1
|
Chen L, Zhang Y, Li Q, Sun X, Gao J, Li D, Guo N. Exploring the differences in traits and genes between brown cotton and white cotton hybrid offspring (Gossypium hirsutum L.). PLANTA 2025; 261:35. [PMID: 39810063 DOI: 10.1007/s00425-024-04601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F2 generation brown cotton plants through hybridization and compared them with their parents. In terms of agronomic traits, plant morphology and leaf shape were similar, but brown cotton presented more villi on the main stem. The first fruiting branch node was within the range of 4-6 cm, and the first fruiting branch node height was greater than that of TM-1, i.e., between 13.25 cm and 22.79 cm, with no difference compared with that of P26. The plant height was greater than that of the parents, and the number of bolls was essentially the same as that in TM-1 and greater than that in P26. The lint percentage and average fiber length were lower in TM-1 than in P26, and the seed index was greater than that in TM-1 and P26. Pigment measurements revealed that the chlorophyll a content in brown cotton during the boll stage was lower than that in white cotton, and the content of proanthocyanidin in the cotton fibers was greater in brown cotton than in white cotton. At 15 days after pollination, the highest content was 159.8 mg/g. To determine the differences in gene expression levels, we conducted transcriptome sequencing. Gene Ontology (GO) analysis revealed that the differentially expressed genes (DEGs) were enriched in pathways related to the cell wall and enzyme activity, whereas Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEGs were enriched in flavonoid synthesis pathways. Transcription factor analysis revealed that the expression of the MYB3 transcription factor (Ghir_D07G002110) was higher in brown cotton, and bioinformatics analysis revealed that this gene has regulatory effects on the CHS, CHI1, and F3H genes.
Collapse
Affiliation(s)
- Long Chen
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
- Cotton Research Institute of Anhui Academy of Agricultural Sciences, 40 Nongke South Road, Hefei, 230031, People's Republic of China
| | - Yujiang Zhang
- School of Life Science, Anhui University, 111 Jiu Long Road, Hefei, 230601, People's Republic of China
| | - Qinghua Li
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Xu Sun
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Junshan Gao
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Ning Guo
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China.
| |
Collapse
|
2
|
Hu Y, Zhao H, Xue L, Nie N, Zhang H, Zhao N, He S, Liu Q, Gao S, Zhai H. IbMYC2 Contributes to Salt and Drought Stress Tolerance via Modulating Anthocyanin Accumulation and ROS-Scavenging System in Sweet Potato. Int J Mol Sci 2024; 25:2096. [PMID: 38396773 PMCID: PMC10889443 DOI: 10.3390/ijms25042096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| |
Collapse
|