1
|
Shi L, Guo C, Fang M, Yang Y, Yin F, Shen Y. Cross-kingdom regulation of plant microRNAs: potential application in crop improvement and human disease therapeutics. FRONTIERS IN PLANT SCIENCE 2024; 15:1512047. [PMID: 39741676 PMCID: PMC11685121 DOI: 10.3389/fpls.2024.1512047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Plant microRNAs (miRNAs) are small non-coding RNA molecules that usually negatively regulate gene expression at the post-transcriptional level. Recent data reveal that plant miRNAs are not limited to individual plants but can transfer across different species, allowing for communication with the plant, animal, and microbial worlds in a cross-kingdom approach. This review discusses the differences in miRNA biosynthesis between plants and animals and summarizes the current research on the cross-species regulatory effects of plant miRNAs on nearby plants, pathogenic fungi, and insects, which can be applied to crop disease and pest resistance. In particular, this review highlights the latest findings regarding the function of plant miRNAs in the transboundary regulation of human gene expression, which may greatly expand the clinical applicability of plant miRNAs as intriguing tools in natural plant-based medicinal products in the future.
Collapse
Affiliation(s)
- Lei Shi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Fang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yingmei Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Fei Yin
- National Demonstration Center for Experimental (Aquaculture) Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuan Shen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Shen C, Li X, Qin J, Duan L. Characterization of miRNA profiling in konjac-derived exosome-like nanoparticles and elucidation of their multifaceted roles in human health. FRONTIERS IN PLANT SCIENCE 2024; 15:1444683. [PMID: 39175488 PMCID: PMC11338808 DOI: 10.3389/fpls.2024.1444683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have demonstrated cross-kingdom capabilities in regulating intercellular communication, facilitating drug delivery, and providing therapeutic interventions in humans. However, the functional attributes of konjac-derived ELNs (K-ELNs) remain largely unexplored. This study investigates the isolation, characterization, and functional analysis of K-ELNs, along with the profiling and differential expression analysis of associated miRNAs in both K-ELNs and Konjac tissues. K-ELNs were successfully isolated and characterized from two konjac species using ultracentrifugation, followed by Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Small RNA sequencing identified a total of 3,259 miRNAs across all samples. Differential expression analysis revealed significant differences in miRNA profiles between K-ELNs and tissue samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of target genes provided insights into their roles in modulating pathways associated with diseases such as cancer and neurodegenerative disorders. Additionally, six miRNAs were selected for validation of sequencing results via RT-qPCR. The 5'RLM-RACE method was employed to validate the cleavage sites between differentially expressed miRNAs (DEMs) and their predicted target genes, further substantiating the regulatory roles of miRNAs in konjac. The findings of this study enhance our understanding of the molecular mechanisms underlying the biological functions and applications of K-ELNs, laying the groundwork for future research into their potential therapeutic roles in human health.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-economy Research Center, Ankang University, Ankang, China
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, China
| | - Jianfeng Qin
- Ankang Municipality Agricultural Science Research Institute, Ankang, China
| | - Longfei Duan
- Ankang Municipality Agricultural Science Research Institute, Ankang, China
| |
Collapse
|
3
|
Reza-Zaldívar E, Jacobo-Velázquez DA. Targeting Metabolic Syndrome Pathways: Carrot microRNAs As Potential Modulators. ACS OMEGA 2024; 9:21891-21903. [PMID: 38799337 PMCID: PMC11112692 DOI: 10.1021/acsomega.3c09633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Metabolic syndrome is a condition characterized by metabolic alterations that culminate in chronic noncommunicable diseases of high morbidity and mortality, such as cardiovascular diseases, type 2 diabetes, nonalcoholic fatty liver disease, and colon cancer. Developing new therapeutic strategies with a multifactorial approach is important since current therapies focus on only one or two components of the metabolic syndrome. In this sense, plant-based gene regulation represents an innovative strategy to prevent or modulate human metabolic pathologies, including metabolic syndrome. Here, using a computational and systems biology approach, it was found that carrot microRNAs can modulate key BMPs/SMAD signaling members, C/EBPs, and KLFs involved in several aspects associated with metabolic syndrome, including the hsa04350:TGF-beta signaling pathway, hsa04931:insulin resistance, hsa04152:AMPK signaling pathway, hsa04933:AGE-RAGE signaling pathway in diabetic complications, hsa04010:MAPK signaling pathway, hsa04350:TGF-beta signaling pathway, hsa01522:endocrine resistance, and hsa04910:insulin signaling pathway. These data demonstrated the potential applications of carrot microRNAs as effective food-based therapeutics for obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Edwin
E. Reza-Zaldívar
- Tecnologico
de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico
de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
- Tecnologico
de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| |
Collapse
|
4
|
Sahu S, Rao AR, Sahu TK, Pandey J, Varshney S, Kumar A, Gaikwad K. Predictive Role of Cluster Bean ( Cyamopsis tetragonoloba) Derived miRNAs in Human and Cattle Health. Genes (Basel) 2024; 15:448. [PMID: 38674383 PMCID: PMC11049822 DOI: 10.3390/genes15040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 04/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding conserved molecules with lengths varying between 18-25nt. Plants miRNAs are very stable, and probably they might have been transferred across kingdoms via food intake. Such miRNAs are also called exogenous miRNAs, which regulate the gene expression in host organisms. The miRNAs present in the cluster bean, a drought tolerant legume crop having high commercial value, might have also played a regulatory role for the genes involved in nutrients synthesis or disease pathways in animals including humans due to dietary intake of plant parts of cluster beans. However, the predictive role of miRNAs of cluster beans for gene-disease association across kingdoms such as cattle and humans are not yet fully explored. Thus, the aim of the present study is to (i) find out the cluster bean miRNAs (cb-miRs) functionally similar to miRNAs of cattle and humans and predict their target genes' involvement in the occurrence of complex diseases, and (ii) identify the role of cb-miRs that are functionally non-similar to the miRNAs of cattle and humans and predict their targeted genes' association with complex diseases in host systems. Here, we predicted a total of 33 and 15 functionally similar cb-miRs (fs-cb-miRs) to human and cattle miRNAs, respectively. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the participation of targeted genes of fs-cb-miRs in 24 and 12 different pathways in humans and cattle, respectively. Few targeted genes in humans like LCP2, GABRA6, and MYH14 were predicted to be associated with disease pathways of Yesinia infection (hsa05135), neuroactive ligand-receptor interaction (hsa04080), and pathogenic Escherichia coli infection (hsa05130), respectively. However, targeted genes of fs-cb-miRs in humans like KLHL20, TNS1, and PAPD4 are associated with Alzheimer's, malignant tumor of the breast, and hepatitis C virus infection disease, respectively. Similarly, in cattle, targeted genes like ATG2B and DHRS11 of fs-cb-miRs participate in the pathways of Huntington disease and steroid biosynthesis, respectively. Additionally, the targeted genes like SURF4 and EDME2 of fs-cb-miRs are associated with mastitis and bovine osteoporosis, respectively. We also found a few cb-miRs that do not have functional similarity with human and cattle miRNAs but are found to target the genes in the host organisms and as well being associated with human and cattle diseases. Interestingly, a few genes such as NRM, PTPRE and SUZ12 were observed to be associated with Rheumatoid Arthritis, Asthma and Endometrial Stromal Sarcoma diseases, respectively, in humans and genes like SCNN1B associated with renal disease in cattle.
Collapse
Affiliation(s)
- Sarika Sahu
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Atmakuri Ramakrishna Rao
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Indian Council of Agricultural Research, New Delhi 110001, India
| | - Tanmaya Kumar Sahu
- Indian Grassland and Fodder Research Institute, ICAR, Jhansi 284003, India;
| | - Jaya Pandey
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Shivangi Varshney
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Archna Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Kishor Gaikwad
- National Institute for Plant Biotechnology, ICAR, New Delhi 110012, India;
| |
Collapse
|
5
|
Xu T, Zhu Y, Lin Z, Lei J, Li L, Zhu W, Wu D. Evidence of Cross-Kingdom Gene Regulation by Plant MicroRNAs and Possible Reasons for Inconsistencies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4564-4573. [PMID: 38391237 DOI: 10.1021/acs.jafc.3c09097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The debate on whether cross-kingdom gene regulation by orally acquired plant miRNAs is possible has been ongoing for nearly 10 years without a conclusive answer. In this study, we categorized plant miRNAs into different groups, namely, extracellular vesicle (EV)-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, synthetic plant miRNA mimics, and plant tissue/juice-borne plant miRNAs. This categorization aimed to simplify the analysis and address the question more specifically. Our evidence suggests that EV-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, and synthetic plant miRNA mimics consistently facilitate cross-kingdom gene regulation. However, the results regarding the cross-kingdom gene regulation by plant tissue- and juice-borne plant miRNAs are inconclusive. This inconsistency may be due to variations in study methods, a low absorption rate of miRNAs and the selective absorption of plant miRNAs in the gastrointestinal tract. Overall, it is deduced that cross-kingdom gene regulation by orally acquired plant miRNAs can occur under certain circumstances, depending on factors such as the types of plant miRNAs, the delivery mechanism, and their concentrations in the plant.
Collapse
Affiliation(s)
- Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Ziqi Lin
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Jinyue Lei
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Diyao Wu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| |
Collapse
|
6
|
Liu YD, Chen HR, Zhang Y, Yan G, Yan HJ, Zhu Q, Peng LH. Progress and challenges of plant-derived nucleic acids as therapeutics in macrophage-mediated RNA therapy. Front Immunol 2023; 14:1255668. [PMID: 38155963 PMCID: PMC10753178 DOI: 10.3389/fimmu.2023.1255668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Plant-derived nucleic acids, especially small RNAs have been proved by increasing evidence in the pharmacological activities and disease treatment values in macrophage meditated anti-tumor performance, immune regulating functions and antiviral activities. But the uptake, application and delivery strategies of RNAs as biodrugs are different from the small molecules and recombinant protein drugs. This article summarizes the reported evidence for cross-kingdom regulation by plant derived functional mRNAs and miRNAs. Based on that, their involvement and potentials in macrophage-mediated anti-tumor/inflammatory therapies are mainly discussed, as well as the load prospect of plant RNAs in viruses and natural exosome vehicles, and their delivery to mammalian cells through macrophage were also summarized. This review is to provide evidence and views for the plant derived RNAs as next generation of drugs with application potential in nucleic acid-based bio-therapy.
Collapse
Affiliation(s)
- Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao-Ran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao-Jie Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
7
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
8
|
Xie W, Delebinski C, Gürgen D, Schröder M, Seifert G, Melzig MF. Inhibition of osteosarcoma by European Mistletoe derived val-miR218. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:306-322. [PMID: 39698025 PMCID: PMC11651123 DOI: 10.20517/evcna.2023.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Aim In recent years, there has been a growing interest in the therapeutic potential of plant-derived miRNAs, which have been considered new bioactive ingredients in medicinal plants. Viscum album L., commonly used as an adjuvant cancer therapy in central Europe, contains a large number of miRNAs associated with human diseases such as cancer, cardiovascular diseases, and neurological disorders. This study aimed to investigate whether mistletoe miRNAs, specifically val-miR218, exert anti-cancer activity against osteosarcoma. Methods The anti-cancer effects of miRNAs from V. album L. were evaluated. The targets of val-miR218 were identified by RNA-seq. The mRNA and protein expression of the targets was confirmed by RT-qPCR and western blot analyses. The interaction between the val-miR218 and miRNA recognition elements (MREs) was validated by the dual-luciferase assay. The inhibitory effect of val-miR218 against osteosarcoma was investigated in vivo. Results Among these abundant miRNAs in V. album L., val-miR218 showed high potential anti-cancer effects against osteosarcoma. To clarify its molecular mechanism of action, we sequenced val-miR218 associated RNAs and their down-regulated RNAs. As a result, 61 genes were considered the direct targets of val-miR218. Interestingly, these targets were related to essential cellular functions such as cell cycle, DNA replication, and cell morphology, suggesting that val-miR218 significantly inhibited cell growth and arrested osteosarcoma cells in G0/G1 phase by influencing basic cell activities. Mistletoe extracellular vesicles offered val-miR218 adequate protection and facilitated the uptake of val-miR281 by human cells. Moreover, val-miR218 showed significant anti-tumor effects in vivo. Conclusion This study demonstrated the significant potential of val-miR218 regarding proliferation inhibition in various tumor cell lines in vitro and for osteosarcoma in vivo. Due to the increasing problems during chemotherapy, new therapeutic approaches are becoming more critical. The significant anti-cancer effects of medicinal plants derived miRNAs indicate a promising therapeutic strategy for treating cancer.
Collapse
Affiliation(s)
- Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Catharina Delebinski
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
| | | | - Maik Schröder
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
| | - Georg Seifert
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
- Authors contributed equally
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
- Authors contributed equally
| |
Collapse
|
9
|
Olmi L, Pepe G, Helmer-Citterich M, Canini A, Gismondi A. Looking for Plant microRNAs in Human Blood Samples: Bioinformatics Evidence and Perspectives. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01063-9. [PMID: 37256506 PMCID: PMC10363053 DOI: 10.1007/s11130-023-01063-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Literature has proposed the existence of a cross kingdom regulation (CRK) between human and plants. In this context, microRNAs present in edible plants would be acquired through diet by the consumer's organism and transported via bloodstream to tissues, where they would modulate gene expression. However, the validity of this phenomenon is strongly debated; indeed, some scholars have discussed both the methodologies and the results obtained in previous works. To date, only one study has performed a bioinformatics analysis on small RNA-sequencing data for checking the presence of plant miRNAs (pmiRNAs) in human plasma. For that investigation, the lack of reliable controls, which led to the misidentification of human RNAs as pmiRNAs, has been deeply criticized. Thus, in the present contribution, we aim to demonstrate the existence of pmiRNAs in human blood, adopting a bioinformatics approach characterized by more stringent conditions and filtering. The information obtained from 380 experiments produced in 5 different next generation sequencing (NGS) projects was examined, revealing the presence of 350 circulating pmiRNAs across the analysed data set. Although one of the NGS projects shows results likely to be attributed to sample contamination, the others appear to provide reliable support for the acquisition of pmiRNAs through diet. To infer the potential biological activity of the identified pmiRNAs, we predicted their putative human mRNA targets, finding with great surprise that they appear to be mainly involved in neurogenesis and nervous system development. Unfortunately, no consensus was identified within the sequences of detected pmiRNAs, in order to justify their stability or capability to be preserved in human plasma. We believe that the issue regarding CKR still needs further clarifications, even if the present findings would offer a solid support that this hypothesis is not impossible.
Collapse
Affiliation(s)
- Lorenzo Olmi
- Dept. Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Gerardo Pepe
- Dept. Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Manuela Helmer-Citterich
- Dept. Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Antonella Canini
- Dept. Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Angelo Gismondi
- Dept. Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy.
| |
Collapse
|
10
|
Natali PG, Piantelli M, Minacori M, Eufemi M, Imberti L. Improving Whole Tomato Transformation for Prostate Health: Benign Prostate Hypertrophy as an Exploratory Model. Int J Mol Sci 2023; 24:ijms24065795. [PMID: 36982868 PMCID: PMC10055130 DOI: 10.3390/ijms24065795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
It is well-established that the beneficial properties of single phytonutrients can be better attained when they are taken with the complex of the molecules present in their natural milieu. Tomato, the fruit providing the most comprehensive complex of prostate-health-preserving micronutrients, has been shown to be superior to its single-nutrient counterparts in decreasing the incidence of age-related prostate diseases. Herein, we describe a novel tomato food supplement enriched with olive polyphenols, containing cis-lycopene concentrations far exceeding those present in industry-produced tomato commodities. The supplement, endowed with antioxidant activity comparable to that of N-acetylcysteine, significantly reduced, in experimental animals, the blood levels of prostate-cancer-promoting cytokines. In prospective, randomized, double-blinded, placebo-controlled studies performed on patients affected by benign prostatic hyperplasia, its uptake significantly improved urinary symptoms and quality of life. Therefore, this supplement can complement and, in some cases, be an alternative to current benign prostatic hyperplasia management. Furthermore, the product suppressed carcinogenesis in the TRAMP mouse model of human prostate cancer and interfered with prostate cancer molecular signaling. Thus, it may offer a step forward in exploring the potential of tomato consumption to delay or prevent the onset of age-related prostate diseases in high-risk individuals.
Collapse
Affiliation(s)
- Pier Giorgio Natali
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Mauro Piantelli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Marco Minacori
- Department of Biochemical Science "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, "La Sapienza" University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Science "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, "La Sapienza" University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
11
|
Murata M, Marugame Y, Morozumi M, Murata K, Kumazoe M, Fujimura Y, Tachibana H. (-)‑Epigallocatechin‑3‑ O‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells. Biomed Rep 2023; 18:19. [PMID: 36776784 PMCID: PMC9912138 DOI: 10.3892/br.2023.1601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
As pulmonary fibrosis (PF), a severe interstitial pulmonary disease, has such a poor prognosis, the development of prevention and treatment methods is imperative. (-)-Epigallocatechin-3-O-gallate (EGCG), one of the major catechins in green tea, exerts an antifibrotic effect, although its mechanism remains unclear. Recently, it has been reported that microRNAs (miRNAs or miRs) transported by extracellular vesicles (EVs) from vascular endothelial cells (VECs) are involved in PF. In the present study, the effects of EGCG on the expression of miRNAs in EVs derived from human umbilical vein endothelial cells (HUVECs) were assessed and miRNAs with antifibrotic activity were identified. miRNA microarray analysis revealed that EGCG modulated the expression levels of 31 miRNAs (a total of 27 miRNAs were upregulated, and 4 miRNAs were downregulated.) in EVs from HUVECs. Furthermore, TargetScan analysis indicated that miR-6757-3p in particular, which exhibited the highest degree of change, may target transforming growth factor-β (TGF-β) receptor 1 (TGFBR1). To evaluate the effects of miR-6757-3p on TGFBR1 expression, human fetal lung fibroblasts (HFL-1) were transfected with an miR-6757-3p mimic. The results demonstrated that the miR-6757-3p mimic downregulated the expression of TGFBR1 as well the expression levels of fibrosis-related genes including fibronectin and α-smooth muscle actin in TGF-β-treated HFL-1 cells. In summary, EGCG upregulated the expression levels of miR-6757-3p, which may target TGFBR1 and downregulate fibrosis-related genes, in EVs derived from VECs.
Collapse
Affiliation(s)
- Motoki Murata
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan,Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mai Morozumi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kyosuke Murata
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan,Correspondence to: Professor Hirofumi Tachibana, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Li F, Wang M, Li X, Long Y, Chen K, Wang X, Zhong M, Cheng W, Tian X, Wang P, Ji M, Ma X. Inflammatory-miR-301a circuitry drives mTOR and Stat3-dependent PSC activation in chronic pancreatitis and PanIN. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:970-982. [PMID: 35211358 PMCID: PMC8829454 DOI: 10.1016/j.omtn.2022.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 02/09/2023]
Abstract
Activated pancreatic stellate cells (PSCs) are the main cells involved in chronic pancreatitis and pancreatic intraepithelial neoplasia lesion (PanIN). Fine-tuning the precise molecular targets in PSC activation might help the development of PSC-specific therapeutic strategies to tackle progression of pancreatic cancer-related fibrosis. miR-301a is a pro-inflammatory microRNA known to be activated by multiple inflammatory factors in the tumor stroma. Here, we show that miR-301a is highly expressed in activated PSCs in mice, sustained tissue fibrosis in caerulein-induced chronic pancreatitis, and accelerated PanIN formation. Genetic ablation of miR-301a reduced pancreatic fibrosis in mouse models with chronic pancreatitis and PanIN. Cell proliferation and activation of PSCs was inhibited by downregulation of miR-301a via two of its targets, Tsc1 and Gadd45g. Moreover, aberrant PSC expression of miR-301a and Gadd45g restricted the interplay between PSCs and pancreatic cancer cells in tumorigenesis. Our findings suggest that miR-301a activates two major cell proliferation pathways, Tsc1/mTOR and Gadd45g/Stat3, in vivo, to facilitate development of inflammatory-induced PanIN and maintenance of PSC activation and desmoplasia in pancreatic cancer.
Collapse
Affiliation(s)
- Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Miaomiao Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Xun Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Yihao Long
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Xinjie Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Mingtian Zhong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Weimin Cheng
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Xuemei Tian
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong Province, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| |
Collapse
|
13
|
Li X, Yu H, Gong Y, Wu P, Feng Q, Liu C. Fuzheng Xiaozheng prescription relieves rat hepatocellular carcinoma through improving anti-inflammation capacity and regulating lipid related metabolisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114801. [PMID: 34748868 DOI: 10.1016/j.jep.2021.114801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Xiaozheng prescription (FZXZP) is a traditional Chinese medicine (TCM) that was derived from Sanjiasan, a famous decoction documented in the book of Wenyilun in Ming dynasty. Based on our years' clinic application, FZXZP demonstrated satisfactory therapeutic effects in cirrhosis and hepatocellular carcinoma (HCC) treatments. However, the underlying mechanisms are still largely unknown. AIM OF STUDY In this study, we aim to systematically evaluate the intervention effects of FZXZP on rat HCC and deeply elucidate the underlying regulative mechanisms on rat HCC. MATERIALS AND METHODS The HCC rats were induced by using diethylnitrosamine (DEN) and two doses of FZXZP were adopted to treat the HCC rats. Liver phenotype, blood chemistry and liver histopathology were used to evaluate the intervention effects. High performance liquid chromatography (HPLC) was conducted to analyze the components of FZXZP. Finally, miRNA-Seq and mRNA-Seq were performed to investigate the regulative mechanisms of FZXZP on rat HCC and qRT-PCR was carried out to verify the accuracies of the two RNA-Seqs. RESULTS Results of liver phenotypes, blood chemistry and liver histopathology demonstrated that FZXZP significantly alleviated the liver damage, inhibited the progresses of HCC. Nine potential components were identified from FZXZP, and anti-cancer prediction suggested that almost all of them were reported to show an anti-cancer effect. Mechanistically, FZXZP was found to promote the lipid related metabolisms, improve the anti-inflammation ability by activating PPAR signaling pathway, arachidonic acid metabolism, bile secretion, etc. CONCLUSION: our results suggested that FZXZP significantly alleviated the rat HCC, mechanistically by improving the anti-inflammation ability and promoting the lipid related metabolisms.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
14
|
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into Health-Promoting Effects of Plant MicroRNAs: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14372-14386. [PMID: 34813309 DOI: 10.1021/acs.jafc.1c04737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-derived microRNAs (miRNAs) play a significant role in human health and are "dark nutrients", as opposed to traditional plant nutrients, as well as important components of food diversification. Studies have revealed that multiple plant-derived miRNA pathways affect human health. First, plant miRNAs regulate plant growth and development and accumulation of metabolites, which alters the food quality and thus indirectly interferes with the health of the host. Moreover, when absorbed in vivo, some miRNAs may target the host cell mRNAs to affect protein expression. In addition, plant miRNAs target and reshape the human gut microbiota (GM), which interferes with the physiology and metabolism of the host. Therefore, miRNAs play a significant role in the cross-kingdom communication of plants, GM, and the host and in maintaining a balance of the three. Future contributions of plant miRNAs can bring new perspectives and opportunities to better understand food nutrition and health care research, which will facilitate the right exploitation of plant resources.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
15
|
Sano M, Morishita K, Oikawa S, Akimoto T, Sumaru K, Kato Y. Live-cell imaging of microRNA expression with post-transcriptional feedback control. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:547-556. [PMID: 34631284 PMCID: PMC8479275 DOI: 10.1016/j.omtn.2021.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate complex gene expression networks in eukaryotic cells. Because of their unique expression patterns, miRNAs are potential molecular markers for specific cell states. Although a system capable of imaging miRNA in living cells is needed to visually detect miRNA expression, very few fluorescence signal-on sensors that respond to expression of target miRNA (miR-ON sensors) are available. Here we report an miR-ON sensor containing a bidirectional promoter-driven Csy4 endoribonuclease and green fluorescent protein, ZsGreen1, for live-cell imaging of miRNAs with post-transcriptional feedback control. Csy4-assisted miR-ON (Csy4-miR-ON) sensors generate negligible background but respond sensitively to target miRNAs, allowing high-contrast fluorescence detection of miRNAs in various human cells. We show that Csy4-miR-ON sensors enabled imaging of various miRNAs, including miR-21, miR-302a, and miR-133, in vitro as well as in vivo. This robust tool can be used to evaluate miRNA expression in diverse biological and medical applications.
Collapse
Affiliation(s)
- Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Satoshi Oikawa
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
16
|
Jia M, He J, Bai W, Lin Q, Deng J, Li W, Bai J, Fu D, Ma Y, Ren J, Xiong S. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 2021; 12:9549-9562. [PMID: 34664582 DOI: 10.1039/d1fo01156a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As non-coding RNA molecules, microRNAs (miRNAs) are widely known for their critical role in gene regulation. Recent studies have shown that plant miRNAs obtained through dietary oral administration can survive in the gastrointestinal (GI) tract, enter the circulatory system and regulate endogenous mRNAs. Diet-derived plant miRNAs have 2'-O-methylated modified 3'ends and high cytosine and guanine (GC) content, as well as exosomal packaging, which gives them high stability even in the harsh environment of the digestive system and circulatory system. The latest evidence shows that dietary plant miRNAs can not only be absorbed in the intestine, but also be absorbed and packaged by gastric epithelial cells and then secreted into the circulatory system. Alternatively, these biologically active plant-derived miRNAs may also affect the health of the host by affecting the function of the microbiome, while not need to be taken into the host's circulatory system and transferred to remote tissues. This cross-kingdom regulation of miRNAs gives us hope for exploring their therapeutic potential and as dietary supplements. However, doubts have also been raised about the cross-border regulation of miRNAs, suggesting that technical flaws in the experiments may have led to this hypothesis. In this article, we summarize the visibility of dietary plant miRNAs in the development of human health and recent research data on their use in therapeutics. The regulation of plant miRNAs across kingdoms is a novel concept. Continued efforts in this area will broaden our understanding of the biological role of plant miRNAs and will open the way for the development of new approaches to prevent or treat human diseases.
Collapse
Affiliation(s)
- MingXi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - WeiDong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - QinLu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - YuShui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - JiaLi Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - ShouYao Xiong
- College of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
17
|
Guo XH, Jiang SS, Zhang LL, Hu J, Edelbek D, Feng YQ, Yang ZX, Hu PC, Zhong H, Yang GH, Yang F. Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway. Oncol Rep 2021; 46:253. [PMID: 34643248 PMCID: PMC8548812 DOI: 10.3892/or.2021.8204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit-8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription-quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co-immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα-interacting protein-interacting protein at the C-terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shui-Shan Jiang
- Medical Security Office, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Li Zhang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dilda Edelbek
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qi Feng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Xian Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Zhong
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
18
|
Chen X, Liu L, Chu Q, Sun S, Wu Y, Tong Z, Fang W, Timko MP, Fan L. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One 2021; 16:e0257878. [PMID: 34587184 PMCID: PMC8480717 DOI: 10.1371/journal.pone.0257878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Extracellular microRNAs (miRNAs) have been proposed to function in cross-kingdom gene regulation. Among these, plant-derived miRNAs of dietary origin have been reported to survive the harsh conditions of the human digestive system, enter the circulatory system, and regulate gene expression and metabolic function. However, definitive evidence supporting the presence of plant-derived miRNAs of dietary origin in mammals has been difficult to obtain due to limited sample sizes. We have developed a bioinformatics pipeline (ePmiRNA_finder) that provides strident miRNA classification and applied it to analyze 421 small RNA sequencing data sets from 10 types of human body fluids and tissues and comparative samples from carnivores and herbivores. A total of 35 miRNAs were identified that map to plants typically found in the human diet and these miRNAs were found in at least one human blood sample and their abundance was significantly different when compared to samples from human microbiome or cow. The plant-derived miRNA profiles were body fluid/tissue-specific and highly abundant in the brain and the breast milk samples, indicating selective absorption and/or the ability to be transported across tissue/organ barriers. Our data provide conclusive evidence for the presence of plant-derived miRNAs as a consequence of dietary intake and their cross-kingdom regulatory function within human circulating system.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lu Liu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Qinjie Chu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Hangzhou, China
| | - Yixuan Wu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Michael P. Timko
- Departments of Biology & Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Longjiang Fan
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
19
|
Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021; 12:613197. [PMID: 34012461 PMCID: PMC8126714 DOI: 10.3389/fgene.2021.613197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3′ end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Jianhui Yang
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianxin Liu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Hui Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Rongfei Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Chunya Cao
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Liping Shi
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Weihua Wu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| |
Collapse
|