1
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Amirpour M, Kuhestani-Dehaghi B, Kheyrandish S, Hajipirloo LK, Khaffafpour Z, Keshavarz F, Allahbakhshian-Farsani M. The impact of exosomes derived from B-cell acute lymphoblastic leukemia as a growth factor on bone marrow mesenchymal stromal cells. Mol Biol Rep 2024; 51:749. [PMID: 38874800 DOI: 10.1007/s11033-024-09674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Background The incidence of various types of cancers, including leukemia, is on the rise and many challenges in both drug resistance and complications related to chemotherapy appeared. Recently, the development and application of extracellular vesicles (EV) such as exosomes in the management of cancers, especially leukemia, holds great significance. In this article, we extracted exosomes from NALM6 cells and assessed their regulatory effects on proliferation and apoptosis in mesenchymal stem cells (MSCs). Method and result We first verified the exosomes using various techniques, including flow cytometry, transient electron microscopy, dynamic light scattering (DLS), and BCA protein assay. Then MTT analysis and flowcytometry (apoptosis and cell cycle assay) besides gene expressions were employed to determine the state of MSC proliferations. The results indicated that exosome-specific pan markers like CD9, CD63, and CD81 were present. Through DLS, we found out that the mean size of the exosomes was 89.68 nm. The protein content was determined to be 956.292 µg/ml. Analysis of MTT, flow cytometry (cell cycle and apoptosis assay), and RT-qPCR showed that in the dose of 50 µg/ml the proliferation of MSCs was increased significantly (p-value < 0.05). Conclusion All these data showed that exosomes use several signaling pathways to increase the MSCs' proliferation and drug resistance, ultimately leading to high mortalities and morbidities of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Mozhgan Amirpour
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Kuhestani-Dehaghi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laya Khodayi Hajipirloo
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Khaffafpour
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Keshavarz
- Department of Immunology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian-Farsani
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kajdanek A, Kołat D, Zhao LY, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż. Britanin - a beacon of hope against gastrointestinal tumors? World J Clin Oncol 2024; 15:523-530. [PMID: 38689621 PMCID: PMC11056858 DOI: 10.5306/wjco.v15.i4.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024] Open
Abstract
Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties. It also exhibits significant anti-tumor activity, suppressing tumor growth in vitro and in vivo. The current body of research on Britanin includes thirty papers predominantly related to neoplasms, the majority of which are gastrointestinal tumors that have not been summarized before. To drive academic debate, the present paper reviews the available research on Britanin in gastrointestinal tumors. It also outlines novel research directions using data not directly concerned with the digestive system, but which could be adopted in future gastrointestinal research. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors, by regulating proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. As confirmed in pancreatic, gastric, and liver cancer, its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation, as well as Bcl-2-associated X protein upregulation. Moreover, it has been found to induce the Akt kinase and Forkhead box O1 axis, activate the AMP-activated protein kinase pathway, elevate interleukin-2 and peroxisome proliferator-activated receptor-γ levels, reduce interleukin-10, as well as downregulate matrix metalloproteinase-9, Twist family bHLH transcription factor 1, and cyclooxygenase-2. It also inhibits Myc-HIF1α interaction and programmed death ligand 1 transcription by interrupting the Ras/ RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling. Future research should aim to unravel the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia, as compelling data have been provided by studies outside the gastrointestinal context. Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells, while still being effective against the latter, further in-depth studies with the use of animal models are merited. The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent, which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Agnieszka Kajdanek
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
4
|
Hsu CY, Rajabi S, Hamzeloo-Moghadam M, Kumar A, Maresca M, Ghildiyal P. Sesquiterpene lactones as emerging biomolecules to cease cancer by targeting apoptosis. Front Pharmacol 2024; 15:1371002. [PMID: 38529189 PMCID: PMC10961375 DOI: 10.3389/fphar.2024.1371002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
5
|
Li Z, Jiang M, Wang J, Zhuo Z, Zhang S, Tan Y, Hu W, Zhang H, Meng G. Transcription factor 12-mediated self-feedback regulatory mechanism is required in DUX4 fusion leukaemia. Clin Transl Med 2023; 13:e1514. [PMID: 38115701 PMCID: PMC10731121 DOI: 10.1002/ctm2.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND IGH::DUX4 is frequently observed in 4% B-cell acute lymphoblastic leukaemia patients. Regarding the IGH::DUX4-driven transactivation and alternative splicing, which are the main reasons behind this acute leukaemia outbreak, it remains unclear how transcriptional cofactors contribute to this oncogenic process. Further investigation is required to elucidate their specific role in leukaemogenesis. METHODS In order to investigate the cofactors of IGH::DUX4, integrated mining of Chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing of leukaemia cells and patient samples were conducted. Furthermore, to elucidate the synergistic interaction between transcription factor 12 (TCF12) and IGH::DUX4, knockdown and knockout experiment, mammalian two-hybridisation assay, co-immunoprecipitation and in situ proximity ligation assays were carried out. Additionally, to further investigate the direct interaction between TCF12 and IGH::DUX4, AI-based structural simulations were utilised. Finally, to validate the synergistic role of TCF12 in promoting IGH::DUX4 leukaemia, cell proliferation, apoptosis and drug sensitivity experiments were performed. RESULTS In this study, we observed that the IGH::DUX4 target gene TCF12 might be an important cofactor/helper for this oncogenic driver. The co-expression of IGH::DUX4 and TCF12 resulted in enhanced DUX4-driven transactivation. Supportively, knockdown and knockout of TCF12 significantly reduced expression of IGH::DUX4-driven target genes in leukaemia REH (a precursor B-cell leukaemia cell line) and NALM-6 cells (a precursor B-cell leukaemia cell line). Consistently, in TCF12 knockout cells, the expression of structure-based TCF12 mutant, but not wild-type TCF12, failed to restore the TCF12-IGH::DUX4 crosstalk and the synergistic transactivation. More importantly, the breakdown in TCF12-IGH::DUX4 cooperation impaired IGH::DUX4-driven leukaemia cell survival, caused sensitivity to the chemotherapy. CONCLUSIONS Altogether, these results helped to define a previously unrecognised TCF12-mediated positive self-feedback regulatory mechanism in IGH::DUX4 leukaemia, which holds the potential to function as a pivotal drug target for the management of this particular form of leukaemia. HIGHLIGHTS Transcription factor 12 (TCF12) is a new novel cofactor in IGH::DUX4 transcriptional complexes/machinery. TCF12 mediates a positive self-feedback regulatory mechanism in IGH::DUX4-driven oncogenic transaction. IGH::DUX4-TCF12 structure/cooperation might represent a potent target/direction in future drug design against B-cell acute lymphoblastic leukaemia.
Collapse
Affiliation(s)
- Zhihui Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Minghao Jiang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Junfei Wang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Zhiyi Zhuo
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Shiyan Zhang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Yangxia Tan
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Weiguo Hu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
- Department of Geriatrics and Medical Center on AgingRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Hao Zhang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
- Institute for Translational Brain ResearchState Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain ScienceJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Guoyu Meng
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRui‐Jin HospitalShanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiP. R. China
- State Key Laboratory of PathogenesisPrevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical UniversityXinjiangP. R. China
| |
Collapse
|
6
|
Rodríguez-Garza NE, Quintanilla-Licea R, Romo-Sáenz CI, Elizondo-Luevano JH, Tamez-Guerra P, Rodríguez-Padilla C, Gomez-Flores R. In Vitro Biological Activity and Lymphoma Cell Growth Inhibition by Selected Mexican Medicinal Plants. Life (Basel) 2023; 13:life13040958. [PMID: 37109486 PMCID: PMC10143981 DOI: 10.3390/life13040958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Cancer is a major health problem with significant morbidity and mortality. In addition, plants are a source of metabolites with diverse biological properties, including antitumor potential. In this study, we investigated the in vitro murine lymphoma L5178Y-R cell growth inhibition, human peripheral blood mononuclear cells (PBMC) toxicity and proliferation, and antioxidant, hemolytic, and anti-hemolytic activities of methanol extracts from 15 plants of traditional use in Mexico. Justicia spicigera caused the highest tumor cell growth inhibition with a half maximal inhibitory concentration (IC50) of 29.10 µg/mL and a selectivity index >34.36 compared with those of PBMC, whereas Mimosa tenuiflora showed the highest lymphoproliferative activity from 200 µg/mL compared with that induced by concanavalin A. In addition, M. tenuiflora showed an antioxidant effect (IC50 = 2.86 µg/mL) higher than that of ascorbic acid. Regarding the hemolytic and anti-hemolytic activity, all extracts presented significant anti-hemolytic activity. The extract of J. spicigera is emerging as a possible source of effective antineoplastic compounds.
Collapse
Affiliation(s)
- Nancy E. Rodríguez-Garza
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L., Mexico
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), IBSAL—CIETUS (Instituto de Investigación Biomédica de Salamanca—Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ramiro Quintanilla-Licea
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L., Mexico
| | - César I. Romo-Sáenz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L., Mexico
| | - Joel H. Elizondo-Luevano
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), IBSAL—CIETUS (Instituto de Investigación Biomédica de Salamanca—Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L., Mexico
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L., Mexico
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L., Mexico
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, N.L., Mexico
| |
Collapse
|
7
|
Mohammadlou H, Hamzeloo-Moghadam M, Moeinifard M, Gharehbaghian A. The Cytotoxic Effects of Britannin on Acute and Chronic Myeloid Leukemia Cells Through Inducing p21-mediated Apoptotic Cell Death. Turk J Pharm Sci 2021; 19:314-321. [DOI: 10.4274/tjps.galenos.2021.88655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|