1
|
Xing T, Wang Z, Hao X, Mu J, Wang B. Copper Nanoparticles Green-Formulated by Curcuma longa Extract Induce Apoptosis via P53 and STAT3 Signaling Pathways in Bladder Carcinoma Cell. Biol Trace Elem Res 2025; 203:2606-2618. [PMID: 39397139 DOI: 10.1007/s12011-024-04373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
The study outlines the production of new copper nanoparticles infused with Curcuma longa extract to trigger apoptosis through P53 and signal transducer and activator of transcription 3 (STAT3) signaling pathways in bladder carcinoma cells. The structural characteristics of the nanoparticles that were synthesized were analyzed through various sophisticated methods such as transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FT-IR). During the antioxidant evaluation, the IC50 values for copper nanoparticles and butylated hydroxytoluene (BHT) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals were found to be 116 µg/mL and 31 µg/mL, respectively. The cells treated with copper nanoparticles underwent evaluation through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for 48 h to determine their anticancer properties on TCCSUP bladder carcinoma cell. The TCCSUP cell line exhibited an IC50 of 290 µg/mL when exposed to copper nanoparticles. The viability of malignant cells decreased upon treatment with copper nanoparticles. Furthermore, the copper nanoparticles presence led to a 65-75% increase in cell apoptosis, along with an increase in Bax and cleaved caspase-8 and a decrease in the Bcl-2. Furthermore, the copper nanoparticles presence resulted in the suppression of colony formation. Notably, the molecular pathway analysis in cells treated with copper NPs demonstrated an increase in p53 expression, along with a decrease in the expression of both total and phosphorylated STAT3. This offers that p53 and STAT3 play a crucial role in the biological efficacies induced by the nanoparticles in human carcinoma cells. The data of our research suggest that copper NPs could have significant potential as an anticancer treatment for human bladder carcinoma cells.
Collapse
Affiliation(s)
- Tianjun Xing
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Zhu Wang
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Xiaojie Hao
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Jingjun Mu
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Bin Wang
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
2
|
Zahid A, Khurshid A, Rehman SU, Hassan SMU, Akhtar R. Enhanced Intracellular Delivery of Curcumin Using Polymeric Nanocarriers: A Natural Photosensitizing Agent for Anti-Cancer Photodynamic Therapy. J Fluoresc 2025:10.1007/s10895-025-04179-0. [PMID: 40056323 DOI: 10.1007/s10895-025-04179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 03/10/2025]
Abstract
Curcumin ranks among the extensively investigated Phytocompounds with a wide array of therapeutic properties. It has bioactive and photoactive properties that enhance its potential as an anti-cancer agent. However, poor solubility and low bioavailability are associated with it which hinders its applications. To address the limitations related to free curcumin (CUR), the present study focuses on the synthesis of curcumin-loaded poly lactic-co-glycolic acid nanoparticles (CUR NPs). The single emulsion solvent evaporation technique was used to synthesize CUR NPs with an average size of 187 nm and a zeta potential of -13.3 mV. Photophysical properties, drug loading efficiency, and drug release profile of synthesized CUR NPs were studied. Confocal fluorescence imaging was employed to study the cellular uptake of both formulations of CUR. The In-vitro investigation was conducted using BT-474 human breast cancer cells to evaluate the dark and phototoxic effect of both variants of curcumin (free CUR and CUR NPs). The cytotoxicity was quantified through half-maximal inhibitory concentration (IC50) obtained after conducting in-vitro dark and phototoxic experiments. The study revealed that CUR NPs showed better cytotoxic responses compared to the free CUR. During the phototoxic study, CUR NPs exhibit improved efficacy in the presence of light. The CUR NPs effectively deliver curcumin to enhance its potential in photodynamic therapy against cancer.
Collapse
Affiliation(s)
- Aleena Zahid
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
| | - Ahmat Khurshid
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shakeel Ur Rehman
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Syed Mujtaba Ul Hassan
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ribqa Akhtar
- Department of Virology and Immunology, National Institute of Health, Park Road, Islamabad, Pakistan
| |
Collapse
|
3
|
Mayo B, Penroz S, Torres K, Simón L. Curcumin Administration Routes in Breast Cancer Treatment. Int J Mol Sci 2024; 25:11492. [PMID: 39519045 PMCID: PMC11546575 DOI: 10.3390/ijms252111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is a public health concern worldwide, characterized by increasing incidence and mortality rates, requiring novel and effective therapeutic strategies. Curcumin is a bioactive compound extracted from turmeric with several pharmacological activities. Curcumin is a multifaceted anticancer agent through mechanisms including the modulation of signaling pathways, inhibition of cell proliferation, induction of apoptosis, and production of reactive oxygen species. However, the poor water solubility and bioavailability of curcumin create important barriers in its clinical application. This review elaborates on the therapeutic potential of curcumin in breast cancer treatment, focusing on the efficacy of different administration routes and synergistic effects with other therapeutic agents. The intravenous administration of curcumin-loaded nanoparticles significantly improves bioavailability and therapeutic outcomes compared to oral routes. Innovative formulations, such as nano-emulsifying drug delivery systems, have shown promise in enhancing oral bioavailability. While intravenous delivery ensures higher bioavailability and direct action on tumor cells, it is more invasive and expensive than oral administration. Advancing research on curcumin in breast cancer treatment is essential for improving therapeutic outcomes and enhancing the quality of life of patients.
Collapse
Affiliation(s)
| | | | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| |
Collapse
|
4
|
Chen Y, Pan G, Wu F, Zhang Y, Li Y, Luo D. Ferroptosis in thyroid cancer: Potential mechanisms, effective therapeutic targets and predictive biomarker. Biomed Pharmacother 2024; 177:116971. [PMID: 38901201 DOI: 10.1016/j.biopha.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Thyroid cancer is a prevalent endocrine malignancy whose global incidence has risen over the past several decades. Ferroptosis, a regulated form of cell death distinguished by the excessive buildup of iron-dependent lipid peroxidates, stands out from other programmed cell death pathways in terms of morphological and molecular characteristics. Increasing evidence suggests a close association between thyroid cancer and ferroptosis, that is, inducing ferroptosis effectively suppresses the proliferation of thyroid cancer cells and impede tumor advancement. Therefore, ferroptosis represents a promising therapeutic target for the clinical management of thyroid cancer in clinical settings. Alterations in ferroptosis-related genes hold potential for prognostic prediction in thyroid cancer. This review summarizes current studies on the role of ferroptosis in thyroid cancer, elucidating its mechanisms, therapeutic targets, and predictive biomarkers. The findings underscore the significance of ferroptosis in thyroid cancer and offer valuable insights into the development of innovative treatment strategies and accurate predictors for the thyroid cancer.
Collapse
Affiliation(s)
- Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Gang Pan
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Fan Wu
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yu Zhang
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuanhui Li
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Dingcun Luo
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
5
|
Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomed Pharmacother 2023; 166:115283. [PMID: 37567073 DOI: 10.1016/j.biopha.2023.115283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The use of phytochemicals for purpose of cancer therapy has been accelerated due to resistance of tumor cells to conventional chemotherapy drugs and therefore, monotherapy does not cause significant improvement in the prognosis and survival of patients. Therefore, administration of natural products alone or in combination with chemotherapy drugs due to various mechanisms of action has been suggested. However, cancer therapy using phytochemicals requires more attention because of poor bioavailability of compounds and lack of specific accumulation at tumor site. Hence, nanocarriers for specific delivery of phytochemicals in tumor therapy has been suggested. The pharmacokinetic profile of natural products and their therapeutic indices can be improved. The nanocarriers can improve potential of natural products in crossing over BBB and also, promote internalization in cancer cells through endocytosis. Moreover, (nano)platforms can deliver both natural and synthetic anti-cancer drugs in combination cancer therapy. The surface functionalization of nanostructures with ligands improves ability in internalization in tumor cells and improving cytotoxicity of natural compounds. Interestingly, stimuli-responsive nanostructures that respond to endogenous and exogenous stimuli have been employed for delivery of natural compounds in cancer therapy. The decrease in pH in tumor microenvironment causes degradation of bonds in nanostructures to release cargo and when changes in GSH levels occur, it also mediates drug release from nanocarriers. Moreover, enzymes in the tumor microenvironment such as MMP-2 can mediate drug release from nanocarriers and more progresses in targeted drug delivery obtained by application of nanoparticles that are responsive to exogenous stimulus including light.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Passos CLA, Polinati RM, Ferreira C, Dos Santos NAN, Lima DGV, da Silva JL, Fialho E. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells. Sci Rep 2023; 13:13446. [PMID: 37596331 PMCID: PMC10439215 DOI: 10.1038/s41598-023-40535-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer is the second most common type of cancer worldwide and the leading cause of cancer death in women. Dietary bioactive compounds may act at different stages of carcinogenesis, including tumor initiation, promotion, and progression. Spices have been used for thousands of years and have many bioactive compounds with chemopreventive and chemotherapeutic properties. Curcumin has a multitude of beneficial biological properties, including anti-inflammatory and anticancer effects. This study investigated the effects of cotreatment with curcumin and the chemotherapeutic drug melphalan in cultured MDA-MB-231 breast cancer cells. When used alone, both curcumin and melphalan had a cytotoxic effect on breast cancer cells. Combined treatment with 11.65 µM of curcumin and 93.95 µM of melphalan (CURC/MEL) reduced cell viability by 28.64% and 72.43% after 24 h and 48 h, respectively. CURC/MEL reduced the number of colony-forming units and increased ROS levels by 1.36-fold. CURC/MEL alter cell cycle progression, induce apoptosis, and upregulate caspases-3, -7, and -9, in MDA-MB-231 cells. Cotreatment with curcumin and melphalan have anti-breast cancer cells effects and represent a promising candidate for clinical testing.
Collapse
Affiliation(s)
- Carlos Luan A Passos
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Madureira Polinati
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christian Ferreira
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Daniel Galinis V Lima
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima da Silva
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Fialho
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Ilha do Fundão, Caixa Postal 68041, Rio de Janeiro, CEP 21941-590, Brazil.
| |
Collapse
|
7
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Eslami Moghadam M, Hasanzadeh Esfahani M, Behzad M, Zolghadri S, Ramezani N, Azadi Y. New platinum (II) complexes based on schiff bases: synthesis, specification, X-ray structure, ADMET, DFT, molecular docking, and anticancer activity against breast cancer. J Biol Inorg Chem 2023:10.1007/s00775-023-02005-1. [PMID: 37452868 DOI: 10.1007/s00775-023-02005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
Acylpyrazolone-based Schiff base ligands (HLn) and their corresponding Pt(II) complexes with the general formula [Pt(Ln)(Cl)] (n = 1-3) were synthesized and characterized by different spectroscopic techniques including 1H-NMR, 195Pt-NMR, LC-Mass, FT-IR, and UV-Vis spectroscopy, as well as elemental analysis. The crystal structure of one of the Schiff base ligands was also obtained. Based on the ADMET comparative results and the bioavailability radar charts, the complexes are completely drug-like. The Schiff base complexes with a structural difference of one methyl group in ligand were used as anticancer agents against human breast cancer cell lines SKBR3 and MDA-MB-231. The IC50 values after treatment by [Pt(L1)Cl] and [Pt(L2)Cl] were obtained more than cisplatin and less than carboplatin on cancer cells MDA-MB-231 and SKBR3, while the IC50 value of [Pt(L3)Cl] was more than both other complexes and clinical Pt drugs. Molecular docking data showed that the groove binding is the main interaction with DNA double strands with a minor contribution from electrostatic interactions. To investigate the structure-activity relationship, DFT computational was done. All quantum chemical parameters display the drug approaching biomacromolecule and more biological activity of [Pt(L1)Cl] > [Pt(L2)Cl] > [Pt(L3)Cl]. So, three Schiff base platinum complexes can be suitable candidates as anticancer drugs. Schiff-base ligands (HLn) and their Pt(II) complexes ([Pt(Ln)(Cl)], n=1-3) were obtained. To investigate their biological property and main interactions with DNA, ADMET, and cytotoxicity against MDA-MB-231 and SKBR3, DFT, and Molecular docking were done.
Collapse
Affiliation(s)
| | | | - Mahdi Behzad
- Department of Chemistry, Semnan University, Semnan, Iran.
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - Yasaman Azadi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| |
Collapse
|
9
|
Zhao P, Qiu J, Pan C, Tang Y, Chen M, Song H, Yang J, Hao X. Potential roles and molecular mechanisms of bioactive ingredients in Curcumae Rhizoma against breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154810. [PMID: 37075623 DOI: 10.1016/j.phymed.2023.154810] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Breast cancer is the most prevalent cancer worldwide, with high morbidity and mortality. Despite great advances in the therapeutic strategies, the survival rate in the past decades of patients with breast cancer remains unsatisfactory. Growing evidence has demonstrated that Curcumae Rhizoma, called Ezhu in Chinese, showed various pharmacological properties, including anti-bacterial, anti-oxidant, anti-inflammatory and anti-tumor activities. It has been widely used in Chinese medicine to treat many types of human cancer. PURPOSE To comprehensively summarize and analyze the effects of active substances in Curcumae Rhizoma on breast cancer malignant phenotypes and the underlying mechanisms, as well as discuss its medicinal value and future perspectives. METHOD We used "Curcumae Rhizoma" or the name of crude extracts and bioactive components in Curcumae Rhizoma in combination with "breast cancer" as key words. Studies focusing on their anti-breast cancer activities and mechanisms of action were extracted from Pubmed, Web of Science and CNKI databases up to October 2022. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS Crude extracts and 7 main bioactive phytochemicals (curcumol, β-elemene, furanodiene, furanodienone, germacrone, curdione and curcumin) isolated from Curcumae Rhizoma have shown many anti-breast cancer pharmacological properties, including inhibiting cell proliferation, migration, invasion and stemness, reversing chemoresistance, and inducing cell apoptosis, cycle arrest and ferroptosis. The mechanisms of action were involved in regulating MAPK, PI3K/AKT and NF-κB signaling pathways. In vivo and clinical studies demonstrated that these compounds exhibited high anti-tumor efficacy and safety against breast cancer. CONCLUSION These findings provide strong evidence that Curcumae Rhizoma acts as a rich source of phytochemicals and has robust anti-breast cancer properties.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China.
| |
Collapse
|
10
|
Jakobušić Brala C, Karković Marković A, Kugić A, Torić J, Barbarić M. Combination Chemotherapy with Selected Polyphenols in Preclinical and Clinical Studies-An Update Overview. Molecules 2023; 28:molecules28093746. [PMID: 37175156 PMCID: PMC10180288 DOI: 10.3390/molecules28093746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This review article describes studies published over the past five years on the combination of polyphenols, which are the most studied in the field of anticancer effects (curcumin, quercetin, resveratrol, epigallocatechin gallate, and apigenin) and chemotherapeutics such as cisplatin, 5-fluorouracil, oxaliplatin, paclitaxel, etc. According to WHO data, research has been limited to five cancers with the highest morbidity rate (lung, colorectal, liver, gastric, and breast cancer). A systematic review of articles published in the past five years (from January 2018 to January 2023) was carried out with the help of all Web of Science databases and the available base of clinical studies. Based on the preclinical studies presented in this review, polyphenols can enhance drug efficacy and reduce chemoresistance through different molecular mechanisms. Considering the large number of studies, curcumin could be a molecule in future chemotherapy cocktails. One of the main problems in clinical research is related to the limited bioavailability of most polyphenols. The design of a new co-delivery system for drugs and polyphenols is essential for future clinical research. Some polyphenols work in synergy with chemotherapeutic drugs, but some polyphenols can act antagonistically, so caution is always required.
Collapse
Affiliation(s)
- Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Azra Kugić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
11
|
Overcoming challenges to enable targeting of metastatic breast cancer tumour microenvironment with nano-therapeutics: Current status and future perspectives. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Younes M, Mardirossian R, Rizk L, Fazlian T, Khairallah JP, Sleiman C, Naim HY, Rizk S. The Synergistic Effects of Curcumin and Chemotherapeutic Drugs in Inhibiting Metastatic, Invasive and Proliferative Pathways. PLANTS 2022; 11:plants11162137. [PMID: 36015440 PMCID: PMC9414747 DOI: 10.3390/plants11162137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
Curcumin, the main phytochemical identified from the Curcuma longa L. family, is one of the spices used in alternative medicine worldwide. It has exhibited a broad range of pharmacological activities as well as promising effects in the treatment of multiple cancer types. Moreover, it has enhanced the activity of other chemotherapeutic drugs and radiotherapy by promoting synergistic effects in the regulation of various cancerous pathways. Despite all the literature addressing the molecular mechanism of curcumin on various cancers, no review has specifically addressed the molecular mechanism underlying the effect of curcumin in combination with therapeutic drugs on cancer metastasis. The current review assesses the synergistic effects of curcumin with multiple drugs and light radiation, from a molecular perspective, in the inhibition of metastasis, invasion and proliferation. A systemic review of articles published during the past five years was performed using MEDLINE/PubMed and Scopus. The assessment of these articles evidenced that the combination therapy with various drugs, including doxorubicin, 5-fluorouracil, paclitaxel, berberine, docetaxel, metformin, gemcitabine and light radiation therapy on various types of cancer, is capable of ameliorating different metastatic pathways that are presented and evaluated. However, due to the heterogeneity of pathways and proteins in different cell lines, more research is needed to confirm the root causes of these pathways.
Collapse
Affiliation(s)
- Maria Younes
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rita Mardirossian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Liza Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tia Fazlian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jean Paul Khairallah
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Christopher Sleiman
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence: (H.Y.N.); (S.R.)
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Correspondence: (H.Y.N.); (S.R.)
| |
Collapse
|
13
|
Effects and Mechanisms of Curcumin for the Prevention and Management of Cancers: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11081481. [PMID: 36009200 PMCID: PMC9405286 DOI: 10.3390/antiox11081481] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is the leading cause of death in the world. Curcumin is the main ingredient in turmeric (Curcuma longa L.), and is widely used in the food industry. It shows anticancer properties on different types of cancers, and the underlying mechanisms of action include inhibiting cell proliferation, suppressing invasion and migration, promoting cell apoptosis, inducing autophagy, decreasing cancer stemness, increasing reactive oxygen species production, reducing inflammation, triggering ferroptosis, regulating gut microbiota, and adjuvant therapy. In addition, the anticancer action of curcumin is demonstrated in clinical trials. Moreover, the poor water solubility and low bioavailability of curcumin can be improved by a variety of nanotechnologies, which will promote its clinical effects. Furthermore, although curcumin shows some adverse effects, such as diarrhea and nausea, it is generally safe and tolerable. This paper is an updated review of the prevention and management of cancers by curcumin with a special attention to its mechanisms of action.
Collapse
|
14
|
Luo X, Zhang Q, Chen H, Hou K, Zeng N, Wu Y. Smart Nanoparticles for Breast Cancer Treatment Based on the Tumor Microenvironment. Front Oncol 2022; 12:907684. [PMID: 35720010 PMCID: PMC9204624 DOI: 10.3389/fonc.2022.907684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/30/2023] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women. There are different risk characteristics and treatment strategies for different subtypes of BC. The tumor microenvironment (TME) is of great significance for understanding the occurrence, development, and metastasis of tumors. The TME plays an important role in all stages of BC metastasis, immune monitoring, immune response avoidance, and drug resistance, and also plays an important role in the diagnosis, prevention, and prognosis of BC. Smart nanosystems have broad development prospect in the regulation of the BC drug delivery based on the response of the TME. In particular, TME-responsive nanoparticles cleverly utilize the abnormal features of BC tissues and cells to achieve targeted transport, stable release, and improved efficacy. We here present a review of the mechanisms underlying the response of the TME to BC to provide potential nanostrategies for future BC treatment.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|