1
|
Yadalam PK, Ardila CM. Enhanced hierarchical attention networks for predictive interactome analysis of LncRNA and CircRNA in oral herpes virus. J Oral Biol Craniofac Res 2025; 15:445-453. [PMID: 40144645 PMCID: PMC11938150 DOI: 10.1016/j.jobcr.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Non-coding RNAs, including lncRNAs, circRNAs, and microRNAs, constitute 98 % of the human transcriptome and are vital regulators of gene expression, cellular processes, and host-pathogen interactions, particularly in viral infections. This study explores lncRNA-circRNA interactions and their biological significance in oral viral infections. METHODS ViRBase, a database with over 820,000 interactions involving 50,000 RNAs from 116 viruses and 36 host organisms, was used to analyze herpesvirus datasets. The study employed hierarchical attention and knowledge graph embeddings to represent nodes and edges in the knowledge graph. These served as input features for a hierarchical attention model trained over 100 epochs. Model performance was evaluated based on loss calculation, optimization, and attention weight stability. RESULTS The model achieved a final loss of 0.000180 at Epoch 100, with stable attention weights confirming reliability. Node embedding statistics showed a mean of 0.005110 and a standard deviation of 0.013370, while attention weights had a high mean of 0.997178, emphasizing model robustness. CONCLUSION This study provides insights into lncRNA-circRNA interactions in herpes viral infections, enhancing therapeutic development, disease progression monitoring, and understanding host-pathogen interactions, paving the way for targeted interventions and improved outcomes.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India
| | - Carlos M. Ardila
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India
- Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia
| |
Collapse
|
2
|
Wang M, Tang W, Wu C, Chen Y, Li H, Wu P, Qian H, Guo X, Zhang Z. Linc20486 promotes BmCPV replication through inhibiting the transcription of AGO2 and Dicers. J Invertebr Pathol 2024; 206:108170. [PMID: 39173824 DOI: 10.1016/j.jip.2024.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
The silkworm holds pivotal economic importance, serving not only as a primary source of silk but also as a prominent model organism in scientific research. Nonetheless, silkworm farming remains vulnerable to diverse factors, with viral infections posing the gravest threat to the sericulture industry. Among these, the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a member of the Reoviridae family and the cytoplasmic polyhedrosis virus genus, emerges as a significant pathogen in silkworm production. BmCPV infection primarily induces midgut sepsis in silkworms, spreads rapidly, and can inflict substantial economic losses on sericulture production. Presently, effective strategies for preventing and treating BmCPV infections are lacking. Long non-coding RNA (lncRNA) constitutes a class of RNA molecules with transcripts exceeding 200 nt, playing a crucial role in mediating the interplay between pathogens and host cells. Investigation through high-throughput technology has unveiled that BmCPV infection markedly upregulates the expression of Linc20486. This observation suggests potential involvement of Linc20486 in regulating virus replication. Indeed, as anticipated, knockdown of Linc20486 in cells profoundly impedes BmCPV replication, whereas overexpression significantly enhances virus propagation. To probe into the mechanism underlying Linc20486's impact on virus replication, its effects on autophagy, innate immunity, and RNAi-related pathways were scrutinized. The findings revealed that Linc20486 exerts significant influence on the expression of RNAi pathway-related genes, such as Dicer1, Dicer2 and AGO2. This discovery holds promise for unveiling novel avenues to comprehend and combat BmCPV infections in silkworms.
Collapse
Affiliation(s)
- Mengdong Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Weiming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengyue Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeping Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Hao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xijie Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
3
|
Kondratov KA, Artamonov AA, Nikitin YV, Velmiskina AA, Mikhailovskii VY, Mosenko SV, Polkovnikova IA, Asinovskaya AY, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. Revealing differential expression patterns of piRNA in FACS blood cells of SARS-CoV-2 infected patients. BMC Med Genomics 2024; 17:212. [PMID: 39143590 PMCID: PMC11325581 DOI: 10.1186/s12920-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Non-coding RNA expression has shown to have cell type-specificity. The regulatory characteristics of these molecules are impacted by changes in their expression levels. We performed next-generation sequencing and examined small RNA-seq data obtained from 6 different types of blood cells separated by fluorescence-activated cell sorting of severe COVID-19 patients and healthy control donors. In addition to examining the behavior of piRNA in the blood cells of severe SARS-CoV-2 infected patients, our aim was to present a distinct piRNA differential expression portrait for each separate cell type. We observed that depending on the type of cell, different sorted control cells (erythrocytes, monocytes, lymphocytes, eosinophils, basophils, and neutrophils) have altering piRNA expression patterns. After analyzing the expression of piRNAs in each set of sorted cells from patients with severe COVID-19, we observed 3 significantly elevated piRNAs - piR-33,123, piR-34,765, piR-43,768 and 9 downregulated piRNAs in erythrocytes. In lymphocytes, all 19 piRNAs were upregulated. Monocytes were presented with a larger amount of statistically significant piRNA, 5 upregulated (piR-49039 piR-31623, piR-37213, piR-44721, piR-44720) and 35 downregulated. It has been previously shown that piR-31,623 has been associated with respiratory syncytial virus infection, and taking in account the major role of piRNA in transposon silencing, we presume that the differential expression patterns which we observed could be a signal of indirect antiviral activity or a specific antiviral cell state. Additionally, in lymphocytes, all 19 piRNAs were upregulated.
Collapse
Affiliation(s)
- Kirill A Kondratov
- City Hospital, No. 40 St, Petersburg, 197706, Russia.
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia.
- Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Yuri V Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Anastasiya A Velmiskina
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Sergey V Mosenko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Irina A Polkovnikova
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Anna Yu Asinovskaya
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Svetlana V Apalko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Andrey M Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Sergey G Scherbak
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
5
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
7
|
Liu X, Xiong W, Ye M, Lu T, Yuan K, Chang S, Han Y, Wang Y, Lu L, Bao Y. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Signal Transduct Target Ther 2023; 8:441. [PMID: 38057315 PMCID: PMC10700414 DOI: 10.1038/s41392-023-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Wandi Xiong
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Yongxiang Wang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- School of Public Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
8
|
Wang X, Bi J, Yang C, Li Y, Yang Y, Deng J, Wang L, Gao X, Lin Y, Liu J, Yin G. Long non-coding RNA LOC103222771 promotes infection of porcine reproductive and respiratory syndrome virus in Marc-145 cells by downregulating Claudin-4. Vet Microbiol 2023; 286:109890. [PMID: 37857013 DOI: 10.1016/j.vetmic.2023.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important swine disease caused by infection of porcine reproductive and respiratory syndrome virus (PRRSV), which leads to huge loss in swine industry. How to effectively control PRRS is challenging. Long non-coding RNA (lncRNA) are key regulator of viral infections and anti-virus immunological responses, therefore, further understanding of lncRNAs will aid to identification of novel regulators of viral infections and better design of prevention and control strategies to viral infection related diseases and immune disorders. We demonstrated that PRRSV infection upregulated the expression of lncRNA LOC103222771 in Marc-145 cells and porcine alveolar macrophage cells (PAMs) and that LOC103222771 is mainly located in cytoplasm. Knockdown of LOC103222771 could inhibit the PRRSV infection in Marc-145 cells. RNA-seq analysis and subsequent validation revealed increased expression of Claudin-4 (CLDN4) in Marc-145 when LOC103222771 was specifically downregulated,suggesting that LOC103222771 might be an upstream regulator of CLDN4, an important component of tight junctions for establishment of the paracellular barrier that controls the flow of molecules in the intercellular space between epithelial cells. We and others showed that Downregulation of CLDN4 could boost the infection of PRRSV. Collectively, LOC103222771/CLDN4 signal axis might be a novel mechanism of PRRSV pathogenesis, implying a potential therapeutic target against PRRSV infection.
Collapse
Affiliation(s)
- Xinxian Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yongneng Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Junwen Deng
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lei Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xiaolin Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden
| | - Jianping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
9
|
Ribeiro DR, Nunes A, Ribeiro D, Soares AR. The hidden RNA code: implications of the RNA epitranscriptome in the context of viral infections. Front Genet 2023; 14:1245683. [PMID: 37614818 PMCID: PMC10443596 DOI: 10.3389/fgene.2023.1245683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Emerging evidence highlights the multifaceted roles of the RNA epitranscriptome during viral infections. By modulating the modification landscape of viral and host RNAs, viruses enhance their propagation and elude host surveillance mechanisms. Here, we discuss how specific RNA modifications, in either host or viral RNA molecules, impact the virus-life cycle and host antiviral responses, highlighting the potential of targeting the RNA epitranscriptome for novel antiviral therapies.
Collapse
|
10
|
Gilyazova I, Timasheva Y, Karunas A, Kazantseva A, Sufianov A, Mashkin A, Korytina G, Wang Y, Gareev I, Khusnutdinova E. COVID-19: Mechanisms, risk factors, genetics, non-coding RNAs and neurologic impairments. Noncoding RNA Res 2023; 8:240-254. [PMID: 36852336 PMCID: PMC9946734 DOI: 10.1016/j.ncrna.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The novel coronavirus infection (COVID-19) causes a severe acute illness with the development of respiratory distress syndrome in some cases. COVID-19 is a global problem of mankind to this day. Among its most important aspects that require in-depth study are pathogenesis and molecular changes in severe forms of the disease. A lot of literature data is devoted to the pathogenetic mechanisms of COVID-19. Without dwelling in detail on some paths of pathogenesis discussed, we note that at present there are many factors of development and progression. Among them, this is the direct role of both viral non-coding RNAs (ncRNAs) and host ncRNAs. One such class of ncRNAs that has been extensively studied in COVID-19 is microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Moreover, Initially, it was believed that this COVID-19 was limited to damage to the respiratory system. It has now become clear that COVID-19 affects not only the liver and kidneys, but also the nervous system. In this review, we summarized the current knowledge of mechanisms, risk factors, genetics and neurologic impairments in COVID-19. In addition, we discuss and evaluate evidence demonstrating the involvement of miRNAs and lnRNAs in COVID-19 and use this information to propose hypotheses for future research directions.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Anastasiya Kazantseva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Albert Sufianov
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Andrey Mashkin
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Yaolou Wang
- Harbin Medical University, 157 Baojian Rd, Nangang, Harbin, Heilongjiang, 150088, China
| | - Ilgiz Gareev
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| |
Collapse
|
11
|
Behnia M, Bradfute SB. The Host Non-Coding RNA Response to Alphavirus Infection. Viruses 2023; 15:v15020562. [PMID: 36851776 PMCID: PMC9967650 DOI: 10.3390/v15020562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.
Collapse
|
12
|
Liu J, Ji Q, Cheng F, Chen D, Geng T, Huang Y, Zhang J, He Y, Song T. The lncRNAs involved in regulating the RIG-I signaling pathway. Front Cell Infect Microbiol 2022; 12:1041682. [PMID: 36439216 PMCID: PMC9682092 DOI: 10.3389/fcimb.2022.1041682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/23/2023] Open
Abstract
Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tingting Geng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yueyue Huang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|