1
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
2
|
Gualtieri P, Cianci R, Frank G, Pizzocaro E, De Santis GL, Giannattasio S, Merra G, Butturini G, De Lorenzo A, Di Renzo L. Pancreatic Ductal Adenocarcinoma and Nutrition: Exploring the Role of Diet and Gut Health. Nutrients 2023; 15:4465. [PMID: 37892540 PMCID: PMC10610120 DOI: 10.3390/nu15204465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The incidence of pancreatic cancer is increasing worldwide. The most common form is represented by pancreatic ductal adenocarcinoma (PDAC) which has been shown to be linked to chronic inflammation. Notably, the gut microbiota has emerged as a critical player in regulating immune responses and inflammation. Indeed, intestinal dysbiosis, characterized by an imbalance in the gut microbiota composition, can contribute to the initiation of chronic inflammation. Sterile chronic inflammation can occur, probably activated by the translocation of bacterial components, such as lipopolysaccharide (LPS), the major component of Gram-negative microbiota, with the consequent induction of innate mucosal immunity, through the activation of Toll-like receptors (TLRs). Furthermore, the interaction between LPS and TLRs could enhance cancer progression. Recent research has shed light on the pivotal role of nutrition, as a modifiable risk factor, in PDAC immunological processes, particularly focusing on the immuno-modulatory effects of the gut microbiota. Different dietary regimens, fiber intake, immunonutrients, and antioxidants have the potential to either exacerbate or mitigate chronic inflammation, thereby influencing the pathogenesis and natural history of PDAC. These dietary components may affect the gut microbiota composition and, consequently, the level of inflammation, either promoting or protecting against PDAC. In this review of reviews, we discuss the modulatory role of nutrition and the gut microbiota in PDAC's immunological processes to explore a translational therapeutic approach that could improve the survival and quality of life of these patients.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Frank
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Erica Pizzocaro
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
| | - Gemma Lou De Santis
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Silvia Giannattasio
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Giovanni Butturini
- Division of Hepato-Bilio-Pancreatic Surgery, P. Pederzoli Hospital, Via Monte Baldo 24, 37019 Peschiera del Garda, Italy;
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| |
Collapse
|
3
|
Di Donato M, Medici N, Migliaccio A, Castoria G, Giovannelli P. Exosomes: Emerging Modulators of Pancreatic Cancer Drug Resistance. Cancers (Basel) 2023; 15:4714. [PMID: 37835408 PMCID: PMC10571735 DOI: 10.3390/cancers15194714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PaC) is one of the most lethal tumors worldwide, difficult to diagnose, and with inadequate therapeutical chances. The most used therapy is gemcitabine, alone or in combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel), and the multidrug FOLFIRINOX. Unfortunately, PaC develops resistance early, thus reducing the already poor life expectancy of patients. The mechanisms responsible for drug resistance are not fully elucidated, and exosomes seem to be actively involved in this phenomenon, thanks to their ability to transfer molecules regulating this process from drug-resistant to drug-sensitive PaC cells. These extracellular vesicles are released by both normal and cancer cells and seem to be essential mediators of intercellular communications, especially in cancer, where they are secreted at very high numbers. This review illustrates the role of exosomes in PaC drug resistance. This manuscript first provides an overview of the pharmacological approaches used in PaC and, in the last part, focuses on the mechanisms exploited by the exosomes released by cancer cells to induce drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Pia Giovannelli
- Department of Precision Medicine, University of Campania “L.Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
4
|
El-Tanani M, Nsairat H, Matalka II, Aljabali AAA, Mishra V, Mishra Y, Naikoo GA, Chava SR, Charbe NB, Tambuwala MM. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol 2023; 40:225. [PMID: 37405480 PMCID: PMC10322774 DOI: 10.1007/s12032-023-02101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, in this concise review, we intend to summarize exosomes components and isolation, exosome secretion, function, importance of exosomes in the progression of pancreatic cancer and exosomal miRNAs as possible pancreatic cancer biomarkers. Finally, the application potential of exosomes in the treatment of pancreatic cancer, which provides theoretical supports for using exosomes to serve precise tumor treatment in the clinic, will be discussed.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK.
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | | | - Nitin B Charbe
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
5
|
Kimoto A, Kadoi Y, Tsuruda T, Kim YS, Miyoshi M, Nomoto Y, Nakata Y, Miyake M, Miyashita K, Shimizu K, Ajiki T, Hori Y. Exosomes in ascites from patients with human pancreatic cancer enhance remote metastasis partially through endothelial-mesenchymal transition. Pancreatology 2023:S1424-3903(23)00096-0. [PMID: 37088585 DOI: 10.1016/j.pan.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Despite advances in multidisciplinary treatment, the prognosis of pancreatic cancer remains poor. Since distant metastasis defines prognosis, elucidation of the mechanism of metastasis is important for improving survival. Exosomes are extracellular secretory vesicles and are responsible for intercellular communication. In this study, we investigated whether exosomes secreted by human pancreatic cancer cells are involved in promoting distant metastasis of cancer and the mechanism that underlies the promotion of metastasis. METHODS Exosomes were isolated from ascites of a patient with pancreatic cancer and a patient with liver cirrhosis as a control. Three days after the administration of exosomes to nude mice, GFP-labeled human pancreatic cancer cells were injected via the spleen or tail vein, and then the liver and lungs were histologically analyzed. To elucidate the mechanism, vascular permeability was estimated using FITC-dextran in place of pancreatic cancer cells in vivo and human umbilical vascular endothelial cells (HUVECs) were used to analyze vascular permeability and the induction of endothelial-mesenchymal transition (EndMT) in vitro. RESULTS Distant metastasis and vascular permeability were significantly enhanced in mice treated with exosomes from pancreatic cancer patients in comparison to exosomes from a control patient in vivo. In addition, exosomes from pancreatic cancer patients significantly enhanced vascular permeability and the induction of EndMT in HUVECs in vitro. CONCLUSION Exosomes derived from pancreatic cancer cells form a pre-metastatic niche and promote the extravasation and colonization of pancreatic cancer cells to remote organs, partially through endothelial-mesenchymal transition.
Collapse
Affiliation(s)
- Ai Kimoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Kadoi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Taisei Tsuruda
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | | | - Makoto Miyoshi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuna Nomoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuna Nakata
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mutsumi Miyake
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kumiko Miyashita
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kazuya Shimizu
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan; Department of Internal Medicine, Kobe Medical Center, Kobe, Japan
| | - Tetsuo Ajiki
- International Clinical Cancer Research Center, Kobe University School of Medicine, Kobe, Japan
| | - Yuichi Hori
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
6
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|