1
|
Mutlucan UO, Bedel C, Selvi F, Zortuk Ö, Türk CÇ, Korkut M. The effect of indicators of CALLY index on survival in glioblastoma. Ir J Med Sci 2024; 193:2029-2033. [PMID: 38561591 DOI: 10.1007/s11845-024-03666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Glioblastoma is the most common primary brain tumor in adults. Recently, research has been published on the potential prognostic indicators associated with different types of cancer. Due to the limited availability of data investigating the relationship between the CALLY index and glioblastoma patients, we aimed to conduct this study. MATERIALS AND METHODS Between January 2017 and December 2023, we conducted a study on patients diagnosed with glioblastoma. We collected demographic data and routine laboratory tests at the time of admission. To calculate the CALLY index, we used the formula (albumin value × lymphocyte count) / CRP value × 104. Parameters were compared for in-hospital mortality across different groups. RESULTS The study analyzed 202 patients who met the inclusion criteria. Of these, 165 (81.7%) were classified as "survivors" and 37 (18.3%) as "deceased." A comparison of hematologic parameters between the two groups showed a significantly lower CALLY index in the "deceased" group (3.05 (4.92)) compared to the "survivor" group (10.13 (13.69)) (p < 0.001). The study compared the parameters between groups with regard to in-hospital mortality. CONCLUSIONS Based on the results of the study, we conclude that the CALLY index can be considered an easily applicable indicator for the mortality of glioblastoma patients.
Collapse
Affiliation(s)
- Umut Ogün Mutlucan
- Department of Neurosurgery, Health Science University Antalya Training and Research Hospital, Antalya, Turkey
| | - Cihan Bedel
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey.
| | - Fatih Selvi
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey
| | - Ökkeş Zortuk
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey
| | - Cezmi Çağrı Türk
- Department of Neurosurgery, Health Science University Antalya Training and Research Hospital, Antalya, Turkey
| | - Mustafa Korkut
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey
| |
Collapse
|
2
|
Juknevičienė M, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Sužiedėlis K, Stakišaitis D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines 2024; 12:1416. [PMID: 39061990 PMCID: PMC11274075 DOI: 10.3390/biomedicines12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Valproic acid (VPA) has anticancer, anti-inflammatory, and epigenetic effects. The study aimed to determine the expression of carcinogenesis-related SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 in adult glioblastoma U87 MG and T98G cells and the effects of 0.5 mM, 0.75 mM, and 1.5 mM doses of VPA. RNA gene expression was determined by RT-PCR. GAPDH was used as a control. U87 and T98G control cells do not express SLC5A8 or CDH1. SLC12A5 was expressed in U87 control but not in T98G control cells. The SLC12A2 expression in the U87 control was significantly lower than in the T98G control. T98G control cells showed significantly higher CDH2 expression than U87 control cells. VPA treatment did not affect SLC12A2 expression in U87 cells, whereas treatment dose-dependently increased SLC12A2 expression in T98G cells. Treatment with 1.5 mM VPA induced SLC5A8 expression in U87 cells, while treatment of T98G cells with VPA did not affect SLC5A8 expression. Treatment of U87 cells with VPA significantly increased SLC12A5 expression. VPA increases CDH1 expression depending on the VPA dose. CDH2 expression was significantly increased only in the U87 1.5 mM VPA group. Tested VPA doses significantly increased CDH2 expression in T98G cells. When approaching treatment tactics, assessing the cell's sensitivity to the agent is essential.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| |
Collapse
|
3
|
Zhang H, Wang Z, Qiao X, Peng N, Wu J, Chen Y, Cheng C. Unveiling the therapeutic potential of IHMT-337 in glioma treatment: targeting the EZH2-SLC12A5 axis. Mol Med 2024; 30:91. [PMID: 38886655 PMCID: PMC11184773 DOI: 10.1186/s10020-024-00857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system, with EZH2 playing a crucial regulatory role. This study further explores the abnormal expression of EZH2 and its mechanisms in regulating glioma progression. Additionally, it was found that IHMT-337 can potentially be a therapeutic agent for glioma. The prognosis, expression, and localization of EZH2 were determined using bioinformatics, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization. The effects of EZH2 on cell function were assessed using CCK-8 assays, Transwell assays, and wound healing assays. Public databases and RT-qPCR were utilized to identify downstream targets. The mechanisms regulating these downstream targets were elucidated using MS-PCR and WB analysis. The efficacy of IHMT-337 was demonstrated through IC50 measurements, WB analysis, and RT-qPCR. The effects of IHMT-337 on glioma cells in vitro were evaluated using Transwell assays, EdU incorporation assays, and flow cytometry. The potential of IHMT-337 as a treatment for glioma was assessed using a blood-brain barrier (BBB) model and an orthotopic glioma model. Our research confirms significantly elevated EZH2 expression in gliomas, correlating with patient prognosis. EZH2 facilitates glioma proliferation, migration, and invasion alongside promoting SLC12A5 DNA methylation. By regulating SLC12A5 expression, EZH2 activates the WNK1-OSR1-NKCC1 pathway, enhancing its interaction with ERM to promote glioma migration. IHMT-337 targets EZH2 in vitro to inhibit WNK1 activation, thereby suppressing glioma cell migration. Additionally, it inhibits cell proliferation and arrests the cell cycle. IHMT-337 has the potential to cross the BBB and has successfully inhibited glioma progression in vivo. This study expands our understanding of the EZH2-SLC12A5 axis in gliomas, laying a new foundation for the clinical translation of IHMT-337 and offering new insights for precision glioma therapy.
Collapse
Affiliation(s)
- Hongwei Zhang
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zixuan Wang
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaolong Qiao
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Nan Peng
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiaxing Wu
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yinan Chen
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chuandong Cheng
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
4
|
Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24:612. [PMID: 38773447 PMCID: PMC11106946 DOI: 10.1186/s12885-024-12345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| | | | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| |
Collapse
|
5
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Järvelä V, Hamze M, Komulainen-Ebrahim J, Rahikkala E, Piispala J, Kallio M, Kangas SM, Nickl T, Huttula M, Hinttala R, Uusimaa J, Medina I, Immonen EV. A novel pathogenic SLC12A5 missense variant in epilepsy of infancy with migrating focal seizures causes impaired KCC2 chloride extrusion. Front Mol Neurosci 2024; 17:1372662. [PMID: 38660387 PMCID: PMC11039960 DOI: 10.3389/fnmol.2024.1372662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
The potassium-chloride co-transporter 2, KCC2, is a neuron-specific ion transporter that plays a multifunctional role in neuronal development. In mature neurons, KCC2 maintains a low enough intracellular chloride concentration essential for inhibitory neurotransmission. During recent years, pathogenic variants in the KCC2 encoding gene SLC12A5 affecting the functionality or expression of the transporter protein have been described in several patients with epilepsy of infancy with migrating focal seizures (EIMFS), a devastating early-onset developmental and epileptic encephalopathy. In this study, we identified a novel recessively inherited SLC12A5 c.692G>A, p. (R231H) variant in a patient diagnosed with severe and drug-resistant EIMFS and profound intellectual disability. The functionality of the variant was assessed in vitro by means of gramicidin-perforated patch-clamp experiments and ammonium flux assay, both of which indicated a significant reduction in chloride extrusion. Based on surface immunolabeling, the variant showed a reduction in membrane expression. These findings implicate pathogenicity of the SLC12A5 variant that leads to impaired inhibitory neurotransmission, increasing probability for hyperexcitability and epileptogenesis.
Collapse
Affiliation(s)
- Viivi Järvelä
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mira Hamze
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Jonna Komulainen-Ebrahim
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Johanna Piispala
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Mika Kallio
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Salla M. Kangas
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tereza Nickl
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Reetta Hinttala
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Igor Medina
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|