1
|
Bannister M, Bray S, Aggarwal A, Billington C, Nguyen HD. An ADPRS variant disrupts ARH3 stability and subcellular localization in children with neurodegeneration and respiratory failure. HGG ADVANCES 2025; 6:100386. [PMID: 39580621 PMCID: PMC11667697 DOI: 10.1016/j.xhgg.2024.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. In this study, genetic testing via exome sequencing was used to identify the underlying disease in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. This identified a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3, confirming the diagnosis of childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS) in these two children. Mechanistically, the ARH3H182R variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and, subsequently, reduced protein expression. The ARH3H182R mutant additionally fails to localize to the nucleus, which further resulted in accumulated mono-ADP ribosylated species in cells. The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP-ribosylation in nervous system integrity.
Collapse
Affiliation(s)
- Maxwell Bannister
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Bray
- M Health Fairview Molecular Diagnostics Laboratory, Minneapolis, MN 55455, USA
| | - Anjali Aggarwal
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Charles Billington
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Hai Dang Nguyen
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Koc C, Aydemir CI, Salman B, Cakir A, Akbulut NH, Karabarut PL, Topal G, Cinar AY, Taner G, Eyigor O, Cansev M. Comparative neuroprotective effects of royal jelly and its unique compound 10-hydroxy-2-decenoic acid on ischemia-induced inflammatory, apoptotic, epigenetic and genotoxic changes in a rat model of ischemic stroke. Nutr Neurosci 2025; 28:37-49. [PMID: 38657030 DOI: 10.1080/1028415x.2024.2344141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
OBJECTIVES This study aimed to compare the efficacy of royal jelly (RJ) and its major fatty acid 10-hydroxy-2-decenoic acid (10-HDA) on ischemic stroke-related pathologies using histological and molecular approaches. METHODS Male rats were subjected to middle cerebral artery occlusion (MCAo) to induce ischemic stroke and were supplemented daily with either vehicle (control group), RJ or 10-HDA for 7 days starting on the day of surgery. On the eighth day, rats were sacrificed and brain tissue and blood samples were obtained to analyze brain infarct volume, DNA damage as well as apoptotic, inflammatory and epigenetic parameters. RESULTS Both RJ and 10-HDA supplementation significantly reduced brain infarction and decreased weight loss when compared to control animals. These effects were associated with reduced levels of active caspase-3 and PARP-1 and increased levels of acetyl-histone H3 and H4. Although both RJ and 10-HDA treatments significantly increased acetyl-histone H3 levels, the effect of RJ was more potent than that of 10-HDA. RJ and 10-HDA supplementation also alleviated DNA damage by significantly reducing tail length, tail intensity and tail moment in brain tissue and peripheral lymphocytes, except for the RJ treatment which tended to reduce tail moment in lymphocytes without statistical significance. CONCLUSIONS Our findings suggest that neuroprotective effects of RJ in experimental stroke can mostly be attributed to 10-HDA.
Collapse
Affiliation(s)
- Cansu Koc
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Cigdem Inci Aydemir
- Department of Biotechnology, Graduate Education Institute, Bursa Technical University, Bursa, Türkiye
| | - Berna Salman
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Aysen Cakir
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Nursel Hasanoglu Akbulut
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Pinar Levent Karabarut
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Gonca Topal
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Aycan Yigit Cinar
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Gokce Taner
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Ozhan Eyigor
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Mehmet Cansev
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| |
Collapse
|
3
|
Khodyreva SN, Dyrkheeva NS, Lavrik OI. Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair. Biomedicines 2024; 12:2808. [PMID: 39767715 PMCID: PMC11673744 DOI: 10.3390/biomedicines12122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The nervous system is susceptible to DNA damage and DNA repair defects, and if DNA damage is not repaired, neuronal cells can die, causing neurodegenerative diseases in humans. The overall picture of what is known about DNA repair mechanisms in the nervous system is still unclear. The current challenge is to use the accumulated knowledge of basic science on DNA repair to improve the treatment of neurodegenerative disorders. In this review, we summarize the current understanding of the function of DNA damage repair, in particular, the base excision repair and double-strand break repair pathways as being the most important in nervous system cells. We summarize recent data on the proteins involved in DNA repair associated with neurodegenerative diseases, with particular emphasis on PARP1 and ND-associated proteins, which are involved in DNA repair and have the ability to undergo liquid-liquid phase separation.
Collapse
Affiliation(s)
- Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
4
|
Huang D, Su Z, Mei Y, Shao Z. The complex universe of inactive PARP1. Trends Genet 2024; 40:1074-1085. [PMID: 39306519 DOI: 10.1016/j.tig.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a crucial member of the PARP family, which modifies targets through ADP-ribosylation and plays key roles in a variety of biological processes. PARP inhibitors (PARPis) hinder ADP-ribosylation and lead to the retention of PARP1 at the DNA lesion (also known as trapping), which underlies their toxicity. However, inhibitors and mutations that make PARP1 inactive do not necessarily correlate with trapping potency, challenging the current understanding of inactivation-caused trapping. Recent studies on mouse models indicate that both trapping and non-trapping inactivating mutations of PARP1 lead to embryonic lethality, suggesting the unexpected toxicity of the current inhibition strategy. The allosteric model, complicated automodification, and various biological functions of PARP1 all contribute to the complexity of PARP1 inactivation.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ziyi Su
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanxia Mei
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengping Shao
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, China.
| |
Collapse
|
5
|
Redhwan MAM, Hariprasad MG, Samaddar S, Bafail DA, Hard SAAA, Guha S. Chitosan/siRNA nanoparticles targeting PARP-1 attenuate Neuroinflammation and apoptosis in hyperglycemia-induced oxidative stress in Neuro2a cells. Int J Biol Macromol 2024; 282:136964. [PMID: 39490472 DOI: 10.1016/j.ijbiomac.2024.136964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Hyperglycemia induces an excessive production of superoxide by the mitochondria's electron-transport chain triggers several pathways of injury contributing to the development of diabetic complications. This increase in oxidative and nitrosative stress triggers the activation of PARP-1, a nuclear enzyme, through mechanisms such as DNA damage. siRNA-chitosan nanoparticles were formed based on electrostatic interaction, their particle size, zeta potential, STEM, and cellular uptake were characterized. Neuro2a cells were treated with low glucose (LG) and high glucose (HG) for 24 and 48 h. Neuro2a cells were pre-treated with negative siRNA, naked siRNA, siRNA-Lipofectamine™300, and ChNPs-5. qRT-PCR was used to analyze the expression of regulatory, inflammatory, and apoptotic biomarkers. The siRNA-chitosan complex at the weight ratio 1:3000 were approximately uniform spheres with particle size 150.5 nm and a positive zeta potential of about +41.5 mV. The uptake of FITC-labeled nanoparticles into Neuro2a cells was visualized using fluorescence microscopy with no significant cytotoxicity compared to the control cells. High glucose stimulation of Neuro2a cells increased PARP1 expression, and with siRNA-ChNP (1:3000) treatment, significant inhibition of PARP1 expression is observed that consequently reversed the expression of regulatory genes like SIRT1, FOXO1, FOXO3, and p53. PARP-1 inhibition reduced HG-induced inflammatory response, including NF-kB, IL6, IL1β, TNFα, iNOS, and TGF-β expression, and HG-induced apoptosis response, such as Cas-3, Cas-9, BAK, BAX, and AIF expression. This study highlights the crucial role of siRNA delivery via ChNPs and PARP-1 inhibition in hyperglycemia-induced oxidative stress in Neuro2a cells and PARP-1 inhibition may be a feasible strategy for the treatment of hyperglycemia-induced oxidative stress.
Collapse
Affiliation(s)
- Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - M G Hariprasad
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India.
| | - Suman Samaddar
- Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India.
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sumaia Abdulbari Ahmed Ali Hard
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India; Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Sourav Guha
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Feltes BC, Alvares LDO. PARP1 in the intersection of different DNA repair pathways, memory formation, and sleep pressure in neurons. J Neurochem 2024; 168:2351-2362. [PMID: 38750651 DOI: 10.1111/jnc.16131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 10/04/2024]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a bottleneck that connects different DNA pathways during a DNA damage response. Interestingly, PARP1 has a dualist role in neurons, acting as a neuroprotector and inducer of cell death in distinct neurological diseases. Recent studies significantly expanded our knowledge of how PARP1 regulates repair pathways in neurons and uncovered new roles for PARP1 in promoting sleep to enhance DNA repair. Likewise, PARP1 is deeply associated with memory consolidation, implying that it has multiple layers of regulation in the neural tissue. In this review, we critically discuss PARP1 recent advances in neurons, focusing on its interplay with different DNA repair mechanisms, memory, and sleep. Provocative questions about how oxidative damage is accessed, and different hypotheses about the molecular mechanisms influenced by PARP1 in neurons are presented to expand the debate of future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Biophysics, Institute of BiosciencesFederal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lucas de Oliveira Alvares
- Department of Biophysics, Institute of BiosciencesFederal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Khan I, Kaur S, Rishi AK, Boire B, Aare M, Singh M. Cannabidiol and Beta-Caryophyllene Combination Attenuates Diabetic Neuropathy by Inhibiting NLRP3 Inflammasome/NFκB through the AMPK/sirT3/Nrf2 Axis. Biomedicines 2024; 12:1442. [PMID: 39062016 PMCID: PMC11274582 DOI: 10.3390/biomedicines12071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In this study, we investigated in detail the role of cannabidiol (CBD), beta-caryophyllene (BC), or their combinations in diabetic peripheral neuropathy (DN). The key factors that contribute to DN include mitochondrial dysfunction, inflammation, and oxidative stress. METHODS Briefly, streptozotocin (STZ) (55 mg/kg) was injected intraperitoneally to induce DN in Sprague-Dawley rats, and we performed procedures involving Randall Sellito calipers, a Von Frey aesthesiometer, a hot plate, and cold plate methods to determine mechanical and thermal hyperalgesia in vivo. The blood flow to the nerves was assessed using a laser Doppler device. Schwann cells were exposed to high glucose (HG) at a dose of 30 mM to induce hyperglycemia and DCFDA, and JC1 and Mitosox staining were performed to determine mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides in vitro. The rats were administered BC (30 mg/kg), CBD (15 mg/kg), or combination via i.p. injections, while Schwann cells were treated with 3.65 µM CBD, 75 µM BC, or combination to assess their role in DN amelioration. RESULTS Our results revealed that exposure to BC and CBD diminished HG-induced hyperglycemia in Schwann cells, in part by reducing mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides. Furthermore, the BC and CBD combination treatment in vivo could prevent the deterioration of the mitochondrial quality control system by promoting autophagy and mitochondrial biogenesis while improving blood flow. CBD and BC treatments also reduced pain hypersensitivity to hyperalgesia and allodynia, with increased antioxidant and anti-inflammatory action in diabetic rats. These in vivo effects were attributed to significant upregulation of AMPK, sirT3, Nrf2, PINK1, PARKIN, LC3B, Beclin1, and TFAM functions, while downregulation of NLRP3 inflammasome, NFκB, COX2, and p62 activity was noted using Western blotting. CONCLUSIONS the present study demonstrated that STZ and HG-induced oxidative and nitrosative stress play a crucial role in the pathogenesis of diabetic neuropathy. We find, for the first time, that a CBD and BC combination ameliorates DN by modulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Arun K. Rishi
- John D. Dingell Veterans Affairs Medical Center, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Breana Boire
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| |
Collapse
|
8
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
9
|
Bannister M, Bray S, Aggarwal A, Billington C, Nguyen HD. A novel variant in ADPRS disrupts ARH3 stability and subcellular localization in children with neurodegeneration and respiratory failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.597428. [PMID: 38915701 PMCID: PMC11195236 DOI: 10.1101/2024.06.14.597428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Purpose ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. Here we report a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3 found in 2 patients with childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS). Methods Genetic testing via exome sequencing was used to identify the underlying disease cause in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. Studies in a cell culture model uncover biochemical and cellular consequences of the identified genetic change. Results The ARH3 H182R variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and reduced expression. ARH3 H182R additionally fails to localize to the nucleus. The combination of reduced expression and mislocalization of ARH3 H182R resulted in accumulation of mono-ADP ribosylated species in cells. Conclusions The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP ribosylation in nervous system integrity.
Collapse
|
10
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
11
|
Kaur M, Misra S, Swarnkar P, Patel P, Das Kurmi B, Das Gupta G, Singh A. Understanding the role of hyperglycemia and the molecular mechanism associated with diabetic neuropathy and possible therapeutic strategies. Biochem Pharmacol 2023; 215:115723. [PMID: 37536473 DOI: 10.1016/j.bcp.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Diabetic neuropathy is a neuro-degenerative disorder that encompasses numerous factors that impact peripheral nerves in the context of diabetes mellitus (DM). Diabetic peripheral neuropathy (DPN) is very prevalent and impacts 50% of diabetic patients. DPN is a length-dependent peripheral nerve lesion that primarily causes distal sensory loss, discomfort, and foot ulceration that may lead to amputation. The pathophysiology is yet to be fully understood, but current literature on the pathophysiology of DPN revolves around understanding various signaling cascades involving the polyol, hexosamine, protein-kinase C, AGE, oxidative stress, and poly (ADP ribose) polymerase pathways. The results of research have suggested that hyperglycemia target Schwann cells and in severe cases, demyelination resulting in central and peripheral sensitization is evident in diabetic patients. Various diagnostic approaches are available, but detection at an early stage remains a challenge. Traditional analgesics and opioids that can be used "as required" have not been the mainstay of treatment thus far. Instead, anticonvulsants and antidepressants that must be taken routinely over time have been the most common treatments. For now, prolonging life and preserving the quality of life are the ultimate goals of diabetes treatment. Furthermore, the rising prevalence of DPN has substantial consequences for occupational therapy because such therapy is necessary for supporting wellness, warding off other chronic-diseases, and avoiding the development of a disability; this is accomplished by engaging in fulfilling activities like yoga, meditation, and physical exercise. Therefore, occupational therapy, along with palliative therapy, may prove to be crucial in halting the onset of neuropathic-symptoms and in lessening those symptoms once they have occurred.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Sakshi Misra
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Priyanka Swarnkar
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India.
| |
Collapse
|
12
|
Zhang M, Hong X, Ma N, Wei Z, Ci X, Zhang S. The promoting effect and mechanism of Nrf2 on cell metastasis in cervical cancer. J Transl Med 2023; 21:433. [PMID: 37403143 DOI: 10.1186/s12967-023-04287-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) has poor prognosis and high mortality rate for its metastasis during the disease progression. Epithelial-mesenchymal transition (EMT) and anoikis are initial and pivotal steps during the metastatic process. Although higher levels of Nrf2 are associated with aggressive tumor behaviors in cervical cancer, the detailed mechanism of Nrf2 in cervical cancer metastasis, especially EMT and anoikis, remains unclear. METHODS Immunohistochemistry (IHC) was used to examine Nrf2 expression in CC. Wound healing assay and transwell analysis were used to evaluate the migration ability of CC cells. Western blot, qTR-PCR and immunofluorescent staining were used to verify the expression level of Nrf2, the EMT associated markers and anoikis associated proteins. Flow cytometry assays and cell counting were used to detect the apoptosis of cervical cancer cells. The lung and lymph node metastatic mouse model were established for studies in vivo. The interaction between Nrf2 and Snail1 was confirmed by rescue-of-function assay. RESULTS When compared with cervical cancer patients without lymph node metastasis, Nrf2 was highly expressed in patients with lymph node metastasis. And Nrf2 was proved to enhance the migration ability of HeLa and SiHa cells. In addition, Nrf2 was positively correlated with EMT processes and negatively associated with anoikis in cervical cancer. In vivo, a xenograft assay also showed that Nrf2 facilitated both pulmonary and lymphatic distant metastasis of cervical cancer. Rescue-of-function assay further revealed the mechanism that Nrf2 impacted the metastasis of CC through Snail1. CONCLUSION Our fundings established Nrf2 plays a crucial role in the metastasis of cervical cancer by enhancing EMT and resistance to anoikis by promoting the expression of Snail1, with potential value as a therapeutic candidate.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Hong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Ning Ma
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhentong Wei
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Krishnan Muthaiah VP, Kaliyappan K, Mahajan SD. Poly ADP-Ribose Polymerase-1 inhibition by 3-aminobenzamide recuperates HEI-OC1 auditory hair cells from blast overpressure-induced cell death. Front Cell Dev Biol 2023; 11:1047308. [PMID: 36949771 PMCID: PMC10025353 DOI: 10.3389/fcell.2023.1047308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Poly ADP-Ribose Polymerase-1 (PARP1), a DNA repair enzyme is implicated as a key molecule in the pathogenesis of several neurodegenerative disorders. Traumatic insults inducing oxidative stress results in its over-activation causing inflammation and cell death (Parthanatos). As PARP1 inhibition is known to reduce oxidative stress, we hypothesized that PARP1 inhibition by a known inhibitor 3-aminobenzamide (3AB) might recuperate the damage in an in vitro model of blast injury using HEI-OC1 cells (mouse auditory hair cells). Methods: Here, we evaluated the protective effect of 3AB on HEI-OC1 cells following single and repetitive blast overpressures (BOPs). Results: We found that inhibition of PARP1 b 3AB inhibits the PARP1 enzyme and its action of a post-translational modification i.e. formation of Poly ADP-Ribose Polymers which leads to massive ATP depletion. PARP inhibition (3AB treatment) reduced the oxidative stress (4HNE, a marker of lipid peroxidation, and 8OHdG, a marker of oxidative DNA damage) in cells exposed to single/repetitive BOPS through up-regulation of Nrf2, a transcriptional regulator of antioxidant defense and the GCLC, a rate limiting enzyme in the synthesis of glutathione. Discussion: Overall, we found that PARP inhibition by 3AB helps to maintain the viability of BOP-exposed auditory hair cells by recuperating the ATP pool from both mitochondrial and glycolytic sources.
Collapse
Affiliation(s)
- Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Vijaya Prakash Krishnan Muthaiah,
| | - Kathiravan Kaliyappan
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, Buffalo, NY, United States
| |
Collapse
|
14
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Komirishetty P, Areti A, Arruri VK, Sistla R, Gogoi R, Kumar A. FeTMPyP a peroxynitrite decomposition catalyst ameliorated functional and behavioral deficits in chronic constriction injury induced neuropathic pain in rats. Free Radic Res 2022; 55:1005-1017. [PMID: 34991423 DOI: 10.1080/10715762.2021.2010731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuropathic pain is a maladaptive pain phenotype that results from injury or damage to the somatosensory nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis. Oxidative/nitrosative stress is a critical link between neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of peroxynitrite decomposition catalyst; FeTMPyP in chronic constriction injury (CCI) of sciatic nerve-induced neuropathy in rats. CCI of the sciatic nerve manifested significant deficits in behavioral, biochemical, functional parameters and was markedly reversed by administration of FeTMPyP. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers such as iNOS, NF-kB, TNF-α and IL-6 were elevated in sciatic nerves of CCI rats along with depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR) in both sciatic nerves in ipsilateral (L4-L5) dorsal root ganglions (DRG's), suggesting over activation of PARP. Additionally, CCI resulted in aberrations in mitochondrial function as evident by decreased Mn-SOD levels and respiratory complex activities with increased mitochondrial fission protein DRP-1. These changes were reversed by treatment with FeTMPyP (1 & 3 mg/kg, p.o.). Findings of this study suggest that FeTMPyP, by virtue of its antioxidant properties, reduced both PARP over-activation and subsequent neuroinflammation resulted in protection against CCI-induced functional, behavioral and biochemical deficits.
Collapse
Affiliation(s)
- Prashanth Komirishetty
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Aparna Areti
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vijay Kumar Arruri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramakrishna Sistla
- Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ranadeep Gogoi
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|