1
|
Lassaletta A, Zapotocky M, Bouffet E. Chemotherapy in pediatric low-grade gliomas (PLGG). Childs Nerv Syst 2024; 40:3229-3239. [PMID: 38819670 DOI: 10.1007/s00381-024-06458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Pediatric low-grade gliomas (PLGG) are commonly treated with a combination of surgery, radiotherapy, and chemotherapy. Recent trends prioritize reducing long-term morbidities, particularly in younger patients. While historically chemotherapy was reserved for cases progressing after radiotherapy, evolving recommendations now advocate for its early use, particularly in younger age groups. The carboplatin and vincristine (CV) combination stands as a standard systemic therapy for PLGG, varying in dosage and administration between North America and Europe. Clinical trials have shown promising response rates, albeit with varying toxicity profiles. Vinblastine has emerged as another effective regimen with minimal toxicity. TPCV, a regimen combining thioguanine, procarbazine, lomustine, and vincristine, was compared to CV in a Children's Oncology Group trial, showing comparable outcomes, but more toxicity. Vinorelbine, temozolomide, and metronomic chemotherapy have also been explored, with varied success rates and toxicity profiles. Around 40-50% of PLGG patients require subsequent chemotherapy lines. Studies have shown varied efficacy in subsequent lines, with NF1 patients generally exhibiting better outcomes. The identification of molecular drivers like BRAF mutations has led to targeted therapies' development, showing promise in specific molecular subgroups. Trials comparing targeted therapy to conventional chemotherapy aim to delineate optimal treatment strategies based on molecular profiles. The landscape of chemotherapy in PLGG is evolving, with a growing focus on molecular subtyping and targeted therapies. Understanding the role of chemotherapy in conjunction with novel treatments is crucial for optimizing outcomes in pediatric patients with low-grade gliomas.
Collapse
Affiliation(s)
- Alvaro Lassaletta
- Pediatric Neuro-Oncology Unit, Pediatric Hematology Oncology Department, Hospital Infantil Universitario Niño Jesús, Avda. Menendez Pelayo 65, Madrid, 28009, Spain.
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eric Bouffet
- Division of Pediatric Neuro-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
2
|
Elmaci İ, Bilir A, Ozpinar A, Altinoz MA. Gemcitabine, vinorelbine and cyclooxygenase inhibitors in the treatment of glioblastoma. Ultrastructural analyses in C6 glioma in vitro. Tissue Cell 2019; 59:18-32. [PMID: 31383285 DOI: 10.1016/j.tice.2019.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To define ultrastructural features accompanying to antitumor effects of gemcitabine, vinorelbine and cyclooxygenase inhibitors in C6 glioma cells in vitro. Vinorelbine is a semisynthetic vinca alkaloid and recent studies showed its antitumor activity in pediatric optic and pontine gliomas. Vinorelbine infusion induces a severe tumor site-pain in systemic cancers, but it is unknown whether algesia and inflammation contribute to its antitumor effects. Gemcitabine is a nucleoside-chemotherapeutic which was recently shown to act as a radiosensitizer in high-grade glioma. Some studies showed synergism of anti-inflammatory cyclooxygenase-inhibitors with microtubule inhibitors and gemcitabine. DMSO is a solvent and blocks both cylooxygenase and ribonucleotide reductase, another target of gemcitabine. Rofecoxib is withdrawn from the market, yet we used it for investigational purposes, since it blocks cylooxygenase-2 1000-times more potently than cylooxygenase -1 and is also a selective inhibitor of crinophagy. METHODS Plating efficacy, 3D-spheroid S-phase analysis with BrdU labelling and transmission electron microscopical analyses were performed. RESULTS Vinorelbine induced frequent mitotic slippage/apoptosis and autophagy. Despite both DMSO and rofecoxib induced autophagy alone and in synergy, they reduced mitotic catastrophe and autophagy triggered by vinorelbine, which was also reflected by reduced inhibition of spheroid S-phase. Gemcitabine induced karyolysis and margination of coarse chromatin towards the nuclear membrane, abundant autophagy, gutta adipis formation and decrease in mitochondria, which were enhanced by DMSO and rofecoxib. CONCLUSIONS Detailed ultrastructural analysis of the effects of chemotherapeutic drugs may provide a broader insight about their actions and pave to develop better strategies in treatment of glioblastoma.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Istanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Aydin University, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey; Department of Psychiatry, Maastricht University, Holland.
| |
Collapse
|
3
|
Giunti L, Da Ros M, De Gregorio V, Magi A, Landini S, Mazzinghi B, Buccoliero AM, Genitori L, Giglio S, Sardi I. A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation. Mol Clin Oncol 2019; 10:331-338. [PMID: 30847170 PMCID: PMC6388501 DOI: 10.3892/mco.2019.1795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a novel class of gene regulators that may be involved in tumor chemoresistance. Recently, specific miRNA expression profiles have been identified in adult glioblastoma (aGBM), but there are only limited data available on the role of miRNAs in pediatric GBM (pGBM). In the present study, the expression profile of miRNAs was examined in seven pGBMs and three human GBM cell lines (U87MG, A172 and T98G), compared with a non-tumoral pool of pediatric cerebral cortex samples by microarray analysis. A set of differentially expressed miRNAs was identified, including miR-490, miR-876-3p, miR-876-5p, miR-448 and miR-137 (downregulated), as well as miR-501-3p (upregulated). Through bioinformatics analysis, a series of target genes was predicted. In addition, similar gene expression patterns in pGBMs and cell lines was confirmed. Of note, drug resistant T98G cells had upregulated nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) expression, a protein overexpressed in many tumors that serves an important role in cell proliferation and progression. On the basis of the present preliminary report, it could be intriguing to further investigate the relationship between each of the identified differentially expressed miRNAs and NUCKS1, in order to clarify their involvement in the multi-drug resistance mechanism of pGBMs.
Collapse
Affiliation(s)
- Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Martina Da Ros
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Veronica De Gregorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Medicine, University of Florence, I-50139 Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences 'Mario Serio', University of Florence, I-50139 Florence, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | | | - Lorenzo Genitori
- Neurosurgery Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Meyer Children's University Hospital, I-50139 Florence, Italy.,Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences 'Mario Serio', University of Florence, I-50139 Florence, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| |
Collapse
|
4
|
Whitehead CA, Nguyen HPT, Morokoff AP, Luwor RB, Paradiso L, Kaye AH, Mantamadiotis T, Stylli SS. Inhibition of Radiation and Temozolomide-Induced Invadopodia Activity in Glioma Cells Using FDA-Approved Drugs. Transl Oncol 2018; 11:1406-1418. [PMID: 30219696 PMCID: PMC6140414 DOI: 10.1016/j.tranon.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
The most common primary central nervous system tumor in adults is the glioblastoma multiforme (GBM). The highly invasive nature of GBM cells is a significant factor resulting in the inevitable tumor recurrence and poor patient prognosis. Tumor cells utilize structures known as invadopodia to faciliate their invasive phenotype. In this study, utilizing an array of techniques, including gelatin matrix degradation assays, we show that GBM cell lines can form functional gelatin matrix degrading invadopodia and secrete matrix metalloproteinase 2 (MMP-2), a known invadopodia-associated matrix-degrading enzyme. Furthermore, these cellular activities were augmented in cells that survived radiotherapy and temozolomide treatment, indicating that surviving cells may possess a more invasive phenotype posttherapy. We performed a screen of FDA-approved agents not previously used for treating GBM patients with the aim of investigating their "anti-invadopodia" and cytotoxic effects in GBM cell lines and identified a number that reduced cell viability, as well as agents which also reduced invadopodia activity. Importantly, two of these, pacilitaxel and vinorelbine tartrate, reduced radiation/temozolomide-induced invadopodia activity. Our data demonstrate the value of testing previously approved drugs (repurposing) as potential adjuvant agents for the treatment of GBM patients to reduce invadopodia activity, inhibit GBM cell invasion, and potentially improve patient outcome.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Hong P T Nguyen
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Lucia Paradiso
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Theo Mantamadiotis
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville VIC 3010, Victoria, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
5
|
Altinoz MA, Ozpinar A, Alturfan EE, Elmaci I. Vinorelbine's anti-tumor actions may depend on the mitotic apoptosis, autophagy and inflammation: hypotheses with implications for chemo-immunotherapy of advanced cancers and pediatric gliomas. J Chemother 2018; 30:203-212. [PMID: 30025492 DOI: 10.1080/1120009x.2018.1487149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Vinorelbine is a very potent chemotherapeutic agent which is used to treat a number of cancers including breast and non-small cell lung tumors. Vinorelbine mainly acts via blocking microtubules and induces a specific type of cell death called 'mitotic catastrophe/apoptosis' subsequent to mitotic slippage, which is the failure of cells to stay in a mitotic arrested state and replicating their DNA without cytokinesis. Glial tumor cells are especially sensitive to mitotic slippage. In recent years, vinorelbine demonstrated potency in pediatric optic and pontine gliomas. In this manuscript, we propose that vinorelbine's anti-tumor actions involve mitotic apoptosis, autophagy and inflammation. Intravenous infusion of vinorelbine induces a peculiar severe pain in the tumor site and patients with highly vascularized, oedematous and necrotic tumors are particularly vulnerable to this pain. Severe pain is a sign of robust inflammation and anti-inflammatory agents are used in treatment of this side effect. However, no one has questioned whether inflammation contributes to anti-tumor effects of vinorelbine, despite the existing data that vinorelbine induces Toll-Like Receptor-4 (TLR4), cytokines and cell death in endothelial cells especially under hypoxia. Robust inflammation may contribute to tumor necrosis such as seen during immunotherapy with lipopolysaccharides (LPS). Evidence also emerges that enhanced cyclooxygenase activity may increase cancer cell death in certain contexts. There are data indicating that non-steroidal anti-inflammatory drugs (NSAIDs) could block anti-tumor efficacy of taxanes, which also work mainly via anti-microtubule actions. Further, combining vinorelbine with immunostimulant cytokines provided encouraging results in far advanced melanoma and renal cell carcinoma, which are highly antigenic tumors. Vinorelbine also showed potential in treatment of inflammatory breast cancer. Finally, pontine gliomas - where partial activity of vinorelbine is shown by some studies - are also tumors which partially respond to immune stimulation. Animal experiments shall be conducted whether TLR4-activating molecules or immune-checkpoint inhibitors could augment anti-tumor actions of vinorelbine. Noteworthy, TLR4-activation seems as the most promising way of cancer immunotherapy, as a high percentage of molecules which demonstrated clinical benefits in cancer treatment are activators of TLR4, including BCG vaccine, monophosphoryl lipid A and picibanil (OKT-432). The provided data would be meaningful for the oncological practice.
Collapse
Affiliation(s)
- Meric A Altinoz
- a Department of Neurosurgery , Neuroacademy Group, Memorial Hospital , Istanbul , Turkey
| | - Aysel Ozpinar
- b Department of Medical Biochemistry , Acibadem University , Istanbul , Turkey
| | | | - Ilhan Elmaci
- a Department of Neurosurgery , Neuroacademy Group, Memorial Hospital , Istanbul , Turkey
| |
Collapse
|
6
|
Mahdavi SR, Yahyapour R, Nikoofar A. Cytotoxic effects of hyperthermia, chemotherapy (Navelbine) and radiation on glioma spheroids. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J Neurooncol 2014; 121:405-12. [DOI: 10.1007/s11060-014-1652-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
8
|
Ajaz M, Jefferies S, Brazil L, Watts C, Chalmers A. Current and investigational drug strategies for glioblastoma. Clin Oncol (R Coll Radiol) 2014; 26:419-30. [PMID: 24768122 DOI: 10.1016/j.clon.2014.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022]
Abstract
Medical treatments for glioblastoma face several challenges. Lipophilic alkylators remain the mainstay of treatment, emphasising the primacy of good blood-brain barrier penetration. Temozolomide has emerged as a major contributor to improved patient survival. The roles of procarbazine and vincristine in the procarbazine, lomustine and vincristine (PCV) schedule have attracted scrutiny and several lines of evidence now support the use of lomustine as effective single-agent therapy. Bevacizumab has had a convoluted development history, but clearly now has no major role in first-line treatment, and may even be detrimental to quality of life in this setting. In later disease, clinically meaningful benefits are achievable in some patients, but more impressively the combination of bevacizumab and lomustine shows early promise. Over the last decade, investigational strategies in glioblastoma have largely subscribed to the targeted kinase inhibitor paradigm and have mostly failed. Low prevalence dominant driver lesions such as the FGFR-TACC fusion may represent a niche role for this agent class. Immunological, metabolic and radiosensitising approaches are being pursued and offer more generalised efficacy. Finally, trial design is a crucial consideration. Progress in clinical glioblastoma research would be greatly facilitated by improved methodologies incorporating: (i) routine pharmacokinetic and pharmacodynamic assessments by preoperative dosing; and (ii) multi-stage, multi-arm protocols incorporating new therapy approaches and high-resolution biology in order to guide necessary improvements in science.
Collapse
Affiliation(s)
- M Ajaz
- Surrey Cancer Research Institute, University of Surrey, Guildford, UK.
| | - S Jefferies
- Oncology Centre, Addenbrooke's Hospital, Cambridge, UK
| | - L Brazil
- Guy's, St Thomas' and King's College Hospitals, London, UK
| | - C Watts
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Minard-Colin V, Ichante JL, Nguyen L, Paci A, Orbach D, Bergeron C, Defachelles AS, André N, Corradini N, Schmitt C, Tabone MD, Blouin P, Sirvent N, Goma G, Geoerger B, Oberlin O. Phase II study of vinorelbine and continuous low doses cyclophosphamide in children and young adults with a relapsed or refractory malignant solid tumour: Good tolerance profile and efficacy in rhabdomyosarcoma – A report from the Société Française des Cancers et leucémies de l’Enfant et de l’adolescent (SFCE). Eur J Cancer 2012; 48:2409-16. [DOI: 10.1016/j.ejca.2012.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/16/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
|
10
|
Massimino M, Bode U, Biassoni V, Fleischhack G. Nimotuzumab for pediatric diffuse intrinsic pontine gliomas. Expert Opin Biol Ther 2010; 11:247-56. [PMID: 21171927 DOI: 10.1517/14712598.2011.546341] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine gliomas (DIPG) have a poor prognosis: the median survival rate is less than one year. Radiotherapy is the only effective treatment affording an overall survival of 6 - 9 months. So far, no improvement has been achieved with the addition of single/poly-chemotherapy regimens. An urgent need is to advance in this field, from both the biological and the clinical points of view. AREAS COVERED Among the few studies providing biological information on DIPG, Gilbertson's group demonstrated a significant increase in EGFR expression. The activity of nimotuzumab, a humanized anti-EGFR monoclonal antibody, was therefore studied within a Phase II trial in 47 relapsing pediatric patients with DIPG and high-grade gliomas, showing an interesting, persistent response, especially in the first group treated. A multicenter exploratory study combining nimotuzumab and radiotherapy showed disease control and an overall patient survival similar to previous experiences along with an improvement in the quality of patient survival and no severe side effects. EXPERT OPINION We recommend considering this combination in the armamentarium against DIPG. It might be improved by adding other target drugs/low-toxicity chemotherapy regimens with a synergistic effect with the anti-EGFR component.
Collapse
Affiliation(s)
- Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian, 1 20133 Milano, Italy.
| | | | | | | |
Collapse
|
11
|
Kuttesch JF, Krailo MD, Madden T, Johansen M, Bleyer A, Children's Oncology Group. Phase II evaluation of intravenous vinorelbine (Navelbine) in recurrent or refractory pediatric malignancies: a Children's Oncology Group study. Pediatr Blood Cancer 2009; 53:590-3. [PMID: 19533657 PMCID: PMC2754403 DOI: 10.1002/pbc.22133] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND A Phase II trial was developed to determine the efficacy and toxicity of intravenous vinorelbine, a semi-synthetic vinca alkaloid, in children, adolescent, and young adults with recurrent or refractory solid malignancies. PROCEDURES Fifty patients were enrolled among three strata: soft tissue sarcomas [rhabdomyosarcoma (RMS), non-rhabdomyosarcoma, primitive neuroepithelial tumor] (20 patients); brain tumors [astrocytoma (4 patients), medulloblastoma (2 patients), other (16 patients)] (22 patients); neuroblastoma (8 patients). Vinorelbine was given weekly for 6 consecutive weeks during an 8-week interval. The response rate and toxicity profile was assessed. RESULTS Among the first 35 patients treated at 33.75 mg/m(2)/dose, 25 experienced grades 3-4 neutropenia (75%). The dose was decreased to 30 mg/m(2)/dose in the remaining 15 patients. The median age was 10 years (range, 1-25). Four responses (one complete, three partial) occurred within the soft tissue sarcoma strata (all with RMS) and two occurred in the brain tumor group (medulloblastoma and astrocytoma). The most common toxicities were hematological and neurological. CONCLUSION Vinorelbine at dose of 30 mg/m(2) can be safely administered to children with recurrent or refractory solid malignancies. The study design identified vinorelbine to be active in the sarcoma category, with a response rate of 36% (4/11) among RMS patients.
Collapse
Affiliation(s)
- John F Kuttesch
- Department of Pediatrics, Vanderbilt School of Medicine and Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Massimino M, Spreafico F, Biassoni V, Simonetti F, Riva D, Trecate G, Giombini S, Poggi G, Pecori E, Pignoli E, Casanova M, Ferrari A, Meazza C, Luksch R, Terenziani M, Cefalo G, Podda M, Polastri D, Clerici CA, Fossati-Bellani F, Gandola L. Diffuse pontine gliomas in children: changing strategies, changing results? A mono-institutional 20-year experience. J Neurooncol 2008; 87:355-61. [PMID: 18217208 DOI: 10.1007/s11060-008-9525-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/02/2008] [Indexed: 11/30/2022]
Abstract
Patients with diffuse pontine gliomas have a median survival of less than one year and represent a challenge for pediatric oncologists, prompting them to attempt experimental therapies. From 1987 to 2005, 62 children with diffuse pontine glioma, not amenable to curative surgery, were treated according to four successive pilot protocols: (1) concomitant chemo-radiotherapy (etoposide, cytarabine, ifosfamide, cisplatin, and dactinomycin); (2) intensive high-dose courses chemotherapy (cisplatin/etoposide, cyclophosphamide/vincristine/methotrexate) and a subsequent course of myeloablative thiotepa followed by radiation and maintenance chemotherapy; (3) cisplatin/etoposide followed by isotretinoin before, during and after focal irradiation; and (4) iv vinorelbine before, during, and after irradiation. Considering all patients, 77% experienced a transient response to treatment, always detectable after radiotherapy. The progression-free survival (PFS) rate was 25 +/- 6% at one year, median PFS was seven months; overall survival (OS) was 45 +/- 6%, median OS was eleven months: no statistical differences in the four studies in terms of outcome were detected. Despite improved diagnostic, therapeutic, and supportive tools in pediatric neuro-oncology, little has been achieved for patients with diffuse pontine tumors.
Collapse
Affiliation(s)
- Maura Massimino
- Pediatric Oncology Unit, Fondazione IRRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|