammation by modulating the miR-486a-5p/FOXO1 axis.
Collapse
Affiliation(s)
- Man-Li Zhang
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Man-Na Zhang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Hui Chen
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Xia Wang
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Kun Zhao
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Xuan Li
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Xuan Song
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Fei Tong
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
5
|
Chronic Central Leptin Infusion Promotes an Anti-Inflammatory Cytokine Profile Related to the Activation of Insulin Signaling in the Gastrocnemius of Male Rats. Biomedicines 2022; 10:biomedicines10071465. [PMID: 35884769 PMCID: PMC9312815 DOI: 10.3390/biomedicines10071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022] Open
Abstract
Leptin is involved in the modulation of insulin signaling in peripheral tissues, being closely associated with changes in lipid metabolism. This adipokine modifies inflammatory pathways that can interact with insulin targets in peripheral organs; however, the mechanisms remain unclear. Inflammatory and insulin signaling targets, cytokines, adiponectin, irisin and non-esterified fatty acid (NEFA) levels and enzymes of fatty acid anabolism were studied in the gastrocnemius of chronic centrally infused leptin (L), pair-fed and control rats. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) and c-Jun N-terminal kinase (JNK) was reduced in L rats (59% and 58%, respectively). The phosphorylation of the insulin receptor and Akt and adiponectin and irisin content was increased in L rats (154%, 157%, 308% and 329%, respectively). The levels of glucose-6-phosphate dehydrogenase, the mRNA content of acetyl Co-A carboxylase and NEFA concentrations were diminished in the muscles of L rats (59%, 50% and 61%, respectively). The activation of JNK correlated positively with STAT3 phosphorylation, tumoral necrosis factor-α and NEFA and negatively with irisin and Akt phosphorylation. These data suggest that the activation of insulin signaling targets and a decrease in NEFA content are associated with a reduction in muscle inflammation parameters, suggesting that leptin may integrate these pathways.
Collapse
|
6
|
Cohen KE, Katunaric B, SenthilKumar G, McIntosh JJ, Freed JK. Vascular endothelial adiponectin signaling across the life span. Am J Physiol Heart Circ Physiol 2022; 322:H57-H65. [PMID: 34797171 PMCID: PMC8698498 DOI: 10.1152/ajpheart.00533.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease risk increases with age regardless of sex. Some of this risk is attributable to alterations in natural hormones throughout the life span. The quintessential example of this being the dramatic increase in cardiovascular disease following the transition to menopause. Plasma levels of adiponectin, a "cardioprotective" adipokine released primarily by adipose tissue and regulated by hormones, also fluctuate throughout one's life. Plasma adiponectin levels increase with age in both men and women, with higher levels in both pre- and postmenopausal women compared with men. Younger cohorts seem to confer cardioprotective benefits from increased adiponectin levels yet elevated levels in the elderly and those with existing heart disease are associated with poor cardiovascular outcomes. Here, we review the most recent data regarding adiponectin signaling in the vasculature, highlight the differences observed between the sexes, and shed light on the apparent paradox regarding increased cardiovascular disease risk despite rising plasma adiponectin levels over time.
Collapse
Affiliation(s)
- Katie E. Cohen
- 1Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Boran Katunaric
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gopika SenthilKumar
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer J. McIntosh
- 3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,4Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K. Freed
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Liu Y, Sun Y, Hu C, Liu J, Gao A, Han H, Chai M, Zhang J, Zhou Y, Zhao Y. Perivascular Adipose Tissue as an Indication, Contributor to, and Therapeutic Target for Atherosclerosis. Front Physiol 2020; 11:615503. [PMID: 33391033 PMCID: PMC7775482 DOI: 10.3389/fphys.2020.615503] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has been identified to have significant endocrine and paracrine functions, such as releasing bioactive adipokines, cytokines, and chemokines, rather than a non-physiological structural tissue. Considering the contiguity with the vascular wall, PVAT could play a crucial role in the pathogenic microenvironment of atherosclerosis. Growing clinical evidence has shown an association between PVAT and atherosclerosis. Moreover, based on computed tomography, the fat attenuation index of PVAT was verified as an indication of vulnerable atherosclerotic plaques. Under pathological conditions, such as obesity and diabetes, PVAT shows a proatherogenic phenotype by increasing the release of factors that induce endothelial dysfunction and inflammatory cell infiltration, thus contributing to atherosclerosis. Growing animal and human studies have investigated the mechanism of the above process, which has yet to be fully elucidated. Furthermore, traditional treatments for atherosclerosis have been proven to act on PVAT, and we found several studies focused on novel drugs that target PVAT for the prevention of atherosclerosis. Emerging as an indication, contributor to, and therapeutic target for atherosclerosis, PVAT warrants further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Ang Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Meng Chai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
8
|
Adiponectin Exerts Peripheral Inhibitory Effects on the Mouse Gastric Smooth Muscle through the AMPK Pathway. Int J Mol Sci 2020; 21:ijms21249617. [PMID: 33348652 PMCID: PMC7767160 DOI: 10.3390/ijms21249617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Some adipokines, such as adiponectin (ADPN), other than being implicated in the central regulation of feeding behavior, may influence gastric motor responses, which are a source of peripheral signals that also influence food intake. The present study aims to elucidate the signaling pathways through which ADPN exerts its actions in the mouse gastric fundus. To this purpose, we used a multidisciplinary approach. The mechanical results showed that ADPN caused a decay of the strip basal tension, which was abolished by the nitric oxide (NO) synthesis inhibitor, L-NG-nitro arginine (L-NNA). The electrophysiological experiments confirmed that all ADPN effects were abolished by L-NNA, except for the reduction of Ca2+ current, which was instead prevented by the inhibitor of AMP-activated protein kinase (AMPK), dorsomorphin. The activation of the AMPK signaling by ADPN was confirmed by immunofluorescence analysis, which also revealed the ADPN R1 receptor (AdipoR1) expression in glial cells of the myenteric plexus. In conclusion, our results indicate that ADPN exerts an inhibitory action on the gastric smooth muscle by acting on AdipoR1 and involving the AMPK signaling pathway at the peripheral level. These findings provide novel bases for considering AMPK as a possible pharmacologic target for the potential treatment of obesity and eating disorders.
Collapse
|