1
|
Ismail NZ, Khairuddean M, Abubakar S, Arsad H. Network pharmacology, molecular docking and molecular dynamics simulation of chalcone scaffold-based compounds targeting breast cancer receptors. J Biomol Struct Dyn 2025; 43:3242-3257. [PMID: 38149857 DOI: 10.1080/07391102.2023.2296606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Compounds with a chalcone scaffold-based structure have demonstrated promising anticancer biological activity. However, the molecular interactions between chalcone scaffold-based compounds and breast cancer-associated proteins remain unclear. Through network pharmacology, molecular docking, and molecular dynamics (MD) simulation analyses, compounds with a chalcone scaffold-based structure were evaluated for their interaction with potential breast cancer targets. The compounds were retrieved from the ASINEX database, resulting in 575,302 compounds. A total of 342 compounds with chalcone scaffold-based structures were discovered. From the 342 compounds that was analysed, ten were chosen due to their adherence to Lipinski's rule, having an appropriate range of lipophilicity (LOGP), and topological polar surface area (TPSA), and absence of any toxicity. Based on target intersection, 50 target genes were found and subjected to protein-protein interaction (PPI), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Four target genes were found to be involved in the breast cancer pathway. Consequently, molecular docking was utilised to analyse the molecular interactions between the compounds and four target protein receptors. Compound 211 exhibited the highest binding affinities for the epidermal growth factor receptor (EGFR), fibroblast growth factor receptor 1 (FGFR1), oestrogen receptor (ESR1), and cyclin dependent kinase 6 (CDK6) with values of -8.95 kcal/mol, -8.60 kcal/mol, -10.33 kcal/mol, and -9.90 kcal/mol, respectively. During MD simulation, compound 211 and its respective proteins were stable, compact, and had minimal flexibility. The findings provide foundations for future studies into the interaction underlying the anti-breast cancer potential of compounds with chalcone-based scaffold structures.
Collapse
Affiliation(s)
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
2
|
Xiao L, Gong H, Tan X, Chen P, Yang Y, Zhu H, Zhong S. Physicochemical characterization and antitumor activity in vitro of a polysaccharide from Christia vespertilionis. Int J Biol Macromol 2025; 290:139095. [PMID: 39722381 DOI: 10.1016/j.ijbiomac.2024.139095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/01/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
CVP-2 is a homogeneous polysaccharide extracted from the whole plant of Christia vespertilionis, with an average molecular weight of approximately 92,920 Da. Its main chain consists of repeating units of [3,5)-α-L-Araf-(1]2 → [5)-α-L-Araf-(1]2→, with branches at the C-3 position: branch 1 is α-L-Araf-(1→, and branch 2 is α-L-Araf-(1 → 4)-. Additionally, the structure includes β-D-Gclp-(1 → [4)-β-D-Glap-(1]2 → 5)-α-L-Araf-(1→. In vitro experiments conducted on cancer and normal cell lines demonstrated that the purified polysaccharide exhibited a significant pro-apoptotic effect on lung and liver cancer cells, while having no impact on the growth of normal tissue cells at dosage concentrations ranging from 125 to 1000 μg/mL. The inhibition of cell viability at 1000 μg/mL CVP-2 was 49.63 % for A549, 2.6 % for 16HBE, 28.56 % for HepG2, and 12.64 % for LX-2. Compared to the drug-free group, the death rates of A549, 16HBE, HepG2, and LX-2 cells increased by 37.13 %, 4.15 %, 26.00 %, and 4.41 %, respectively. CVP-2 was found to inhibit the G1/S phase of the cell cycle. The potential anticancer mechanism of CVP-2 involves a reduction in the Bcl-2/Bax protein in cancer cells, with no significant effect on the growth of normal cells. Therefore, CVP-2 holds great promise as a broad-spectrum antitumor agent and dietary supplement.
Collapse
Affiliation(s)
- Liuyue Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huxuan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ping Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- GuangXi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
3
|
Ismail NZ, Khairuddean M, Al-Anazi M, Arsad H. Tri-chalcone suppressed breast cancer cell proliferation and induced apoptosis through intrinsic and extrinsic pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8993-9006. [PMID: 38874806 DOI: 10.1007/s00210-024-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Breast cancer development depends critically on antiproliferative and apoptotic mechanisms. However, the mechanisms underlying the antiproliferative and apoptosis effects of breast cancer treated with tri-chalcone remain unclear. Tri-chalcones have been demonstrated in prior studies to inhibit the proliferation of breast cancer cells (MCF-7). Following the discovery, this study seeks to investigate the effect of tri-chalcone compounds on targets involved in antiproliferative and apoptosis mechanisms. In this study, we employed bioinformatics analysis along with in vitro evaluation using tri-chalcone-treated MCF-7 cells to determine the responses of antiproliferative and apoptosis mechanisms. The analysis revealed that the compounds interact with six apoptosis target receptors: TNFα, Bak, Bcl-2, caspase-9, and caspase-8. Tri-chalcone S1-2 exhibited the strongest binding affinities for TNFα (-7.39 kcal/mol), caspase-8 (-8.43 kcal/mol), caspase-9 (-8.53 kcal/mol), Bcl-2 (-8.51 kcal/mol), and Bak (-7.15 kcal/mol). The tri-chalcone S1-2 paired with the corresponding proteins showed minor flexibility and extremely small changes of less than 0.25 nm during the MD simulation. Additionally, tri-chalcone S1-2 had a significant inhibitory effect on the proliferation of MCF-7 cells (5.31 ± 0.26 µg/mL) compared to other compounds. S1-2 also induced apoptosis, affecting nearly half (43.80%) of the total early and late apoptosis in MCF-7 cells. S1-2-treated MCF-7 cells also demonstrated upregulations of genes TNFα (1.50), Bak (1.42), caspase-8 (1.24), and caspase-9 (1.61), accompanied by a downregulation of gene Bcl-2 (0.71). The discovery gives us a better understanding of how tri-chalcone S1-2 suppressed MCF-7 cell proliferation and induced apoptosis through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| |
Collapse
|
4
|
Ismail NZ, Khairuddean M, Alidmat MM, Abubakar S, Arsad H. Investigating the potential of mono-chalcone compounds in targeting breast cancer receptors through network pharmacology, molecular docking, molecular dynamics simulation, antiproliferative effects, and gene expressions. 3 Biotech 2024; 14:151. [PMID: 38737798 PMCID: PMC11087420 DOI: 10.1007/s13205-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The study aims to investigate various aspects of synthesized mono-chalcone compounds 5 and 8 concerning breast cancer, including network pharmacology, molecular docking, molecular dynamics (MD) simulations, antiproliferative effects, and gene expressions. Initially, the compounds underwent a network pharmacology analysis targeting breast cancer-related targets, with MalaCards, SwissTargetPrediction, and PharmMapper identifying 70 breast cancer target receptors. Subsequently, protein-protein interaction (PPI) network analysis revealed two distinct target gene clusters. Survival analysis identified seven significant target genes following Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) evaluation. Molecular docking and MD simulations were conducted on these seven target genes (AKT2, BRAF, ESR1, FGFR1, IGF1, IGF1R, and KIT), revealing that compound 8 exhibited the highest binding affinities, as well as better stability and compactness when interacting with the targeted proteins. Next, the compounds underwent cell viability assay and gene expression analysis to validate the in silico findings. Both compounds demonstrated the ability to suppress breast cancer proliferation, with compound 8 showing increased selectivity in targeting breast cancer cells while causing minimal harm to normal breast cells. The suppression of breast cancer cell proliferation was attributed to decreased expression levels of AKT2, BRAF, FGFR1, IGF1, IGF1R, KIT, and ESR1. Hence, the results provide insights into the molecular interaction responsible for the anti-breast cancer capabilities of mono-chalcone compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03991-y.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, 3011 Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang Malaysia
| |
Collapse
|
5
|
Wang L, Xu Y, Zhao X, Zhu X, He X, Sun A, Zhuang G. Antagonistic effects of N-acetylcysteine on lead-induced apoptosis and oxidative stress in chicken embryo fibroblast cells. Heliyon 2023; 9:e21847. [PMID: 38034812 PMCID: PMC10682149 DOI: 10.1016/j.heliyon.2023.e21847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Lead (Pb) is a heavy metal that can have harmful effects on the environment, which has severe cytotoxicity in many animal tissues. N-acetylcysteine (NAC) has antioxidant activity, reducing lead-induced oxidative stress and apoptosis, but its role in chicken cells is unknown. The current study explored the antagonistic effect of NAC on lead-induced apoptosis and oxidative stress in chicken embryo fibroblast (CEF). In this study, CEF was used as a model to measure the cytotoxic effects of lead nitrate at different concentrations, demonstrating a dose-dependent effect on CEF activity. Employing inverted microscopy, the investigation of morphological alterations in CEF cells was conducted. Fluorescence staining methodology enabled the assessment of reactive oxygen species (ROS) levels within CEF cells. Moreover, an enzyme-linked immunosorbent assay was utilized to detect the presence of oxidative damage indicators encompassing superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activity, malondialdehyde (MDA) content, and total antioxidant capacity (T-AOC) within CEF cells. Furthermore, the determination of the apoptosis rate of CEF cells was accomplished through the utilization of the Hoechst 33258 staining method in combination with the Annexin V-FITC dual staining method. By using RT-qPCR for detection, lead treatment increased expression of pro-apoptotic genes, caspase-3, and caspase-9, and reduced expression of anti-apoptotic genes, Bcl-2, and BI-1. Reduced antioxidant capacity was shown by increased ROS and MDA levels in CEF cells after lead treatment. The results showed that NAC inhibited the expression of caspase-3 and caspase-9 in lead-treated CEF cells, while NAC had a certain inhibitory effect on the relative expression of Bcl-2 and BI-1 mRNA in lead-induced CEF cells. NAC significantly reduced lead-induced oxidative damage and apoptosis. Overall, our results demonstrate a novel protective effect of NAC against lead-induced injury in chicken cells, providing a theoretical basis for future investigations of drugs that are effective in preventing lead poisoning in animals.
Collapse
Affiliation(s)
- Lele Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yijie Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xiuyuan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| |
Collapse
|
6
|
Yang J, Kim JS, Kwon YS, Seong ES, Kim MJ. Antioxidant and Antiproliferative Activities of Eclipta prostrata (L.) L. Extract and Isolated Compounds. Molecules 2023; 28:7354. [PMID: 37959773 PMCID: PMC10650814 DOI: 10.3390/molecules28217354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The primary objective of this study was to elucidate the chemical composition, antioxidant properties, and antiproliferative activities of Eclipta prostrata extracts. Two flavonoids, 3'-O-methylorobol and apigenin 7-sulfate, were isolated from the ethyl acetate (EtOAc) extract of E. prostrata. The total phenolic and flavonoid contents of the E. prostrata extracts, as well as their overall antioxidant activities as measured using the 2,2-diphenyl-1-picrylhydrazyl and reducing power assays, were investigated. The E. prostrata EtOAc extract exhibited significantly greater antioxidant activities in both assays and higher phenol and flavonoid contents than the other extracts. The potential antiproliferative properties of the E. prostrata extracts and isolated compounds were investigated in vitro against the AGS, A549, and HT-29 cancer cell lines and the normal human HEK-293 cell line using the MTT assay. Annexin V-FITC/PI staining analysis and quantitative real-time PCR were used to assess AGS cell apoptosis. At a concentration of 100 µg/mL, the EtOAc extract of E. prostrata reduced AGS cell viability and proliferation by inducing apoptosis through the alteration of gene expression in the apoptotic cascade. These results highlight E. prostrata as a promising source of anticancer compounds.
Collapse
Affiliation(s)
- Jinfeng Yang
- Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou 542899, China;
| | - Joo Seok Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Soo Seong
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myong Jo Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
7
|
Abd Hamid IA, Laazizi N, Mustapa AN, Abd Rahman N. Effect of Pre-Treatment Methods on the Extractability of Christia vespertilionis by Supercritical Carbon Dioxide. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023; 31:2311-2328. [DOI: 10.47836/pjst.31.5.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Christia vespertilionis is a medicinal herb traditionally used as a complementary and alternative medicine to treat cancer and malaria. This study investigated the effect of pre-treatments of the Christia vespertilionis plant on supercritical CO2 extraction yield and solubility. Four pre-treatments were studied: drying and grinding, doping with absolute ethanol (99%) and 80% (v/v) of ethanol/water, and microwave pre-treatment. The supercritical CO2 extraction was conducted at a constant 13.8 MPa, 40℃ with 24 mL/min flow rate in 40 min of extraction time. It was found that the dried sample after drying and grinding pre-treatment produced the highest yield of 4.56 mg/g, whereas the lowest yield was obtained for the fresh leaves’ samples treated with microwave irradiation (1.26 mg/g). Doping techniques with absolute ethanol and 80% (v/v) were comparable in the 2.64 to 2.94 mg/g. GCMS results revealed that Christia vespertilionis extract comprises antioxidants, mainly phytol, limonene, and other medicinal compounds such as α-monolaurin and l-ascorbyl 2,6-dipalmitate. This study indicates that adding co-solvent was not the primary technique in supercritical CO2 extraction to increase the extractability of compounds of interest from plant matrices.
Collapse
|
8
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, Sharma A, Kumar D, Chellappan DK, Singh SK, Dua K, Gupta G. Role of Medicinal plant-derived Nutraceuticals as a potential target for the treatment of breast cancer. J Food Biochem 2022; 46:e14387. [PMID: 36121313 DOI: 10.1111/jfbc.14387] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Breast cancer (BC) is one of the most challenging cancers to treat, accounting for many cancer-related deaths. Over some years, chemotherapy, hormone treatment, radiation, and surgeries have been used to treat cancer. Unfortunately, these treatment options are unsuccessful due to crucial adverse reactions and multidrug tolerance/resistance. Although it is clear that substances in the nutraceuticals category have a lot of anti-cancer activity, using a supplementary therapy strategy, in this case, could be very beneficial. Nutraceuticals are therapeutic agents, which are nutrients that have drug-like characteristics and can be used to treat diseases. Plant nutraceuticals categorized into polyphenols, terpenoids, vitamins, alkaloids, and flavonoids are part of health food products, that have great potential for combating BC. Nutraceuticals can reduce BC's severity, limit malignant cell growth, and modify cancer-related mechanisms. Nutraceuticals acting by attenuating Hedgehog, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and Wnt/β-catenin signaling are the main pathways in controlling the self-renewal of breast cancer stem cells (BCSCs). This article reviews some important nutraceuticals and their modes of action, which can be very powerful versus BC. PRACTICAL APPLICATIONS: Nutraceuticals' importance to the control and diagnosis of breast cancer is undeniable and cannot be overlooked. Natural dietary compounds have a wide range of uses and have been used in traditional medicine. In addition, these natural chemicals can enhance the effectiveness of other traditional medicines. They may also be used as a treatment process independently because of their capacity to affect several cancer pathways. This study highlights a variety of natural chemicals, and their mechanisms of action, routes, synergistic effects, and future potentials are all examined.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Avinash Sharma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
10
|
Ismail NZ, Md Saad S, Adebayo IA, Md Toha Z, Abas R, Mohamad Zain NN, Arsad H. The antiproliferative and apoptotic potential of Clinacanthus nutans against human breast cancer cells through targeted apoptosis pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81685-81702. [PMID: 35737268 DOI: 10.1007/s11356-022-20858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the extrinsic and intrinsic apoptosis mechanisms involved in C. nutans extract-treated MCF7 cells are still unknown. This study was intended to subfractionate CN-Dcm extract using column chromatography and analyse the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot, and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 1.00 µg/mL) and substantially induced apoptosis in the MCF7 cells. In treated MCF7 cells, SF2 extract significantly upregulated the expression of P53, BAX, BID, caspase-8, caspase-9, and caspase-3, while downregulating the expression of BCL2. The presence of potential bioactive chemical compounds in the SF2 extract was identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Thus, the SF2 extract has the potential to induce apoptosis in MCF7 cells through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Salwani Md Saad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Ismail Abiola Adebayo
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Analystical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
- Microbiology and Immunology Department, School of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Ishaka-Bushenyi, Uganda
| | - Zaleha Md Toha
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Rafedah Abas
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia.
| |
Collapse
|
11
|
Laser empowered ‘chemo-free’ phytotherapy: Newer approach in anticancer therapeutics delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ismail NZ, Mohamed WAS, Ab Rahim N, Hashim NM, Adebayo IA, Mohamad Zain NN, Arsad H. Molecular docking and molecular dynamic simulations of apoptosis proteins with potential anticancer compounds present in Clinacanthus nutans extract using gas chromatography-mass spectrometry. J Biomol Struct Dyn 2022:1-17. [PMID: 35899385 DOI: 10.1080/07391102.2022.2101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Clinacanthus nutans is a medicinal plant recognised for its anticancer properties. We previously discovered that the C. nutans extract had the most potent inhibitory effect on MCF7 breast cancer cell and significantly induced apoptosis. However, there is a scarcity of studies demonstrating the molecular interactions of C. nutans-derived chemical compounds associated with apoptosis-related proteins. Therefore, the objective of this study was to determine the potential chemical compounds found in the C. nutans extract and examine their interactions with the targeted apoptotic proteins using molecular docking and molecular dynamic simulations. To address this objective, the compounds found in the SF2 extract of C. nutans were analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The molecular interaction of the compounds with the targeted apoptotic proteins were determined using molecular docking and molecular dynamic simulations. GC-MS analysis revealed a total of 32 compounds in the SF2 extract. Molecular docking analysis showed that compound β-amyrenol had the highest binding affinity for MDM2-P53 (-7.26 kcal/mol), BCL2 (-11.14 kcal/mol), MCL1-BAX (-6.42 kcal/mol), MCL1-BID (-6.91 kcal/mol), and caspase-9 (-12.54 kcal/mol), whereas campesterol had the highest binding affinity for caspase-8 (-10.11 kcal/mol) and caspase-3 (-10.14 kcal/mol). These selected compounds were subjected to molecular dynamic simulation at 310 K for 100 ns. The results showed that the selected protein-ligand conformation complexes were stable, compact, and did not alter much when compared to the protein references. The findings indicate that β-amyrenol and campesterol are potentially significant compounds that might provide insight into the molecular interactions of the compounds with the apoptosis-related proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Wan Ahmad Syazani Mohamed
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Coordination of Clinical Research Network, National Institute of Health, Shah Alam, Malaysia
| | - Nurhidayah Ab Rahim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.,Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | - Nor Munira Hashim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Ismail Abiola Adebayo
- Microbiology and Immunology Department, School of Biomedical Sciences, Kampala International University, Ishaka, Uganda.,Analystical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
13
|
Soares NC, Ali A, Srinivasulu V, Sharaf BM, Giddey AD, Okendo J, Al-Hroub HM, Semreen MH, Hamad M, Al-Tel TH. Unveiling the mechanism of action of nature-inspired anti-cancer compounds using a multi-omics approach. J Proteomics 2022; 265:104660. [PMID: 35728772 DOI: 10.1016/j.jprot.2022.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The 2020 global cancer registry has ranked breast cancer (BCa) as the most commonly diagnosed type of cancer and the most common cause of cancer-related deaths in women worldwide. Increasing resistance and significant side effects continue to limit the efficacy of anti-BCa drugs, hence the need to identify new drug targets and to develop novel compounds to overcome these limitations. Nature-inspired anti-cancer compounds are becoming increasingly popular since they often provide a relatively safe and effective alternative. In this study, we employed multi-omics techniques to gain insights into the relevant mechanism of action of two recently identified new nature-inspired anti-cancer compounds (SIMR3066 and SIMR3058). Discovery proteomics analysis combined with LC-MS/MS-based untargeted metabolomics analysis was performed on compound-treated vs DMSO-treated (control) MCF-7 cells. Downstream protein functional enrichment analysis showed that most of the responsive proteins were functionally associated with antigen processing and neutrophil degranulation, RNA catabolism and protein folding as well as cytoplasmic vesicle lumen and mitochondrial matrix formation. Consistent with the proteomics findings, metabolomic pathway analysis suggested that the differentially abundant compounds indicated altered metabolic pathways such as glycolysis, the Krebs cycle and oxidative phosphorylation. Furthermore, metabolomics-based enriched-for-action pathway analysis showed that the two compounds associate with mercaptopurine, thioguanine and azathioprine related pathways. Lastly, integrated proteomics and metabolomics analysis revealed that treatment of BCa with SIMR3066 disrupts several signaling pathways including p53-mediated apoptosis and the circadian entertainment pathway. Overall, the multi-omics approach we used in this study indicated that it is a powerful tool in probing the mechanism of action of lead drug candidates. SIGNIFICANCE: In this study we adopted a multi-omics (proteomics and metabolomics) strategy to learn more about the molecular mechanisms of action of nature-inspired potential anticancer drugs. Following treatment with SIMR3066 or SIMR3058, the integration of these multi-omics data sets revealed which biological pathways are altered in BCa cells. This study demonstrates that combining proteomics with metabolomics is a powerful method to investigate the mechanism of action of potential anticancer lead drug candidates.
Collapse
Affiliation(s)
- Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates.
| | - Amjad Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma M Sharaf
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Alexander D Giddey
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Javan Okendo
- Systems and Chemical Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Hamza M Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Ben Khadher T, Aydi S, Mars M, Bouajila J. Study on the Chemical Composition and the Biological Activities of Vitis vinifera Stem Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103109. [PMID: 35630586 PMCID: PMC9144250 DOI: 10.3390/molecules27103109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Vitis vinifera (V. vinifera) is a herbaceous plant, cultivated worldwide and known for its biological benefits. The aim of this study is the investigation of the chemical composition as well as the determination of the biological potential of different grape stem extracts obtained by maceration and accelerated solvent extraction (ASE). The HPLC analysis of the tested extracts led to the identification of 28 compounds of which 17 were identified for the first time in grape plants, in addition to seven revealed in the stem part for the first time. Twenty-nine volatile molecules have been detected by GC-MS in the grape stem part; among them seven were identified for the first time in the grape plant. For the biological analysis, the ethyl acetate extract (EtOAc) obtained by maceration showed a significant potential regarding antioxidant activity (IC50 = 42.5 µg/mL), anti-Alzheimer (IC50 = 14.1 µg/mL), antidiabetic (IC50 = 13.4 µg/mL), cytotoxic with HCT-116 (IC50 = 12.5 µg/mL), and anti-inflammatory (IC50 = 26.6 µg/mL) activities, as well as showing the highest polyphenol content (207.9 mg GAE/g DW).
Collapse
Affiliation(s)
- Talel Ben Khadher
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France;
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia; (S.A.); (M.M.)
| | - Samir Aydi
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia; (S.A.); (M.M.)
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia; (S.A.); (M.M.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France;
- Correspondence: ; Tel./Fax: +33-562256885
| |
Collapse
|