1
|
Puri M, Sonawane S. Liver Sinusoidal Endothelial Cells in the Regulation of Immune Responses and Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Int J Mol Sci 2025; 26:3988. [PMID: 40362227 PMCID: PMC12071881 DOI: 10.3390/ijms26093988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Liver Sinusoidal Endothelial Cells (LSECs) play a crucial role in maintaining liver homeostasis, regulating immune responses, and fibrosis in liver diseases. This review explores the unique functions of LSECs in liver pathology, particularly their roles in immune tolerance, antigen presentation, and the modulation of hepatic stellate cells (HSCs) during fibrosis. LSECs act as key regulators of immune balance in the liver by preventing excessive immune activation while also filtering antigens and interacting with immune cells, including Kupffer cells and T cells. Metabolic Dysfunction-Associated Fatty Liver Disease(MAFLD) is significant because it can lead to advanced liver dysfunction, such as cirrhosis and liver cancer. The prevalence of Metabolic Associated Steatohepatitis (MASH) is increasing globally, particularly in the United States, and is closely linked to rising rates of obesity and type 2 diabetes. Early diagnosis and intervention are vital to prevent severe outcomes, highlighting the importance of studying LSECs in liver disease. However, during chronic liver diseases, LSECs undergo dysfunction, leading to their capillarization, loss of fenestrations, and promotion of pro-fibrotic signaling pathways such as Transforming growth factor-beta (TGF-β), which subsequently activates HSCs and contributes to the progression of liver fibrosis. The review also discusses the dynamic interaction between LSECs, HSCs, and other hepatic cells during the progression of liver diseases, emphasizing how changes in LSEC phenotype contribute to liver scarring and fibrosis. Furthermore, it highlights the potential of LSECs as therapeutic targets for modulating immune responses and preventing fibrosis in liver diseases. By restoring LSECs' function and targeting pathways associated with their dysfunction, novel therapies could be developed to halt or reverse liver disease progression. The findings of this review reinforce the importance of LSECs in liver pathology and suggest that they hold significant promises as targets for future treatment strategies aimed at addressing chronic liver diseases.
Collapse
Affiliation(s)
- Munish Puri
- Onco-Immunology, Magnit Global, Folsom, CA 95630, USA
| | - Snehal Sonawane
- Department of Pathology, University of Illinois, Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Ojha U, Kim S, Rhee CY, You J, Choi YH, Yoon SH, Park SY, Lee YR, Kim JK, Bae SC, Lee YM. Endothelial RUNX3 controls LSEC dysfunction and angiocrine LRG1 signaling to prevent liver fibrosis. Hepatology 2025; 81:1228-1243. [PMID: 39042837 PMCID: PMC11902585 DOI: 10.1097/hep.0000000000001018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND AIMS Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 ( LRG1 ) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated HSCs throughTGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.
Collapse
Affiliation(s)
- Uttam Ojha
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Chang Yun Rhee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihye You
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soo-Hyun Yoon
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Gao F, Mu W, Fan J, Shen J. β-arrestin2 promotes angiogenesis of liver sinusoidal endothelial cells through the VEGF/VEGFR2 pathway to aggravate cirrhosis. Toxicol Lett 2024; 401:1-12. [PMID: 39197505 DOI: 10.1016/j.toxlet.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Excessive extracellular matrix deposition and increased intrahepatic angiogenesis are prominent features of cirrhosis. β-arrestin2 is thought to be involved in the pathological processes of various fibrotic diseases. This study aimed to investigate the role and possible mechanism of β-arrestin2 in the angiogenesis of cirrhosis. Firstly, β-arrestin2 expression in liver tissues of cirrhotic patients was detected, and the correlation between β-arrestin2 and α-SMA, CD-31, PDGF, and VEGF indexes was analyzed. Then, after liver cirrhosis induced by CCL4 in Arrb2-KO mice (β-arrestin2 coding gene), liver histopathological changes were observed, and the expressions of α-SMA, CD-31, PDGF, VEGF, and VEGFR2 were detected. Finally, VEGF-A was used to treat human liver sinusoidal endothelial cells (LSECs) to simulate pathological conditions. After transfection with si-ARRB2, the cell activity, MDA and GSH-PX activities, cell invasion, angiogenesis, and the expressions of α-SMA, CD-31, and VEGF/VEGFR2 pathway were detected. Results showed that β-arrestin2 expression in the liver increased significantly during cirrhosis and was positively correlated with angiogenesis. In vivo, Arrb2-KO significantly inhibited fibrosis and angiogenesis in cirrhotic mice, and decreased the expressions of α-SMA, CD31, PDGF, VEGF, and VEGFR2. Studies using LSECs in vitro showed that after intervention of ARRB2, the activity of LSECs and the number of invasions and tubule formations were significantly reduced. Similarly, after transfection with si-ARRB2, the expressions of α-SMA, CD31, PDGF, VEGF, and VEGFR2 in LSECs were significantly decreased. Collectively, β-arrestin2 aggravated cirrhosis by promoting the angiogenesis of LSECs. Blocking β-arrestin2 may be an important target against angiogenesis and fibrosis in cirrhosis.
Collapse
Affiliation(s)
- Feng Gao
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Wei Mu
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Jiangbo Fan
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Jing Shen
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China.
| |
Collapse
|
4
|
Xu L, Yang J, Cao X, Chen J, Liu Z, Cai L, Yu Y, Huang H. Sequential system based on ferritin delivery system and cell therapy for modulating the pathological microenvironment and promoting recovery. Int J Pharm 2024; 664:124607. [PMID: 39159856 DOI: 10.1016/j.ijpharm.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The vicious crosstalk among capillarization of hepatic sinusoidal endothelial cells (LSECs), activation of hepatic stellate cells (aHSCs), and hepatocyte damage poses a significant impediment to the successful treatment of liver fibrosis. In this study, we propose a sequential combination therapy aimed at disrupting the malignant crosstalk and reshaping the benign microenvironment while repairing damaged hepatocytes to achieve effective treatment of liver fibrosis. Firstly, H-subunit apoferrin (Ferritin) was adopted to load platycodonin D (PLD) and MnO2, forming ferritin@MnO2/PLD (FMP) nanoparticles, which exploited the high affinity of ferritin for the highly expressed transferrin receptor 1 (TfR1) to achieve the precise targeted delivery of FMP in the liver. Upon PLD intervention, restoration of the fenestration pores in capillarized LSECs was facilitated by modulating the phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT) and Kruppel Like Factor 2 (KLF2) signaling pathways both in vitro and in vivo, enabling efficient entry of FMP into the Disse space. Subsequently, FMP NPs effectively inhibited HSC activation by modulating the TLR2/TLR4/NF-κB-p65 signaling pathway. Moreover, FMP NPs efficiently scavenged reactive oxygen species (ROS) and mitigated the expression of inflammatory mediators, thereby reshaping the microenvironment to support hepatocyte repair. Finally, administration of bone marrow mesenchymal stem cells (BMMSCs) was employed to promote the regeneration and functional recovery of damaged hepatocytes. In conclusion, the combined sequential therapy involving FMP and BMMSCs effectively attenuated liver fibrosis induced by CCl4 administration, resulting in significant amelioration of the fibrotic condition. The therapeutic strategy outlined in this study underscores the significance of disrupting the deleterious cellular interactions and remodeling the microenvironment, thereby presenting a promising avenue for clinical intervention in liver fibrosis.
Collapse
Affiliation(s)
- Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie Yang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Haimen People's Hospital, Nantong 226100, China
| | - Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiayi Chen
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Liangliang Cai
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong 226001, China.
| | - Yanyan Yu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Wang J, Zhao F, Brouwer LA, Buist-Homan M, Wolters JC, Moshage H, Harmsen MC. Collagen-rich liver-derived extracellular matrix hydrogels augment survival and function of primary rat liver sinusoidal endothelial cells and hepatocytes. Int J Biol Macromol 2024; 278:134717. [PMID: 39142477 DOI: 10.1016/j.ijbiomac.2024.134717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are key targets for addressing metabolic dysfunction-associated steatotic liver disease (MASLD). However, isolating and culturing primary LSECs is challenging due to rapid dedifferentiation, resulting in loss of function. The extracellular matrix (ECM) likely plays a crucial role in maintaining the fate and function of LSECs. In this study, we explored the influence of liver-ECM (L-ECM) on liver cells and developed culture conditions that maintain the differentiated function of liver cells in vitro for prolonged periods. Porcine liver-derived L-ECM, containing 34.9 % protein, 0.045 % glycosaminoglycans, and negligible residual DNA (41.2 ng/mg), was utilized to culture primary rat liver cells in generated hydrogels. Proteomic analyses and molecular weight distribution of proteins of solubilized L-ECM revealed the typical diverse ECM core matrisome, with abundant collagens. L-ECM hydrogels showed suitable stiffness and stress relaxation properties. Furthermore, we demonstrated that collagen-rich L-ECM hydrogels enhanced LSECs' and hepatocytes' viability, and reduced the dedifferentiation rate of LSECs. In addition, hepatocyte function was maintained longer by culture on L-ECM hydrogels compared to traditional culturing. These beneficial effects are likely attributed to the bioactive macromolecules including collagens, and mechanical and microarchitectural properties of the L-ECM hydrogels.
Collapse
Affiliation(s)
- Junyu Wang
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| | - Fenghua Zhao
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering, Groningen, the Netherlands.
| | - Linda A Brouwer
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| | - Manon Buist-Homan
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands.
| | - Justina C Wolters
- University of Groningen, University Medical Centre Groningen, Department of Pediatrics, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Interfaculty Mass Spectrometry Center, Groningen, the Netherlands.
| | - Han Moshage
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands.
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| |
Collapse
|
6
|
Liu P, Liang WL, Huang RT, Chen XX, Zou DH, Kurihara H, Li YF, Xu YH, Ouyang SH, He RR. Hepatic microcirculatory disturbance in liver diseases: intervention with traditional Chinese medicine. Front Pharmacol 2024; 15:1399598. [PMID: 39108760 PMCID: PMC11300221 DOI: 10.3389/fphar.2024.1399598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 04/18/2025] Open
Abstract
The liver, a complex parenchymal organ, possesses a distinctive microcirculatory system crucial for its physiological functions. An intricate interplay exists between hepatic microcirculatory disturbance and the manifestation of pathological features in diverse liver diseases. This review updates the main characteristics of hepatic microcirculatory disturbance, including hepatic sinusoidal capillarization, narrowing of sinusoidal space, portal hypertension, and pathological angiogenesis, as well as their formation mechanisms. It also summarized the detection methods for hepatic microcirculation. Simultaneously, we have also reviewed the characteristics of microcirculatory disturbance in diverse liver diseases such as acute liver failure, hepatic ischemia-reperfusion injury, viral hepatitis, non-alcoholic fatty liver disease, hepatic fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Finally, this review also summarizes the advancement in hepatic microcirculation attributed to traditional Chinese medicine (TCM) and its active metabolites, providing novel insights into the application of TCM in treating liver diseases.
Collapse
Affiliation(s)
- Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Wan-Li Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xin-Xing Chen
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - De-Hua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Rong-Rong He
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Eissazadeh S, Mohammadi S, Faradonbeh FA, Rathouska JU, Nemeckova I, Tripska K, Vitverova B, Dohnalkova E, Vasinova M, Fikrova P, Sa ICI, Micuda S, Nachtigal P. Endoglin and soluble endoglin in liver sinusoidal endothelial dysfunction in vivo. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166990. [PMID: 38110128 DOI: 10.1016/j.bbadis.2023.166990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) play a crucial role in regulating the hepatic function. Endoglin (ENG), a transmembrane glycoprotein, was shown to be related to the development of endothelial dysfunction. In this study, we hypothesized the relationship between changes in ENG expression and markers of liver sinusoidal endothelial dysfunction (LSED) during liver impairment. Male C57BL/6J mice aged 9-12 weeks were fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet (intrahepatic cholestasis) or choline-deficient l-amino acid defined high-fat diet (CDAA-HFD) (non-alcoholic steatohepatitis (NASH)). Significant increases in liver enzymes, fibrosis, and inflammation biomarkers were observed in both cholestasis and NASH. Decreased p-eNOS/eNOS and VE-cadherin protein expression and a significant increase in VCAM-1 and ICAM-1 expression were detected, indicating LSED in both mouse models of liver damage. A significant reduction of ENG in the DDC-fed mice, while a significant increase of ENG in the CDAA-HFD group was observed. Both DDC and CDAA-HFD-fed mice showed a significant increase in MMP-14 protein expression, which is related to significantly increased levels of soluble endoglin (sENG) in the plasma. In conclusion, we demonstrated that intrahepatic cholestasis and NASH result in an altered ENG expression, predominantly in LSECs, suggesting a critical role of ENG expression for the proper function of liver sinusoids. Both pathologies resulted in elevated sENG levels, cleaved by MMP-14 expressed predominantly from LSECs, indicating sENG as a liver injury biomarker.
Collapse
Affiliation(s)
- Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - SeyedehNiloufar Mohammadi
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Fatemeh Alaei Faradonbeh
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Urbankova Rathouska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ivana Nemeckova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Barbora Vitverova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ester Dohnalkova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Martina Vasinova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Petra Fikrova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ivone Cristina Igreja Sa
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic.
| |
Collapse
|
8
|
Ye W, Lv X, Gao S, Li Y, Luan J, Wang S. Emerging role of m6A modification in fibrotic diseases and its potential therapeutic effect. Biochem Pharmacol 2023; 218:115873. [PMID: 37884198 DOI: 10.1016/j.bcp.2023.115873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Fibrosis can occur in a variety of organs such as the heart, lung, liver and kidney, and its pathological changes are mainly manifested by an increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues, and continuous progression can lead to structural damage and organ hypofunction, or even failure, seriously threatening human health and life. N6-methyladenosine (m6A) modification, as one of the most common types of internal modifications of RNA in eukaryotes, exerts a multifunctional role in physiological and pathological processes by regulating the metabolism of RNA. With the in-depth understanding and research of fibrosis, we found that m6A modification plays an important role in fibrosis, and m6A regulators can further participate in the pathophysiological process of fibrosis by regulating the function of specific cells. In our review, we summarized the latest research advances in m6A modification in fibrosis, as well as the specific functions of different m6A regulators. In addition, we focused on the mechanisms and roles of m6A modification in cardiac fibrosis, liver fibrosis, pulmonary fibrosis, renal fibrosis, retinal fibrosis and oral submucosal fibrosis, with the aim of providing new insights and references for finding potential therapeutic targets for fibrosis. Finally, we discussed the prospects and challenges of targeted m6A modification in the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
9
|
Rance N. How single-cell transcriptomics provides insight on hepatic responses to TCDD. CURRENT OPINION IN TOXICOLOGY 2023; 36:100441. [PMID: 37981901 PMCID: PMC10653208 DOI: 10.1016/j.cotox.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The prototypical aryl hydrocarbon receptor (AHR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been a valuable model for investigating toxicant-associated fatty liver disease (TAFLD). TCDD induces dose-dependent hepatic lipid accumulation, followed by the development of inflammatory foci and eventual progression to fibrosis in mice. Previously, bulk approaches and in vitro examination of different cell types were relied upon to study the mechanisms underlying TCDD-induced liver pathologies. However, the advent of single-cell transcriptomic technologies, such as single-nuclei RNA sequencing (snRNAseq) and spatial transcriptomics (STx), has provided new insights into the responses of hepatic cell types to TCDD exposure. This review explores the application of these single-cell transcriptomic technologies and highlights their contributions towards unraveling the cell-specific mechanisms mediating the hepatic responses to TCDD.
Collapse
Affiliation(s)
- Nault Rance
- Institute for Integrative Toxicology, Michigan State University, Michigan, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, Michigan, USA
| |
Collapse
|
10
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
12
|
Jiang T, Wu X, Zhou H, Hu Y, Cao J. Pathological Changes in Hepatic Sinusoidal Endothelial Cells in Schistosoma japonicum-Infected Mice. Trop Med Infect Dis 2023; 8:tropicalmed8020124. [PMID: 36828540 PMCID: PMC9959305 DOI: 10.3390/tropicalmed8020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Schistosomiasis japonica is a zoonotic parasitic disease causing liver fibrosis. Liver sinusoidal endothelial cells (LSECs) exhibit fenestrations, which promote hepatocyte regeneration and reverses the process of liver fibrosis. To investigate the pathological changes of LSECs in schistosomiasis, we established a Schistosomiasis model. The population, phenotype, and secretory function of LSECs were detected by flow cytometry at 20, 28, and 42 days post infection. The changes in LSEC fenestration and basement membrane were observed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Quantitative real-time PCR and Western blotting were used to detect the expression of molecules associated with epithelial-mesenchymal transition (EMT) and fibrosis of LSECs and the liver. The flow cytometry results showed that the total LSEC proportions, differentiated LSEC proportions, and nitric oxide (NO) secretion of LSECs were decreased, and the proportion of dedifferentiated LSECs increased significantly post infection. The electron microscopy results showed that the number of fenestrate was decreased and there was complete basement membrane formation in LSECs following infection. The qPCR and Western blot results showed that EMT, and fibrosis-related indicators of LSECs and the liver changed significantly during the early stages of infection and were aggravated in the middle and late stages. The pathological changes in LSECs may promote EMT and liver fibrosis induced by Schistosoma japonicum infection.
Collapse
Affiliation(s)
- Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Xiaoying Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Hao Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Correspondence: (Y.H.); (J.C.)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Y.H.); (J.C.)
| |
Collapse
|
13
|
Mitten EK, Baffy G. Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2022; 77:1642-1656. [PMID: 36063966 DOI: 10.1016/j.jhep.2022.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Mechanobiology is a domain of interdisciplinary research that aims to explore the impact of physical force, applied externally or internally, on cell and tissue function, including development, growth, and differentiation. Mechanotransduction is a term that describes how cells sense physical forces (such as compression, stretch, and shear stress), convert them into biochemical signals, and mount adaptive responses integrated by the nucleus. There is accumulating evidence that mechanical forces extensively inform the biological behaviour of liver cells in health and disease. Recent research has elucidated many cellular and molecular mechanisms involved in this process including the pleiotropic control and diverse effects of the paralogous transcription co-activators YAP/TAZ, which play a prominent role in mechanotransduction. The liver sinusoids represent a unique microenvironment in which cells are exposed to mechanical cues originating in the cytoskeleton and at interfaces with adjacent cells, the extracellular matrix, and vascular or interstitial fluids. In non-alcoholic fatty liver disease (NAFLD), hepatocellular lipid accumulation and ballooning, activation of inflammatory responses, dysfunction of liver sinusoidal endothelial cells, and transdifferentiation of hepatic stellate cells into a pro-contractile and pro-fibrotic phenotype have been associated with aberrant cycles of mechanosensing and mechanoresponses. The downstream consequences of disrupted mechanical homeostasis likely contribute to the progression of NAFLD and promote the development of portal hypertension, cirrhosis, and hepatocellular carcinoma. Identification of molecular targets involved in pathogenic mechanotransduction will allow for the development of novel strategies to prevent the progression of liver disease in NAFLD.
Collapse
Affiliation(s)
- Emilie K Mitten
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - György Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston MA, USA.
| |
Collapse
|
14
|
Brougham-Cook A, Kimmel HRC, Monckton CP, Owen D, Khetani SR, Underhill GH. Engineered matrix microenvironments reveal the heterogeneity of liver sinusoidal endothelial cell phenotypic responses. APL Bioeng 2022; 6:046102. [PMID: 36345318 PMCID: PMC9637025 DOI: 10.1063/5.0097602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is one of the hallmarks of chronic liver disease and is associated with aberrant wound healing. Changes in the composition of the liver microenvironment during fibrosis result in a complex crosstalk of extracellular cues that promote altered behaviors in the cell types that comprise the liver sinusoid, particularly liver sinusoidal endothelial cells (LSECs). Recently, it has been observed that LSECs may sustain injury before other fibrogenesis-associated cells of the sinusoid, implicating LSECs as key actors in the fibrotic cascade. A high-throughput cellular microarray platform was used to deconstruct the collective influences of defined combinations of extracellular matrix (ECM) proteins, substrate stiffness, and soluble factors on primary human LSEC phenotype in vitro. We observed remarkable heterogeneity in LSEC phenotype as a function of stiffness, ECM, and soluble factor context. LYVE-1 and CD-31 expressions were highest on 1 kPa substrates, and the VE-cadherin junction localization was highest on 25 kPa substrates. Also, LSECs formed distinct spatial patterns of LYVE-1 expression, with LYVE-1+ cells observed in the center of multicellular domains, and pattern size regulated by microenvironmental context. ECM composition also influenced a substantial dynamic range of expression levels for all markers, and the collagen type IV was observed to promote elevated expressions of LYVE-1, VE-cadherin, and CD-31. These studies highlight key microenvironmental regulators of LSEC phenotype and reveal unique spatial patterning of the sinusoidal marker LYVE-1. Furthermore, these data provide insight into understanding more precisely how LSECs respond to fibrotic microenvironments, which will aid drug development and identification of targets to treat liver fibrosis.
Collapse
Affiliation(s)
- Aidan Brougham-Cook
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hannah R. C. Kimmel
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chase P. Monckton
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Daniel Owen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA,Author to whom correspondence should be addressed:. Tel.: 217–244-2169
| |
Collapse
|
15
|
Autophagy Promotes the Survival of Adipose Mesenchymal Stem/Stromal Cells and Enhances Their Therapeutic Effects in Cisplatin-Induced Liver Injury via Modulating TGF-β1/Smad and PI3K/AKT Signaling Pathways. Cells 2021; 10:cells10092475. [PMID: 34572126 PMCID: PMC8470434 DOI: 10.3390/cells10092475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-β1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-β1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.
Collapse
|