1
|
Chen Y, Yang W, Cui X, Zhang H, Li L, Fu J, Guo H. Research Progress on the Mechanism, Monitoring, and Prevention of Cardiac Injury Caused by Antineoplastic Drugs-Anthracyclines. BIOLOGY 2024; 13:689. [PMID: 39336116 PMCID: PMC11429024 DOI: 10.3390/biology13090689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Anthracyclines represent a highly efficacious class of chemotherapeutic agents employed extensively in antitumor therapy. They are universally recognized for their potency in treating diverse malignancies, encompassing breast cancer, gastrointestinal tumors, and lymphomas. Nevertheless, the accumulation of anthracyclines within the body can lead to significant cardiac toxicity, adversely impacting both the survival rates and quality of life for tumor patients. This limitation somewhat restricts their clinical utilization. Determining how to monitor and mitigate their cardiotoxicity at an early stage has become an urgent clinical problem to be solved. Therefore, this paper reviews the mechanism of action, early monitoring, and strategies for the prevention of anthracycline-induced cardiotoxicity for clinical reference.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Cardiology, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710005, China
| | - Xiaoshan Cui
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huiyu Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianhua Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Guo
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Xu J, Li S, Wehbe A, Ji X, Yang Y, Yang Y, Qin L, Liu FY, Ding Y, Ren C. Abdominal Aortic Occlusion and the Inflammatory Effects in Heart and Brain. Mediators Inflamm 2023; 2023:2730841. [PMID: 38131062 PMCID: PMC10735730 DOI: 10.1155/2023/2730841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2023] Open
Abstract
Background Abdominal aortic occlusion (AAO) occurs frequently and causes ischemia/reperfusion (I/R) injury to distant organs. In this study, we aimed to investigate whether AAO induced I/R injury and subsequent damage in cardiac and neurologic tissue. We also aimed to investigate the how length of ischemic time in AAO influences reactive oxygen species (ROS) production and inflammatory marker levels in the heart, brain, and serum. Methods Sixty male C57BL/6 mice were used in this study. The mice were randomly divided into either sham group or AAO group. The AAO group was further subdivided into 1-4 hr groups of aortic occlusion times. The infrarenal abdominal aorta was clamped for 1-4 hr depending on the AAO group and was then reperfused for 24 hr after clamp removal. Serum, hippocampus, and left ventricle tissue samples were then subjected to biochemical and histopathological analyses. Results AAO-induced I/R injury had no effect on cell necrosis, cell apoptosis, or ROS production. However, serum and hippocampus levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) increased in AAO groups when compared to sham group. Superoxide dismutase and total antioxidant capacity decreased in the serum, hippocampus, and left ventricle. In the serum, AAO increased the level of inducible nitric oxide synthase (iNOS) and decreased the levels of anti-inflammatory factors (such as arginase-1), transforming growth factor- β1 (TGF-β1), interleukin 4 (IL-4), and interleukin 10 (IL-10). In the hippocampus, AAO increased the levels of tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), IL-4, and IL-6, and decreased the level of TGF-β1. In the left ventricle, AAO increased the level of iNOS and decreased the levels of TGF-β1, IL-4, and IL-10. Conclusions AAO did not induce cell necrosis or apoptosis in cardiac or neurologic tissue, but it can cause inflammation in the serum, brain, and heart.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Yu Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Linhui Qin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| |
Collapse
|