Zhang Y, Shang Z, Xu S, Zhou G, Liu A. ELF5-Regulated lncRNA-TTN-AS1 Alleviates Myocardial Cell Injury via Recruiting PCBP2 to Increase CDK6 Stability in Myocardial Infarction.
Mol Cell Biol 2024;
44:303-315. [PMID:
39034459 PMCID:
PMC11296528 DOI:
10.1080/10985549.2024.2374083]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Myocardial infarction (MI) seriously threatens the health of elderly people, and reducing myocardial injury is of great significance for the treatment of MI. LncRNA-TTN-AS1 shows protective effects on cardiomyocyte injury, while the role of TTN-AS1 in MI remains unknown. CCK8, flow cytometry, and JC-1 staining assessed cell viability, apoptosis and mitochondrial membrane potential (MMP), respectively. Cellular reactive oxygen species (ROS) and secreted lactate dehydrogenase (LDH) levels were measured. The interactions between ELF5, TTN-AS1, PCBP2 and CDK6 were explored using ChIP, luciferase reporter assay, RIP, and pull-down. The severity of MI in mice was evaluated using TTC, H&E, and TUNEL staining. The data revealed that OGD/R significantly induced ROS, mitochondrial injury and apoptosis in AC16 cells, while overexpression of ELF5 or TTN-AS1 reversed these phenomena. ELF5 transcriptionally activated TTN-AS1 through binding with its promoter. TTN-AS1 increased CDK6 stability via recruiting PCBP2. CDK6 knockdown abolished the inhibitory effects of TTN-AS1 overexpression on OGD/R-induced myocardial injury. Furthermore, overexpression of TTN-AS1 or ELF5 alleviated MI progression in mice by upregulating CDK6. Collectively, TTN-AS1 transcriptionally regulated by ELF5 alleviated myocardial apoptosis and injury during MI via recruiting PCBP2 to increase CDK6 stability, which shed new lights on exploring new strategies against MI.
Collapse