1
|
Zhou X, Chen W, Zhuang D, Xu G, Puyang Y, Rui H. Knockdown of SETD5 Inhibits Colorectal Cancer Cell Growth and Stemness by Regulating PI3K/AKT/mTOR Pathway. Biochem Genet 2025; 63:1924-1937. [PMID: 38641699 DOI: 10.1007/s10528-024-10766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/28/2024] [Indexed: 04/21/2024]
Abstract
SET domain-containing 5 (SETD5), a member of protein lysine methyltransferase family, is expressed in multiple cancers, making it potential therapeutic targets. However, the role of SETD5 in colorectal cancer remains largely unknown. The expression of SETD5 in the 30 pairs colorectal cancer tissues samples and cell lines were determined by qRT-PCR. The functions of SETD5 was detected by knocked-down or overexpression in colorectal cancer cell lines SW480 and HCT116 cells. Cell proliferative activity, cell death, and stemness characteristics were assessed. BEZ235, a PI3K/AKT/mTOR pathway inhibitor, was used to perform rescue experiment to analyze whether SETD5 exerted its effects through activating PI3K/AKT/mTOR pathway. SETD5 was substantially upregulated in colorectal cancer, and correlated to metastasis and clinical stage of patients. Knockdown of SETD5 inhibited SW480 and HCT116 cell growth, as evidenced by the inhibition of cell viability and clone-forming. Moreover, Knockdown of SETD5 suppressed the capability of tumor sphere formation of SW480 and HCT116 cells, and reduced the expression of stemness-related proteins Nanog and Sox2. Further western blot analysis revealed that SETD5 knockdown inhibited the phosphorylation of proteins associated with the PI3K/AKT/mTOR pathway. In contrast, overexpression of SETD5 exerted the opposite effects. Mechanistically, by blocking PI3K/AKT/mTOR pathway with BEZ235, the effects of SETD5 overexpression on cell viability and Nanog and Sox2 protein expression were reversed. Our results substantiated that SETD5 functioned as an oncogene by promoting cell growth and stemness in colorectal cancer cells through activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaohua Zhou
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Wenqiang Chen
- Department of Medical Oncology, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Duanming Zhuang
- Department of Gastroenterology, Economic Development Zone, Nanjing Gaochun People's Hospital, No. 53, Maoshan, Gaochun, 211300, Jiangsu, China.
| | - Guangqi Xu
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Yongqiang Puyang
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Hongqing Rui
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| |
Collapse
|
2
|
Peng H, Cui B, Wei J, Yuan M, Liu W, Shi J, Liu Y. Timosaponin AIII Enhances Radiosensitivity in Breast Cancer through Induction of ROS-Mediated DNA Damage and Apoptosis. Radiat Res 2025; 203:257-270. [PMID: 39933562 DOI: 10.1667/rade-24-00087.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
Breast cancer is a commonly diagnosed cancer, while resistance to radiation therapy remains an important factor hindering the treatment of patients. Timosaponin AIII (Tim AIII) is a steroidal saponin from the Anemarrhena asphodeloides. Its pharmacologic effects and mechanisms for enhancing radiotherapy remain largely unknown. This study investigates Tim AIII and aims to unravel the underlying mechanisms. Experiments, including cell cloning, scratch assays, cell cycle, apoptosis assays, immunofluorescence staining, and reactive oxygen species (ROS) assessments, were conducted on breast cancer cell lines MDA-MB-231 and JIMT-1 to investigate the impact of Tim AIII combined with radiation. Western blot analyses were used to detect γ-H2AX expression, ROS-related pathways, ATM-CHK2, and AKT-MTOR pathways. Subcutaneous tumor experiments in nude mice confirmed in vivo radiation sensitization. When combined with radiation, Tim AIII significantly inhibited cell clone formation, impeded cancer cell migration, increased G2/M phase arrest and apoptosis. Immunofluorescence showed prolonged γ-H2AX signals. Molecular investigations indicated Tim AIII amplified radiation-induced ROS production, inducing ROS-mediated DNA damage and apoptosis. It activated ATM-CHK2 while inhibiting the AKT-MTOR pathway. Tim AIII enhances radiation sensitivity in breast cancer cells, both in vitro and in vivo. Through ROS-mediated DNA damage and apoptosis, activation of ATM/Chk2 and inhibition of the AKT-MTOR pathway induce G2/M phase arrest, ultimately boosting radiation sensitivity via the mitochondrial-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Huiting Peng
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Bingqing Cui
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Jianming Wei
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Min Yuan
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, P. R. China
| | - Wenjuan Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Jing Shi
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Yuguo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| |
Collapse
|
3
|
Ni Q, Pan C, Han G. Modification-specific Proteomic Analysis Reveals Cysteine S-Palmitoylation Involved in Esophageal Cancer Cell Radiation. ACS OMEGA 2025; 10:1541-1550. [PMID: 39829482 PMCID: PMC11740626 DOI: 10.1021/acsomega.4c09353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
This study aimed to investigate the effects of radiation (RT) on protein and protein S-palmitoylation levels in esophageal cancer (EC) cell lines. EC cells (N = 6) were randomly divided into RT and negative control. The results revealed that 592 proteins were identified in the RT group, including 326 upregulation proteins and 266 downregulation proteins. These differentially expressed proteins were involved in cellular biological processes. S-palmitoylation sequencing analysis revealed that 830 and 899 S-palmitoylation cysteine sites were upregulated and downregulated, respectively. Differential S-palmitoylation proteins were primarily found in cellular processes, anatomical entities, and binding activities. Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction analysis revealed that differential S-palmitoylation proteins are involved in proteoglycans in cancer, shigellosis, EGFR tyrosine kinase inhibitor resistance, nucleocytoplasmic transport, and mineral absorption. In conclusion, this study demonstrated that RT significantly affects protein expression and S-palmitoylation levels in EC cell lines, which has implications for cancer biology-related cellular processes and pathways. These findings enhance understanding of the molecular mechanisms underlying the response of EC cells to RT treatment.
Collapse
Affiliation(s)
- Qingtao Ni
- Department
of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing
Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Chi Pan
- Department
of General Surgery, The Affiliated Taizhou People’s Hospital
of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Gaohua Han
- Department
of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing
Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
4
|
Muhammad SNH, Ramli RR, Nik Mohamed Kamal NNS, Fauzi AN. Terpenoids: Unlocking Their Potential on Cancer Glucose Metabolism. Phytother Res 2024; 38:5626-5640. [PMID: 39300823 DOI: 10.1002/ptr.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Cancer incidence has increased globally and has become the leading cause of death in the majority of countries. Many cancers have altered energy metabolism pathways, such as increased glucose uptake and glycolysis, as well as decreased oxidative phosphorylation. This is known as the Warburg effect, where cancer cells become more reliant on glucose to generate energy and produce lactate as an end product, even when oxygen is present. These are attributed to the overexpression of key glycolytic enzymes, glucose transporters, and related signaling pathways that occur in cancer cells. Therefore, overcoming metabolic alterations in cancer cells has recently become a target for therapeutic approaches. Natural products have played a key role in drug discovery, especially for cancer and infectious diseases. In this review, we are going to focus on terpenoids, which are gradually gaining popularity among drug researchers due to their reported anti-cancer effects via cell cycle arrest, induction of apoptosis, reduction of proliferation, and metastasis. This review summarizes the potential of 13 terpenoid compounds as anti-glycolytic inhibitors in different cancer models, primarily by inhibiting the glucose uptake and the generation of lactate, as well as by downregulating enzymes associated to glycolysis. As a conclusion, disruption of cancer cell glycolysis may be responsible for the anti-cancer activity of terpenoids.
Collapse
Affiliation(s)
- Siti Nur Hasyila Muhammad
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Redzyque Ramza Ramli
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Agustine Nengsih Fauzi
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
5
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
8
|
Al-Hawary SIS, Ruzibakieva M, Gupta R, Malviya J, Toama MA, Hjazi A, Alkhayyat MRR, Alsaab HO, Hadi A, Alwaily ER. Detailed role of microRNA-mediated regulation of PI3K/AKT axis in human tumors. Cell Biochem Funct 2024; 42:e3904. [PMID: 38102946 DOI: 10.1002/cbf.3904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.
Collapse
Affiliation(s)
| | - Malika Ruzibakieva
- Cell Therapy Department, Institute of Immunology and Human Genomics, Uzbekistan Academy of Science, Tashkent, Uzbekistan
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Murtadha Raad Radhi Alkhayyat
- Department of Islamic Studies, College of Art, The Islamic University of Najaf, Najaf, Iraq
- Department of Islamic Studies, College of Art, The Islamic University of Babylon, Babylon, Iraq
- Department of Islamic Studies, College of Art, The Islamic University of Al Diwaniyah, Diwaniyah, Iraq
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ali Hadi
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
9
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
10
|
Peng L, Li P, Peng Z. miR-141-3p Enhanced Radiosensitivity of CRC Cells. Comb Chem High Throughput Screen 2024; 27:118-126. [PMID: 37143278 DOI: 10.2174/1386207326666230504144758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is recognized as one of the frequently diagnosed malignancies, and numerous microRNAs (miRs) are identified to be active in CRC. OBJECTIVE This work aimed to clarify the effect of miR-141-3p on the radiosensitivity of CRC cells. METHODS Firstly, CRC cell lines were cultured and applied to construct radiation-resistant CRC cells via X-ray treatment. The expression levels of miR-141-3p and long non-coding RNA DLX6 antisense RNA 1 (lncRNA DLX6-AS1) in CRC cells were measured using real-time quantitative polymerase chain reaction. After transfection with miR-141-3p mimics and 24 h treatment with 6- MV X-ray (0, 2, 4, 6 Gy), the survival fraction (SF) and the colony formation ability of CRC cells were determined using the cell counting kit-8 and colony formation methods. The interactions between miR-141-3p and DLX6-AS1 were analyzed using the dual-luciferase assay. The impact of miR-141-3p on DLX6-AS1 stability was detected after adding actinomycin-D. The role of DLX6- AS1 in the radiosensitivity of CRC cells was explored by transfecting oe-DLX6-AS1 into radiation- resistant CRC cells overexpressing miR-141-3p. RESULTS The relative expression levels of miR-141-3p were downregulated in CRC cells and further declined in radiation-resistant cells. Upregulation of miR-141-3p relative expression reduced SF and the colony formation ability while amplifying the radiosensitivity of radiation-resistant CRC cells. miR-141-3p directly bound to DLX6-AS1 to reduce DLX6-AS1 stability, and therefore downregulated DLX6-AS1 expression. DLX6-AS1 overexpression counteracted the role of miR- 141-3p overexpression in amplifying the radiosensitivity of radiation-resistant CRC cells. CONCLUSION miR-141-3p binding to DLX6-AS1 significantly decreased DLX6-AS1 stability and expression, promoting the radiosensitivity of CRC cells.
Collapse
Affiliation(s)
- Lizhong Peng
- Department of Surgery, Hubei Hospital of Chinese Medicine, Wuhan, 430074, China
- The Hubei University of Chinese Medicine Affiliated Hospital, Wuhan, 430061, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Pan Li
- Department of Surgery, Hubei Hospital of Chinese Medicine, Wuhan, 430074, China
- The Hubei University of Chinese Medicine Affiliated Hospital, Wuhan, 430061, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Zexu Peng
- Department of Surgery, Hubei Hospital of Chinese Medicine, Wuhan, 430074, China
- The Hubei University of Chinese Medicine Affiliated Hospital, Wuhan, 430061, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
11
|
Liu J, Ma F, Zhu Y, Zhang N, Kong L, Mi J, Cong H, Gao R, Wang M, Zhang Y. MaxCLK: discovery of cancer driver genes via maximal clique and information entropy of modules. Bioinformatics 2023; 39:btad737. [PMID: 38065693 PMCID: PMC10739565 DOI: 10.1093/bioinformatics/btad737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
MOTIVATION Cancer is caused by the accumulation of somatic mutations in multiple pathways, in which driver mutations are typically of the properties of high coverage and high exclusivity in patients. Identifying cancer driver genes has a pivotal role in understanding the mechanisms of oncogenesis and treatment. RESULTS Here, we introduced MaxCLK, an algorithm for identifying cancer driver genes, which was developed by an integrated analysis of somatic mutation data and protein-protein interaction (PPI) networks and further improved by an information entropy index. Tested on pancancer and single cancers, MaxCLK outperformed other existing methods with higher accuracy. About pancancer, we predicted 154 driver genes and 787 driver modules. The analysis of co-occurrence and exclusivity between modules and pathways reveals the correlation of their combinations. Overall, our study has deepened the understanding of driver mechanism in PPI topology and found novel driver genes. AVAILABILITY AND IMPLEMENTATION The source codes for MaxCLK are freely available at https://github.com/ShandongUniversityMasterMa/MaxCLK-main.
Collapse
Affiliation(s)
- Jian Liu
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, Shandong 264209, China
| | - Fubin Ma
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, Shandong 264209, China
| | - Yongdi Zhu
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, Shandong 264209, China
| | - Naiqian Zhang
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, Shandong 264209, China
| | - Lingming Kong
- Marine College, Shandong University at Weihai, Weihai, Shandong 264209, China
| | - Jia Mi
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital, Weihai, Shandong 264209, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Mingyi Wang
- Department of Central Lab, Weihai Municipal Hospital, Weihai, Shandong 264209, China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, Shandong 264209, China
| |
Collapse
|
12
|
Chien JC, Hu YC, Tsai YJ, Chien YT, Feng IJ, Shiue YL. Predictive Value of Clinicopathological Factors to Guide Post-Operative Radiotherapy in Completely Resected pN2-Stage III Non-Small Cell Lung Cancer. Diagnostics (Basel) 2023; 13:3095. [PMID: 37835838 PMCID: PMC10572249 DOI: 10.3390/diagnostics13193095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Introduction: With the evolution of radiotherapy techniques and a better understanding of clinicopathological factors, we aimed to evaluate the treatment effect of post-operative radiotherapy (PORT) and associated predictive factors in patients with completely resected pN2 stage III non-small cell lung cancer (R0 pN2-stage III NSCLC). Material and Method: The cancer registration database of a single medical center was searched for R0 pN2-stage III NSCLC. Clinicopathological factors and information about post-operative therapies, including PORT and adjuvant systemic treatment, were retrospectively collected and analyzed. The Kaplan-Meier method and a Cox regression model were applied for time-to-event analysis, with disease-free survival (DFS) being the primary outcome. Results: From 2010 to 2021, 82 R0 pN2-stage III NSCLC patients were evaluated, with 70.1% of tumors harboring epidermal growth factor receptor mutations (EGFR mut.). PORT was performed in 73.2% of cases, and the median dose was 54 Gy. After a median follow-up of 42 months, the 3-year DFS and overall survival (OS) rates were 40.6% and 77.3%, respectively. Distant metastasis (DM) was the main failure pattern. In the overall cohort, DFS was improved with PORT (3-year DFS: 44.9% vs. 29.8%; HR: 0.552, p = 0.045). Positive predictive factors for PORT benefit, including EGFR mut., negative extranodal extension, positive lymphovascular invasion, 1-3 positive lymph nodes, and a positive-to-dissected lymph node ratio ≤0.22, were recognized. OS improvement was also observed in subgroups with less lymph node burden. Conclusions: For R0 pN2-stage III NSCLC, PORT prolongs DFS and OS in selected patients. Further studies on predictive factors and the development of nomograms guiding the application of PORT are highly warranted, aiming to enhance the personalization of lung cancer treatment.
Collapse
Affiliation(s)
- Ju-Chun Chien
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Chang Hu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Yi-Ju Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Yu-Ting Chien
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - I-Jung Feng
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
13
|
Awale S, Baba H, Phan ND, Kim MJ, Maneenet J, Sawaki K, Kanda M, Okumura T, Fujii T, Okada T, Maruyama T, Okada T, Toyooka N. Targeting Pancreatic Cancer with Novel Plumbagin Derivatives: Design, Synthesis, Molecular Mechanism, In Vitro and In Vivo Evaluation. J Med Chem 2023. [PMID: 37257133 DOI: 10.1021/acs.jmedchem.3c00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pancreatic tumors grow in an "austerity" tumor microenvironment characterized by nutrient deprivation and hypoxia. This leads to the activation of adaptive pathways in pancreatic cancer cells, promoting tolerance to nutrition starvation and aggressive malignancy. Conventional anticancer drugs are often ineffective against tumors that grow in such austerity condition. Plumbagin, a plant-derived naphthoquinone, has shown potent preferential cytotoxicity against pancreatic cancer cells under nutrient-deprived conditions. Therefore, we synthesized a series of plumbagin derivatives and found that 2-(cyclohexylmethyl)-plumbagin (3f) was the most promising compound with a PC50 value of 0.11 μM. Mechanistically, 3f was found to inhibit the PI3K/Akt/mTOR signaling pathways, leading to cancer cell death under nutrient-deprived conditions. In vivo studies using pancreatic cancer xenograft mouse models confirmed the efficacy of 3f, demonstrating significant inhibition of tumor growth in a dose-dependent manner. Compound 3f represents a highly promising lead for anticancer drug development based on an antiausterity strategy.
Collapse
Affiliation(s)
- Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hayato Baba
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nguyen Duy Phan
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Juthamart Maneenet
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Koichi Sawaki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Maruyama
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Okada
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
14
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D'Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol 2023; 6:388. [PMID: 37031346 PMCID: PMC10082834 DOI: 10.1038/s42003-023-04770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via μ-positron emission tomography/computed tomography (μPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.
Collapse
Affiliation(s)
- Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pierangela Giustetto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | | | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Fabrizio Scopelliti
- Radiopharmacy Laboratory Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| |
Collapse
|
16
|
The PIK3CA-E545K-SIRT4 signaling axis reduces radiosensitivity by promoting glutamine metabolism in cervical cancer. Cancer Lett 2023; 556:216064. [PMID: 36646410 DOI: 10.1016/j.canlet.2023.216064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The mutation of glutamic acid 545 to lysine (E545K) in PIK3CA, as the most common missense mutation of this gene in various cancer types, is frequently observed in cervical cancer and has been shown to reduce cervical cancer radiosensitivity. However, the underlying mechanisms remain unclear. Here, we implicate the alterations of glutamine metabolism in PIK3CA-E545K-mediated radioresistance of cervical cancer. Specifically, PIK3CA mutation negatively regulated the expression of SIRT4 via the epigenetic regulator EP300 independently of the canonical mTORC1 pathway. PIK3CA-E545K-induced SIRT4 downregulation promoted cell proliferation, migration, and radiation-induced DNA repair and apoptosis, while SIRT4 overexpression reversed the radioresistance phenotype mediated by PIK3CA mutation. Mechanistically, SIRT4 modulated glutamine metabolism and thus cellular apoptosis by negatively regulating a glutamate pyruvate transaminase GPT1. Moreover, the PI3K inhibitor BYL719, but not mTOR inhibitors, exerted remarkable synergistic effects with radiotherapy by inhibiting glutamine metabolism in vitro and in vivo. Collectively, this study reveals the role of PIK3CA-E545K-SIRT4 axis in regulating glutamine metabolism and the radioresistance in cervical cancer, which provides a necessary preliminary basis for clinical research of PI3K inhibitors as radiosensitizing agents.
Collapse
|
17
|
Construction and validation of a competing endogenous RNA network in the thymus of miR-147 -/- mice. Int Immunopharmacol 2023; 117:109896. [PMID: 36812675 DOI: 10.1016/j.intimp.2023.109896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Prior evidence has demonstrated that miR-147 can regulate cellular proliferation, migration, apoptotic death, inflammatory responses, and the replication of viruses through its interactions with specific mRNA targets. LncRNA-miRNA-mRNA interactions are often found in various biological processes. No studies have documented lncRNA-miRNA-mRNA regulatory interactions in miR-147-/- mice. METHODS Thymus tissue samples from miR-147-/- mice were systematically analyzed to detect patterns of lncRNA, miRNA, and mRNA dysregulation in the absence of this biologically important miRNA. Briefly, RNA-sequencing was used to analyze samples of thymus tissue from wild-type (WT) and miR-147-/- mice. Radiation damage models of miR-147-/- mice were prepared and prophylactic intervention with the drug trt was performed. The validation of miR-47, PDPK1,AKT and JNK were carried out by qRT-PCR, western blot and fluorescence in situ hybridization. Apoptosis was detected by Hoechst staining, and histopathological changes were detected by HE staining. RESULTS We showed the identification of 235 mRNAs, 63 lncRNAs, and 14 miRNAs that were significantly upregulated in miR-147-/- mice as compared to WT controls, as well as 267 mRNAs, 66 lncRNAs and 12 miRNAs exhibiting significant downregulation. Predictive analyses of the miRNAs targeted by dysregulated lncRNAs and their associated mRNAs were further performed, highlighting the dysregulation of pathways including the Wnt signaling pathway, Thyroid cancer, Endometrial cancer (include PI3K/AKT) and Acute myeloid leukemia pathway(include PI3K/AKT) pathways. Troxerutin (TRT) upregulated PDPK1 via targeting miR-147 to promote AKT activation and inhibit JNK activation in the lungs of mice in radioprotection. CONCLUSION Together, these results highlight the potentially important role of miR-147 as a key regulator of complex lncRNA-miRNA-mRNA interacting networks. Further research focusing on PI3K/AKT pathways in miR-147-/- mice in radioprotection will thus benefit current knowledge of miR-147 while also informing efforts to improve radioprotection.
Collapse
|
18
|
Tomohara K, Maneenet J, Ohashi N, Nose T, Fujii R, Kim MJ, Sun S, Awale S. Ugi Adducts as Novel Anti-austerity Agents against PANC-1 Human Pancreatic Cancer Cell Line: A Rapid Synthetic Approach. Biol Pharm Bull 2023; 46:1412-1420. [PMID: 37779042 DOI: 10.1248/bpb.b23-00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that lack of sufficient nutrients and oxygen. Developing anti-cancer agents that target this tolerance to nutritional starvation is a promising anti-austerity strategy for eradicating pancreatic cancer cells in their microenvironment. In this study, we employed a chemical biology approach using the Ugi reaction to rapidly synthesize new anti-austerity agents and evaluate their structure-activity relationships. Out of seventeen Ugi adducts tested, Ugi adduct 11 exhibited the strongest anti-austerity activity, showing preferential cytotoxicity against PANC-1 pancreatic cancer cells with a PC50 value of 0.5 µM. Further biological investigation of Ugi adduct 11 revealed a dramatic alteration of cellular morphology, leading to PANC-1 cell death within 24 h under nutrient-deprived conditions. Furthermore, the R absolute configuration of 11 was found to significantly contribute to the preferential anti-austerity ability toward PANC-1, with a PC50 value of 0.2 µM. Mechanistically, Ugi adduct (R)-11 was found to inhibit the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway preferentially under nutrition starvation conditions. Consequently, Ugi-adduct (R)-11 could be a promising candidate for drug development targeting pancreatic cancer based on the anti-austerity strategy. Our study also demonstrated that the Ugi reaction-based chemical engineering of natural product extracts can be used as a rapid method for discovering novel anti-austerity agents for combating pancreatic cancer.
Collapse
Affiliation(s)
| | - Juthamart Maneenet
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Nao Ohashi
- Graduate School of Science, Kyushu University
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University
- Graduate School of Science, Kyushu University
| | - Rintaro Fujii
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Sijia Sun
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
19
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Li L, Yu J, Cheng S, Peng Z, Ben-David Y, Luo H. Transcription factor Fli-1 as a new target for antitumor drug development. Int J Biol Macromol 2022; 209:1155-1168. [PMID: 35447268 DOI: 10.1016/j.ijbiomac.2022.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The transcription factor Friend leukemia virus integration 1 (Fli-1) belonging to the E26 Transformation-Specific (ETS) transcription factor family is not only expressed in normal cells such as hematopoietic stem cells and vascular endothelial cells, but also abnormally expressed in various malignant tumors including Ewing sarcoma, Merkel cell sarcoma, small cell lung carcinoma, benign or malignant hemangioma, squamous cell carcinoma, adenocarcinoma, bladder cancer, leukemia, and lymphoma. Fli-1 binds to the promoter or enhancer of the target genes and participates in a variety of physiological and pathological processes of tumor cells, including cell growth, proliferation, differentiation, and apoptosis. The expression of Fli-1 gene is related to the specific biological functions and characteristics of the tissue in which it is located. In tumor research, Fli-1 gene is used as a specific marker for the occurrence, metastasis, efficacy, and prognosis of tumors, thus, a potential new target for tumor diagnosis and treatment. These studies indicated that Fli-1 may be a specific candidate for antitumor drug development. Recent studies identified small molecules regulating Fli-1 thanks to our screened strategy of natural products and their derivatives. Therefore, in this review, the advanced research on Fli-1 as a target for antitumor drug development is analyzed in different cancers. The inhibitors and agonists of Fli-1 that regulate its expression are introduced and their clinical applications in the treatment of cancer, thus providing new therapeutic strategies.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; College of Pharmacy, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Zhilin Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China.
| |
Collapse
|
22
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Al Bitar S, Ballout F, Monzer A, Kanso M, Saheb N, Mukherji D, Faraj W, Tawil A, Doughan S, Hussein M, Abou-Kheir W, Gali-Muhtasib H. Thymoquinone Radiosensitizes Human Colorectal Cancer Cells in 2D and 3D Culture Models. Cancers (Basel) 2022; 14:1363. [PMID: 35326517 PMCID: PMC8945905 DOI: 10.3390/cancers14061363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Resistance of cancer cells and normal tissue toxicity of ionizing radiation (IR) are known to limit the success of radiotherapy. There is growing interest in using IR with natural compounds to sensitize cancer cells and spare healthy tissues. Thymoquinone (TQ) was shown to radiosensitize several cancers, yet no studies have investigated its radiosensitizing effects on colorectal cancer (CRC). Here, we combined TQ with IR and determined its effects in two-dimensional (2D) and three-dimensional (3D) culture models derived from HCT116 and HT29 CRC cells, and in patient-derived organoids (PDOs). TQ sensitized CRC cells to IR and reduced cell viability and clonogenic survival and was non-toxic to non-tumorigenic intestinal cells. TQ sensitizing effects were associated with G2/M arrest and DNA damage as well as changes in key signaling molecules involved in this process. Combining a low dose of TQ (3 µM) with IR (2 Gy) inhibited sphere formation by 100% at generation 5 and this was associated with inhibition of stemness and DNA repair. These doses also led to ~1.4- to ~3.4-fold decrease in organoid forming ability of PDOs. Our findings show that combining TQ and IR could be a promising therapeutic strategy for eradicating CRC cells.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| | - Farah Ballout
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| | - Alissar Monzer
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| | - Mariam Kanso
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Nour Saheb
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.S.); (A.T.)
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon;
| | - Walid Faraj
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.S.); (A.T.)
| | - Samer Doughan
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Maher Hussein
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| |
Collapse
|
24
|
Masoudi-Khoram N, Abdolmaleki P. Role of non-coding RNAs in response of breast cancer to radiation therapy. Mol Biol Rep 2022; 49:5199-5208. [PMID: 35217966 DOI: 10.1007/s11033-022-07234-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Breast cancer ranks as the first common cancer with a high incidence rate and mortality among women. Radiation therapy is the main therapeutic method for breast cancer patients. However, radiation resistance of tumor cells can reduce the efficacy of treatment and lead to recurrence and mortality in patients. Non-coding RNA (ncRNAs) refers to a group of small RNA molecules that are not translated into protein, while they have the ability to modulate the translation of target mRNA. Several studies have reported the altered expression of ncRNAs in response to radiation in breast cancer. NcRNAs have been found to influence on radiation response of breast cancer by regulating various mechanisms, including DNA damage response, cell cycle regulation, cell death, inflammatory response, cancer stem cell and EGFR related pathways. This paper aimed to provide a summary of current findings on ncRNAs dysregulation after irradiation. We also present the function and mechanism of ncRNAs in modulating radiosensitivity or radioresistance of breast cancer cells.
Collapse
Affiliation(s)
- Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 1415-154, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 1415-154, Tehran, Iran.
| |
Collapse
|
25
|
Guo Y, Wang L, Yang H, Ding N. Knockdown long non-coding RNA HCP5 enhances the radiosensitivity of esophageal carcinoma by modulating AKT signaling activation. Bioengineered 2022; 13:884-893. [PMID: 34969363 PMCID: PMC8805942 DOI: 10.1080/21655979.2021.2014386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been revealed to participate in cancer therapy. Especial in tumor radiotherapy, lncRNAs usually could enhance or restrict the radiosensitivity in different ways. LncRNA HCP5 is highly expressed in esophageal cancer and influenced the malignant behaviors of esophageal cancer cells. However, this study dedicates to clarify if lncRNA HCP5 affects the radiosensitivity of esophageal carcinoma. The expression levels of HCP5 in esophageal cancer and adjacent noncancerous tissue were first analyzed on the TCGA database and then detected by qRT-PCR. The related functional experiments were used to investigate whether the radiosensitivity of esophageal squamous cell carcinoma was affected by the inhibition of HCP5. The expression results showed HCP5 is upregulated in esophageal cancers compared to the normal tissues. Meanwhile, knockdown HCP5 further suppressed the proliferation and promoted the apoptosis of esophageal cancer cells treated with a 2 Gy dose of radiotherapy. Moreover, we uncovered that knockdown HCP5 eliminated radiotherapy resistance by modulating the miR-216a-3p/PDK1 axis to inhibit the AKT activation. Finally, rescue experiments pointed that lowering the miR-216a-3p expression weakened the inhibition effect of knockdown HCP5 on cells treated with radiotherapy. To summary, our results indicate that HCP5 is involved in esophageal carcinoma radiotherapy and knockdown HCP5 enhances the radiosensitivity of esophageal carcinoma by modulating AKT signaling activation.
Collapse
Affiliation(s)
- Yue Guo
- Hematology Department, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lan Wang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hui Yang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Nannan Ding
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|