1
|
Zhao Y, Gong J, Shi R, Wu Z, Liu S, Chen S, Tao Y, Li S, Tian J. Application of proteomics in investigating the responses of plant to abiotic stresses. PLANTA 2025; 261:128. [PMID: 40332605 DOI: 10.1007/s00425-025-04707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
MAIN CONCLUSION This review summarizes the application of proteomic techniques in investigating the responses of plant to abiotic stresses. In the natural environment, the plants are exposed to a diverse range of adverse abiotic factors that significantly impact their growth and development. The plants have evolved intricate stress response mechanisms at the genetic, protein, metabolic, and phenotypic levels to mitigate damage caused by unfavorable conditions. Proteomics serves as an effective tool for studying protein changes in plants and provides valuable insights into the physiological mechanisms underlying plant stress resistance. Several proteins involved in abiotic stress responses have been identified in plants, including transcription factors, protein kinases, ATP synthases, heat shock proteins, redox proteins, and enzymes in secondary metabolite pathways. Medicinal plants are a unique category of crops capable of synthesizing secondary metabolites, which play a crucial role in resisting abiotic stress and exhibit changes in content under stress conditions. In this review, we present an overview of proteomic tools employed for investigating the responses of plants to abiotic stresses and summarize alterations observed at the protein level under various abiotic stresses such as signal transduction, oxidative damage, carbohydrate and energy metabolism, protein and amino acid metabolism, cellular homeostasis, and enzyme involvement in secondary metabolism. This work aims to facilitate the application of proteomics techniques in plants research while enhancing our understanding of the response mechanisms exhibited by these plants towards abiotic stresses.
Collapse
Affiliation(s)
- Yu Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Jiahui Gong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Runjie Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Zerong Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Shengzhi Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Shuxin Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shouxin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China.
| | - Jingkui Tian
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China.
| |
Collapse
|
2
|
Yu W, Sun Q, Xu H, Zhou X. Integrating Transcriptomics and Metabolomics to Comprehensively Analyze Phytohormone Regulatory Mechanisms in Rhododendron chrysanthum Pall. Under UV-B Radiation. Int J Mol Sci 2025; 26:1545. [PMID: 40004012 PMCID: PMC11855671 DOI: 10.3390/ijms26041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In order to fully elucidate the roles and systems of phytohormones in UV-B radiation (UV-B) leaves of the Rhododendron chrysanthum Pall. (R. chrysanthum), we conducted a comprehensive analysis of how R. chrysanthum protects itself against UV-B using transcriptomic and metabolomic data. Transcript and metabolite profiles were generated by a combination of deep sequencing and LC-MS/MS (liquid chromatography-tandem mass spectrometry), respectively. Combined with physiological and biochemical assays, we studied compound accumulation, biosynthesis and expression of signaling genes of seven hormones and the effects of hormones on plant photosynthesis. The findings indicate that during leaf defense against UV-B, photosynthesis declined, the photosynthetic system was impaired and the concentration of salicylic acid (SA) hormones increased, whereas the contents of cytokinin (CK), abscisic acid (ABA), ethylene, auxin, jasmonic acid (JA) and gibberellins (GAs) continued to decrease. Finally, correlation tests between hormone content and genes were analyzed, and genes closely related to leaf resistance to UV-B were identified in seven pathways. These results will expand our understanding of the hormonal regulatory mechanisms of plant resistance to UV-B and at the same time lay the foundation for plant resistance to adversity stress.
Collapse
Affiliation(s)
| | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
3
|
Sanches PHG, de Melo NC, Porcari AM, de Carvalho LM. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. BIOLOGY 2024; 13:848. [PMID: 39596803 PMCID: PMC11592251 DOI: 10.3390/biology13110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 11/29/2024]
Abstract
With the advent of high-throughput technologies, the field of omics has made significant strides in characterizing biological systems at various levels of complexity. Transcriptomics, proteomics, and metabolomics are the three most widely used omics technologies, each providing unique insights into different layers of a biological system. However, analyzing each omics data set separately may not provide a comprehensive understanding of the subject under study. Therefore, integrating multi-omics data has become increasingly important in bioinformatics research. In this article, we review strategies for integrating transcriptomics, proteomics, and metabolomics data, including co-expression analysis, metabolite-gene networks, constraint-based models, pathway enrichment analysis, and interactome analysis. We discuss combined omics integration approaches, correlation-based strategies, and machine learning techniques that utilize one or more types of omics data. By presenting these methods, we aim to provide researchers with a better understanding of how to integrate omics data to gain a more comprehensive view of a biological system, facilitating the identification of complex patterns and interactions that might be missed by single-omics analyses.
Collapse
Affiliation(s)
- Pedro H. Godoy Sanches
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Nicolly Clemente de Melo
- Graduate Program in Biomedicine, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Lucas Miguel de Carvalho
- Post Graduate Program in Health Sciences, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| |
Collapse
|
4
|
Su Z, Lu W, Lin Y, Luo J, Liu G, Huang A. Exploring the Genetic Basis of Calonectria spp. Resistance in Eucalypts. Curr Issues Mol Biol 2024; 46:10854-10879. [PMID: 39451525 PMCID: PMC11505705 DOI: 10.3390/cimb46100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Selecting high-quality varieties with disease resistance by artificial crossbreeding is the most fundamental way to address the damage caused by Calonectria spp. in eucalypt plantations. However, understanding the mechanism of disease-resistant heterosis occurrence in eucalypts is crucial for successful crossbreeding. Two eucalypt hybrids, the susceptible EC333 (H1522 × unknown) and the resistant EC338 (W1767 × P9060), were screened through infection with Calonectria isolates, a pathogen that causes eucalypt leaf blight. RNA-Seq was performed on the susceptible hybrid, the disease-resistant hybrid, and their parents. The gene differential expression analysis showed that there were 3912 differentially expressed genes between EC333 and EC338, with 1631 up-regulated and 2281 down-regulated genes. The expression trends of the differential gene sets in P9060 and EC338 were similar. However, the expression trend of W1767 was opposite that of EC338. The similarity of the expression and the advantage of stress resistance in E. pellita suggested that genes with significant differences in expression likely relate to disease resistance. A GSEA based on GO annotations revealed that the carbohydrate binding pathway genes were differentially expressed between EC338 and EC333. The gene pathways that were differentially expressed between EC338 and EC333 revealed by the GSEA based on KEGG annotations were the sesquiterpenoid and triterpenoid biosynthesis pathways. The alternative splicing analysis demonstrated that an AS event between EC338 and EC333 occurred in LOC104426602. According to our SNP analysis, EC338 had 626 more high-impact mutation loci than the male parent P9060 and 396 more than the female parent W1767; W1767 had 259 more mutation loci in the downstream region than EC338, while P9060 had 3107 fewer mutation loci in the downstream region than EC338. Additionally, EC338 had 9631 more mutation loci in the exon region than EC333. Modules were found via WGCNA that were strongly and oppositely correlated with EC338 and EC333, such as module MEsaddlebrown, likely associated with leaf blight resistance. The present study provides a detailed explanation of the genetic basis of eucalypt leaf blight resistance, providing the foundation for exploring genes related to this phenomenon.
Collapse
Affiliation(s)
- Zhiyi Su
- Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China; (Z.S.); (Y.L.); (J.L.); (G.L.); (A.H.)
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Wanhong Lu
- Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China; (Z.S.); (Y.L.); (J.L.); (G.L.); (A.H.)
| | - Yan Lin
- Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China; (Z.S.); (Y.L.); (J.L.); (G.L.); (A.H.)
| | - Jianzhong Luo
- Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China; (Z.S.); (Y.L.); (J.L.); (G.L.); (A.H.)
| | - Guo Liu
- Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China; (Z.S.); (Y.L.); (J.L.); (G.L.); (A.H.)
| | - Anying Huang
- Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China; (Z.S.); (Y.L.); (J.L.); (G.L.); (A.H.)
| |
Collapse
|
5
|
Sun Q, Li X, Sun L, Sun M, Xu H, Zhou X. Plant hormones and phenolic acids response to UV-B stress in Rhododendron chrysanthum pall. Biol Direct 2024; 19:40. [PMID: 38807240 PMCID: PMC11134694 DOI: 10.1186/s13062-024-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.
Collapse
Affiliation(s)
- Qi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiangqun Li
- Jilin Engineering Vocational College, Siping, China
| | - Li Sun
- Siping Central People's Hospital, Siping, China
| | - Mingyi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
6
|
Sun Q, Zhou X, Yang L, Xu H, Zhou X. Integration of Phosphoproteomics and Transcriptome Studies Reveals ABA Signaling Pathways Regulate UV-B Tolerance in Rhododendron chrysanthum Leaves. Genes (Basel) 2023; 14:1153. [PMID: 37372333 DOI: 10.3390/genes14061153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The influence of UV-B stress on the growth, development, and metabolism of alpine plants, such as the damage to DNA macromolecules, the decline in photosynthetic rate, and changes in growth, development, and morphology cannot be ignored. As an endogenous signal molecule, ABA demonstrates a wide range of responses to UV-B radiation, low temperature, drought, and other stresses. The typical effect of ABA on leaves is to reduce the loss of transpiration by closing the stomata, which helps plants resist abiotic and biological stress. The Changbai Mountains have a harsh environment, with low temperatures and thin air, so Rhododendron chrysanthum (R. chrysanthum) seedlings growing in the Changbai Mountains can be an important research object. In this study, a combination of physiological, phosphorylated proteomic, and transcriptomic approaches was used to investigate the molecular mechanisms by which abiotic stress leads to the phosphorylation of proteins in the ABA signaling pathway, and thereby mitigates UV-B radiation to R. chrysanthum. The experimental results show that a total of 12,289 differentially expressed genes and 109 differentially phosphorylated proteins were detected after UV-B stress in R. chrysanthum, mainly concentrated in plant hormone signaling pathways. Plants were treated with ABA prior to exposure to UV-B stress, and the results showed that ABA mitigated stomatal changes in plants, thus confirming the key role of endogenous ABA in plant adaptation to UV-B. We present a model that suggests a multifaceted R. chrysanthum response to UV-B stress, providing a theoretical basis for further elaboration of the mechanism of ABA signal transduction regulating stomata to resist UV-B radiation.
Collapse
Affiliation(s)
- Qi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiangru Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Liping Yang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
7
|
Zhang Q, Li Y, Cao K, Xu H, Zhou X. Transcriptome and proteome depth analysis indicate ABA, MAPK cascade and Ca 2+ signaling co-regulate cold tolerance in Rhododendron chrysanthum Pall. FRONTIERS IN PLANT SCIENCE 2023; 14:1146663. [PMID: 36895874 PMCID: PMC9989302 DOI: 10.3389/fpls.2023.1146663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cold stress is a global common problem that significantly limits plant development and geographical distribution. Plants respond to low temperature stress by evolving interrelated regulatory pathways to respond and adapt to their environment in a timely manner. Rhodoendron chrysanthum Pall. (R. chrysanthum) is a perennial evergreen dwarf shrub used for adornment and medicine that thrives in the Changbai Mountains at high elevations and subfreezing conditions. METHODS In this study, a comprehensive investigation of cold tolerance (4°C, 12h) in R. chrysanthum leaves under cold using physiological combined with transcriptomic and proteomic approaches. RESULTS There were 12,261 differentially expressed genes (DEGs) and 360 differentially expressed proteins (DEPs) in the low temperature (LT) and normal treatment (Control). Integrated transcriptomic and proteomic analyses showed that MAPK cascade, ABA biosynthesis and signaling, plant-pathogen interaction, linoleic acid metabolism and glycerophospholipid metabolism were significantly enriched in response to cold stress of R. chrysanthum leaves. DISCUSSION We analyzed the involvement of ABA biosynthesis and signaling, MAPK cascade, and Ca2+ signaling, that may jointly respond to stomatal closure, chlorophyll degradation, and ROS homeostasis under low temperature stress. These results propose an integrated regulatory network of ABA, MAPK cascade and Ca2+ signaling comodulating the cold stress in R. chrysanthum, which will provide some insights to elucidate the molecular mechanisms of cold tolerance in plants.
Collapse
Affiliation(s)
| | | | | | - Hongwei Xu
- *Correspondence: Xiaofu Zhou, ; Hongwei Xu,
| | | |
Collapse
|