1
|
Tamai R, Kiyoura Y. Candida Infections: The Role of Saliva in Oral Health-A Narrative Review. Microorganisms 2025; 13:717. [PMID: 40284554 PMCID: PMC12029948 DOI: 10.3390/microorganisms13040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Candida species, particularly Candida albicans, are causative agents of oral infections to which immunocompromised patients are especially susceptible. Reduced saliva flow (xerostomia) can lead to Candida overgrowth, as saliva contains antibacterial components such as histatins and β-defensins that inhibit fungal growth and adhesion to the oral mucosa. Candida adheres to host tissues, forms biofilms, and secretes enzymes required for tissue invasion and immune evasion. Secretory asparaginyl proteinases (Saps) and candidalysin, a cytolytic peptide toxin, are vital to Candida virulence, and agglutinin-like sequence (Als) proteins are crucial for adhesion, invasion, and biofilm formation. C. albicans is a risk factor for dental caries and may increase periodontal disease virulence when it coexists with Porphyromonas gingivalis. Candida infections have been suggested to heighten the risk of oral cancer based on a relationship between Candida species and oral squamous cell carcinoma (OSCC) or oral potentially malignant disorder (OPMD). Meanwhile, β-glucan in the Candida cell wall has antitumor effects. In addition, Candida biofilms protect viruses such as herpesviruses and coxsackieviruses. Understanding the intricate interactions between Candida species, host immune responses, and coexisting microbial communities is essential for developing preventive and therapeutic strategies against oral Candida infections, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
2
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
3
|
Candida albicans Virulence Factors and Pathogenicity for Endodontic Infections. Microorganisms 2020; 8:microorganisms8091300. [PMID: 32858856 PMCID: PMC7563224 DOI: 10.3390/microorganisms8091300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Candida albicans (C. albicans) is the fungus most frequently isolated from endodontic root canal infections. Although recognized by dental pulp and periradicular tissue cells that elicit immune responses, it eludes host defenses and elicits cell death. Then, C. albicans binds tooth dentin, forms biofilms, and invades dentinal tubules to resist intracanal disinfectants and endodontic treatments. Insensitive to most common medicaments, it survives sequestered within biofilms and intratubular dentin. Thus, C. albicans has been associated with cases of persistent or refractory root canal infections. Its treatment strategies may require alternative intracanal irrigants, intracanal medicaments such as chlorhexidine gel or human beta defensin-3 (HBD3), Ca-Si-based obturating materials, and microsurgical procedures.
Collapse
|
4
|
Huang F, Song Y, Chen W, Liu Q, Wang Q, Liu W, Wang X, Wang W. Effects of Candida albicans infection on defense effector secretion by human oral mucosal epithelial cells. Arch Oral Biol 2019; 103:55-61. [PMID: 31136880 DOI: 10.1016/j.archoralbio.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of Candida albicans on the production of defense effector molecules by human oral mucosal epithelial cells in vitro. DESIGN Immortalized human oral mucosal epithelial (Leuk-1) cells and C. albicans strain 5314 were cocultured at different cell-to-C. albicans ratios. The viability of Leuk-1 cells was determined by MTT and RTCA measurements. The secretory levels of multiple defense effector molecules were determined by Enzyme-linked immunosorbent assay (ELISA). RESULTS Our results indicated that C. albicans significantly decreased the secretion of IgG, cystatin C, lactoferrin, and TGF-β1 in a dose-dependent manner and remarkably reduced the production of IgA independent of the cell-to-C. albicans ratio. However, C. albicans clearly enhanced the secretion of IgM, galectin-3, P-selectin, granzyme B and perforin. CONCLUSION These results suggest that C. albicans may exert a regulatory role in the defense response of oral mucosal epithelial cells by altering secretory levels of defense effector molecules.
Collapse
Affiliation(s)
- Fan Huang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuefeng Song
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Chen
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Tamai R, Kiyoura Y. Heat-killed Candida albicans augments synthetic bacterial component-induced proinflammatory cytokine production. Folia Microbiol (Praha) 2019; 64:555-566. [PMID: 30656591 DOI: 10.1007/s12223-019-00679-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022]
Abstract
Candida albicans can enhance the invasion of oral epithelial cells by Porphyromonas gingivalis, although the fungus is not a periodontal pathogen. In this study, we investigated whether C. albicans augments proinflammatory cytokine production by mouse macrophage-like J774.1 cells incubated with synthetic bacterial components. Mouse macrophage-like J774.1 cells, mouse primary splenocytes, human THP-1 cells, and A549 cells were pretreated with or without heat-killed C. albicans (HKCA) or substitutes for C. albicans cell wall components in 96-well flat-bottomed plates. Cells were then washed and incubated with Pam3CSK4, a Toll-like receptor (TLR) 2 ligand, or lipid A, a TLR4 ligand. Culture supernatants were analyzed by ELISA for secreted IL-6, MCP-1, TNF-α, and IL-8. HKCA augmented TLR ligand-induced proinflammatory cytokine production by J774.1 cells, mouse splenocytes, and THP-1 cells, but not A549 cells. However, IL-6, MCP-1, and TNF-α production induced by Pam3CSK4 or lipid A was not augmented when cells were pretreated with curdlan, a dectin-1 ligand, or mannan, a dectin-2 ligand. In contrast, pretreatment of cells with TLR ligands upregulated the production of IL-6 and TNF-α, but not MCP-1, induced by Pam3CSK4 or lipid A. The results suggest that C. albicans augments synthetic bacterial component-induced cytokine production by J774.1 cells via the TLR pathway, but not the dectin-1 or dectin-2 pathway.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| |
Collapse
|
6
|
Tamai R, Kobayashi-Sakamoto M, Kiyoura Y. Extracellular galectin-1 enhances adhesion to and invasion of oral epithelial cells by Porphyromonas gingivalis. Can J Microbiol 2018; 64:465-471. [PMID: 29544077 DOI: 10.1139/cjm-2017-0461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Galectin-1 and galectin-3 are C-type lectin receptors that bind to lipopolysaccharide in the cell wall of gram-negative bacteria. In this study, we investigated the effects of galectin-1 and galectin-3 on adhesion to and invasion of the human gingival epithelial cell line Ca9-22 by Porphyromonas gingivalis, a periodontal pathogenic gram-negative bacterium. Recombinant galectin-1, but not galectin-3, enhanced P. gingivalis adhesion and invasion, although both galectins bound similarly to P. gingivalis. Flow cytometry also revealed that Ca9-22 cells express low levels of galectin-1 and moderate levels of galectin-3. Ca9-22 cells in which galectin-3 was knocked-down did not exhibit enhanced P. gingivalis adhesion and invasion. Similarly, specific antibodies to galectin-1 and galectin-3 did not inhibit P. gingivalis adhesion and invasion. These results suggest that soluble galectin-1, but not galectin-3, may exacerbate periodontal disease by enhancing the adhesion to and invasion of host cells by periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Michiyo Kobayashi-Sakamoto
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
7
|
The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm 2017; 2017:9247574. [PMID: 28607536 PMCID: PMC5457773 DOI: 10.1155/2017/9247574] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Galectins are a group of evolutionarily conserved proteins with the ability to bind β-galactosides through characteristic carbohydrate-recognition domains (CRD). Galectin-3 is structurally unique among all galectins as it contains a C-terminal CRD linked to an N-terminal protein-binding domain, being the only chimeric galectin. Galectin-3 participates in many functions, both intra- and extracellularly. Among them, a prominent role for Galectin-3 in inflammation has been recognized. Galectin-3 has also been shown to directly bind to pathogens and to have various effects on the functions of the cells of the innate immune system. Thanks to these two properties, Galectin-3 participates in several ways in the innate immune response against invading pathogens. Galectin-3 has been proposed to function not only as a pattern-recognition receptor (PRR) but also as a danger-associated molecular pattern (DAMP). In this review, we analyze the various roles that have been assigned to Galectin-3, both as a PRR and as a DAMP, in the context of immune responses against pathogenic microorganisms.
Collapse
|
8
|
Pouwels SD, Hesse L, Faiz A, Lubbers J, Bodha PK, ten Hacken NHT, van Oosterhout AJM, Nawijn MC, Heijink IH. Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. Am J Physiol Lung Cell Mol Physiol 2016; 311:L881-L892. [DOI: 10.1152/ajplung.00135.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/06/2016] [Indexed: 01/02/2023] Open
Abstract
Cigarette smoke (CS) exposure is a major risk factor for chronic obstructive pulmonary disease (COPD). We investigated whether CS-induced damage-associated molecular pattern (DAMP) release or DAMP-mediated inflammation contributes to susceptibility for COPD. Samples, including bronchial brushings, were collected from young and old individuals, susceptible and nonsusceptible for the development of COPD, before and after smoking, and used for gene profiling and airway epithelial cell (AEC) culture. AECs were exposed to CS extract (CSE) or specific DAMPs. BALB/cByJ and DBA/2J mice were intranasally exposed to LL-37 and mitochondrial (mt)DAMPs. Functional gene-set enrichment analysis showed that CS significantly increases the airway epithelial gene expression of DAMPs and DAMP receptors in COPD patients. In cultured AECs, we observed that CSE induces necrosis and DAMP release, with specifically higher galectin-3 release from COPD-derived compared with control-derived cells. Galectin-3, LL-37, and mtDAMPs increased CXCL8 secretion in AECs. LL-37 and mtDAMPs induced neutrophilic airway inflammation, exclusively in mice susceptible for CS-induced airway inflammation. Collectively, we show that in airway epithelium from COPD patients, the CS-induced expression of DAMPs and DAMP receptors in vivo and the release of galectin-3 in vitro is exaggerated. Furthermore, our studies indicate that a predisposition to release DAMPs and subsequent induction of inflammation may contribute to the development of COPD.
Collapse
Affiliation(s)
- Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; and
| | - Laura Hesse
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; and
| | - Alen Faiz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; and
| | - Jaap Lubbers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Priya K. Bodha
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nick H. T. ten Hacken
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; and
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon J. M. van Oosterhout
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; and
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; and
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; and
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Román E, Correia I, Salazin A, Fradin C, Jouault T, Poulain D, Liu FT, Pla J. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition. Virulence 2016; 7:558-77. [PMID: 27191378 DOI: 10.1080/21505594.2016.1163458] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cek1 MAP kinase (MAPK) mediates vegetative growth and cell wall biogenesis in the fungal pathogen Candida albicans. Alterations in the fungal cell wall caused by a defective Cek1‑mediated signaling pathway leads to increased β‑1,3‑glucan exposure influencing dectin‑1 fungal recognition by immune cells. We show here that cek1 cells also display an increased exposure of α‑1,2 and β‑1,2‑mannosides (α‑M and β‑M), a phenotype shared by strains defective in the activating MAPKK Hst7, suggesting a general defect in cell wall assembly. cek1 cells display walls with loosely bound material as revealed by transmission electron microscopy and are sensitive to tunicamycin, an inhibitor of N‑glycosylation. Transcriptomal analysis of tunicamycin treated cells revealed a differential pattern between cek1 and wild type cells which involved mainly cell wall and stress related genes. Mapping α‑M and β‑M epitopes in the mannoproteins of different cell wall fractions (CWMP) revealed an important shift in the molecular weight of the mannan derived from mutants defective in this MAPK pathway. We have also assessed the role of galectin‑3, a member of a β‑galactoside‑binding protein family shown to bind to and kill C. albicans through β‑M recognition, in the infection caused by cek1 mutants. Increased binding of cek1 to murine macrophages was shown to be partially blocked by lactose. Galectin-3(-/-) mice showed increased resistance to fungal infection, although galectin-3 did not account for the reduced virulence of cek1 mutants in a mouse model of systemic infection. All these data support a role for the Cek1‑mediated pathway in fungal cell wall maintenance, virulence and antifungal discovery.
Collapse
Affiliation(s)
- E Román
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - I Correia
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - A Salazin
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - C Fradin
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - T Jouault
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - D Poulain
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - F-T Liu
- c Department of Dermatology , University of California, Davis, School of Medicine , Sacramento , CA , USA.,d Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - J Pla
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
10
|
Whibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine 2015; 76:42-52. [PMID: 26276374 DOI: 10.1016/j.cyto.2015.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.
Collapse
Affiliation(s)
- Natasha Whibley
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Rheumatology & Clinical Immunology, BST S702, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
|
12
|
Fradin C, Bernardes ES, Jouault T. Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation. Semin Immunopathol 2014; 37:123-30. [DOI: 10.1007/s00281-014-0461-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022]
|