1
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
2
|
Wallesch M, Pachow D, Blücher C, Firsching R, Warnke JP, Braunsdorf WE, Kirches E, Mawrin C. Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal transition in aggressive meningiomas. J Neurol Sci 2017; 380:112-121. [DOI: 10.1016/j.jns.2017.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
3
|
Ferroni L, Della Puppa A, D'Avella D, Isola M, Scienza R, Gardin C, Zavan B. Tissue Engineering Strategies as Tools for Personalized Meningioma Treatment. Artif Organs 2015; 39:E114-26. [DOI: 10.1111/aor.12483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Letizia Ferroni
- Department of Biomedical Sciences; University of Padova; Padova Italy
| | | | | | - Maurizio Isola
- Department of Animal Medicine, Production and Health (MAPS); University of Padova; Padova Italy
| | - Renato Scienza
- Department of Neurosciences; University of Padova; Padova Italy
| | - Chiara Gardin
- Department of Biomedical Sciences; University of Padova; Padova Italy
| | - Barbara Zavan
- Department of Biomedical Sciences; University of Padova; Padova Italy
| |
Collapse
|
4
|
Abstract
WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3-q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein, a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of Wwox as a tumor suppressor implies that it serves a function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation, and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox(+/-) mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of the human WWOX locus with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of "classical" tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at chromosomal fragile sites in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D locus.
Collapse
Affiliation(s)
- Morgan S Schrock
- Biomedical Sciences Graduate Program, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Logan M, Anderson PD, Saab ST, Hameed O, Abdulkadir SA. RAMP1 is a direct NKX3.1 target gene up-regulated in prostate cancer that promotes tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:951-63. [PMID: 23867798 DOI: 10.1016/j.ajpath.2013.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022]
Abstract
The homeodomain-containing transcription factor, NKX3.1, plays an important role in the suppression of prostate tumorigenesis. Herein, we identify the receptor activity-modifying protein 1 (RAMP1) as a direct NKX3.1 target gene through analysis of chromatin immunoprecipitation coupled to massively parallel sequencing and gene expression data. RAMP1 is a coreceptor for certain G-protein-coupled receptors, such as the calcitonin gene-related peptide receptor, to the plasma membrane. We found that RAMP1 expression is specifically elevated in human prostate cancer relative to other tumor types. Furthermore, RAMP1 mRNA and protein levels are significantly higher in human prostate cancer compared with benign glands. We identified multiple NKX3.1 binding sites in the RAMP1 locus in human prostate cancer cells and in the normal mouse prostate. Analyses of Nkx3.1 knockout mice and human prostate cancer cell lines indicate that NKX3.1 represses RAMP1 expression. Knockdown of RAMP1 by shRNA decreased prostate cancer cell proliferation and tumorigenicity in vitro and in vivo. By using gene expression profiling and pathway analyses, we identified several cancer-related pathways that are significantly altered in RAMP1 knockdown cells, including the mitogen-activated protein kinase signaling pathway. Further experiments confirmed a reduction in MAP2KI (MEK1) expression and phosphorylated-extracellular signal-regulated kinase 1/2 levels in RAMP1 knockdown cells. These data provide novel insights into the role of RAMP1 in promoting prostate tumorigenesis and support the potential of RAMP1 as a novel biomarker and possible therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Monica Logan
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
6
|
Identification of genes involved in the regulation of 14-deoxy-11,12-didehydroandrographolide-induced toxicity in T-47D mammary cells. Food Chem Toxicol 2011; 50:431-44. [PMID: 22101062 DOI: 10.1016/j.fct.2011.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/30/2011] [Accepted: 11/03/2011] [Indexed: 12/19/2022]
Abstract
14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
Collapse
|
7
|
Tumor profiling: development of prognostic and predictive factors to guide brain tumor treatment. Curr Oncol Rep 2011; 13:26-36. [PMID: 21082294 DOI: 10.1007/s11912-010-0138-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Primary brain tumors are a heterogeneous group of malignancies with highly variable outcomes, and diagnosis is largely based on the histological appearance of the tumors. However, the diversity of primary brain tumors has made prognostic determinations based purely on clinicopathologic variables difficult. There is an increasing body of data suggesting a significant amount of molecular diversity accounts for the heterogeneity of clinical observations, such as response to treatment and time to progression. The last decade has witnessed an explosive advance in our knowledge of the molecular genetics of brain tumors, due in large part to the availability of high-throughput profiling techniques and to the completion of the human genome sequencing project. The large amount of data generated by these efforts has enabled the identification of prognostic and predictive factors and helping to identify pathways which are driving tumor growth. Identification of biomarkers will enable better patient stratification and individualization of treatment.
Collapse
|
8
|
Gene expression profiling of meningiomas: current status after a decade of microarray-based transcriptomic studies. Acta Neurochir (Wien) 2011; 153:447-56. [PMID: 21234620 PMCID: PMC3040823 DOI: 10.1007/s00701-010-0906-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/29/2010] [Indexed: 11/08/2022]
Abstract
Purpose This article provides a review of the transcriptomic expression profiling studies that have been performed on meningiomas so far. We discuss some future prospects and challenges ahead in the field of gene expression profiling. Methods We performed a systematic search in the PubMed and EMBASE databases in May 2010 using the following search terms alone or in combination: “meningioma”, “microarray analysis”, “oligonucleotide array sequence analysis”, or “gene expression profiling”. Only original research articles in English that had used RNA hybridized to high-resolution microarray chips to generate gene expression profiles were included. Results We identified 13 articles matching the inclusion criteria. All studies had been performed during the last decade. Conclusions The main results of the studies can be grouped in three categories: (1) several groups have identified meningioma-specific genes and genes associated with the three WHO grades, and the main histological subtypes of grade I meningiomas; (2) one publication has shown that the general transcription profile of samples of all WHO grades differs in vivo and in vitro; (3) one report provides evidence that microarray technology can be used in an automated fashion to classify tumors. Due to lack of consensus on how microarray data are presented, possible general trends found across the studies are difficult to extract. This could obstruct the discovery of important genes and pathways universally involved in meningioma biology.
Collapse
|
9
|
Aarhus M, Bruland O, Sætran HA, Mork SJ, Lund-Johansen M, Knappskog PM. Global gene expression profiling and tissue microarray reveal novel candidate genes and down-regulation of the tumor suppressor gene CAV1 in sporadic vestibular schwannomas. Neurosurgery 2011; 67:998-1019; discussion 1019. [PMID: 20881564 DOI: 10.1227/neu.0b013e3181ec7b71] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The vestibular nerve is the predilection site for schwannomas. Few transcriptomic studies have been performed on solely sporadic vestibular schwannomas (VSs). OBJECTIVE To detect genes with altered expression levels in sporadic VSs. METHODS We studied 25 VSs and 3 tibial nerves (controls) with the ABI 1700 microarray platform. Significance analysis of microarrays was performed to explore differential gene expression. Selected genes were validated with quantitative reverse transcriptase polymerase chain reaction. A tissue microarray was constructed for immunohistochemistry. Neurofibromatosis type II cDNA was sequenced for mutations. RESULTS The VSs formed 2 clusters based on the total expression of 23,055 genes. Tumor size, previous Gamma Knife surgery, neurofibromatosis type II mutations, and cystic tumors were distributed equally in both. Significance analysis of microarrays detected 1650 differentially expressed genes. On the top 500 list, several cancer-related genes with an unrecognized role in VSs were down-regulated: CAV1, TGFB3, VCAM1, GLI1, GLI2, PRKAR2B, EPHA4, and FZD1. Immunohistochemistry showed no CAV1 expression in the VSs. The ERK pathway was the central core in the network linking the differentially expressed genes. The previously reported VS candidate genes SPARC, PLAT, and FGF1 were up-regulated. Nineteen of 25 VSs had NF2 mutations. CONCLUSION Using microarray technology, we identified novel genes and pathways with a putative role in VSs, confirmed previous candidate genes, and found cancer-related genes with no reported role in VSs. Among these, down-regulation of CAV1 at both the mRNA and protein levels is of particular interest because this tumor suppressor normally is expressed in Schwann cells.
Collapse
Affiliation(s)
- Mads Aarhus
- Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Helland CA, Aarhus M, Knappskog P, Olsson LK, Lund-Johansen M, Amiry-Moghaddam M, Wester K. Increased NKCC1 expression in arachnoid cysts supports secretory basis for cyst formation. Exp Neurol 2010; 224:424-8. [DOI: 10.1016/j.expneurol.2010.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/20/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
|
11
|
Aarhus M, Helland CA, Lund-Johansen M, Wester K, Knappskog PM. Microarray-based gene expression profiling and DNA copy number variation analysis of temporal fossa arachnoid cysts. Cerebrospinal Fluid Res 2010; 7:6. [PMID: 20187927 PMCID: PMC2841093 DOI: 10.1186/1743-8454-7-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/26/2010] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Intracranial arachnoid cysts (AC) are membranous sacs filled with CSF-like fluid that are commonly found in the temporal fossa. The majority of ACs are congenital. Typical symptoms are headache, dizziness, and dyscognition. Little is known about genes that contribute to the formation of the cyst membranes. METHODS In order to identify differences in gene expression between normal arachnoid membrane (AM) and cyst membrane, we have performed a high-resolution mRNA microarray analysis. In addition we have screened DNA from AC samples for chromosomal duplications or deletions using DNA microarray-based copy number variation analysis. RESULTS The transcriptome consisting of 33096 gene probes showed a near-complete similarity in expression between AC and AM samples. Only nine genes differed in expression between the two tissues: ASGR1, DPEP2, SOX9, SHROOM3, A2BP1, ATP10D, TRIML1, NMU were down regulated, whereas BEND5 was up regulated in the AC samples. Three of the AC samples had unreported human DNA copy number variations, all DNA gains. CONCLUSIONS Extending results of previous anatomical studies, the present study has identified a small subset of differentially expressed genes and DNA alterations in arachnoid cysts compared to normal arachnoid membrane.
Collapse
Affiliation(s)
- Mads Aarhus
- Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, NO-5021 Bergen, Norway
- Department of Surgical Sciences, University of Bergen, NO-5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, NO-5021 Bergen, Norway
| | - Christian A Helland
- Department of Surgical Sciences, University of Bergen, NO-5021 Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - Morten Lund-Johansen
- Department of Surgical Sciences, University of Bergen, NO-5021 Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - Knut Wester
- Department of Surgical Sciences, University of Bergen, NO-5021 Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - Per M Knappskog
- Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, NO-5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, NO-5021 Bergen, Norway
| |
Collapse
|
12
|
Salah Z, Aqeilan R, Huebner K. WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol 2010; 6:249-59. [PMID: 20146584 PMCID: PMC2832309 DOI: 10.2217/fon.09.152] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WWOX gene, an archetypal fragile gene, encompasses a chromosomal fragile site at 16q23.2, and encodes the approximately 46-kDa Wwox protein, with WW domains that interact with a growing list of interesting proteins. If the function of a protein is defined by the company it keeps, then Wwox is involved in numerous important signal pathways for bone and germ-cell development, cellular and animal growth and death, transcriptional control and suppression of cancer development. Because alterations to genes at fragile sites are exquisitely sensitive to replication stress-induced DNA damage, there has been an ongoing scientific discussion questioning whether such gene expression alterations provide a selective advantage for clonal expansion of neoplastic cells, and a parallel discussion on why important genes would be present at sites that are susceptible to inactivation. We offer some answers through a description of known WWOX functions.
Collapse
Affiliation(s)
- Zaidoun Salah
- The Lautenberg Center for Immunology, Institute for Medical Research Israel–Canada, The Hebrew University-Hadassah Medical School, Pharmacy Building, 5th floor, Room 543, POB 12272, Jerusalem 91120, Israel Tel.: +972 2675 8707 Fax: +972 2642 4653
| | - Rami Aqeilan
- The Lautenberg Center for Immunology, Institute for Medical Research Israel–Canada, The Hebrew University-Hadassah Medical School, Pharmacy Building, 5th floor, Room 543, POB 12272, Jerusalem 91120, Israel Tel.: +972 2675 8609 Fax: +972 2642 4653
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Biomedical Research Tower Room 916, 460 W 12 Ave., Columbus, OH, USA Tel.: +1 614 292 4850 Fax: +1 614 688 8675
| |
Collapse
|
13
|
Yang J, Cogdell D, Yang D, Hu L, Li H, Zheng H, Du X, Pang Y, Trent J, Chen K, Zhang W. Deletion of the WWOX gene and frequent loss of its protein expression in human osteosarcoma. Cancer Lett 2009; 291:31-8. [PMID: 19896763 DOI: 10.1016/j.canlet.2009.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 01/02/2023]
Abstract
To evaluate the role of WWOX gene in human osteosarcoma, array comparative genomic hybridization on 10 frozen osteosarcoma specimens and immunohistochemical staining of 55 formalin-fixed and paraffin-embedded tissues for WWOX was performed. Deletion of the WWOX gene was observed in 3 of 10 samples and the WWOX protein was undetectable in 34 of 55 osteosarcomas. This is the first investigation of the role of WWOX gene in human osteosarcoma. The WWOX gene deletion, loss of its protein expression, and lack of correlation of WWOX expression with patient survival suggest loss of WWOX expression is an early event in the pathogenesis of osteosarcoma and the phenotypic results of its deletion do not imminently result in patient death.
Collapse
Affiliation(s)
- Jilong Yang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Hospital and Institute, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Aderca I, Moser CD, Veerasamy M, Bani-Hani AH, Bonilla-Guerrero R, Ahmed K, Shire A, Cazanave SC, Montoya DP, Mettler TA, Burgart LJ, Nagorney DM, Thibodeau SN, Cunningham JM, Lai JP, Roberts LR. The JNK inhibitor SP600129 enhances apoptosis of HCC cells induced by the tumor suppressor WWOX. J Hepatol 2008; 49:373-83. [PMID: 18620777 PMCID: PMC2574998 DOI: 10.1016/j.jhep.2008.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 04/23/2008] [Accepted: 05/18/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The FRA16D fragile site gene WWOX is a tumor suppressor that participates in p53-mediated apoptosis. The c-jun N-terminal kinase JNK1 interacts with WWOX and inhibits apoptosis. We investigated the function of WWOX in human hepatocellular carcinoma (HCC) and the effect of JNK inhibition on WWOX-mediated apoptosis. METHODS Allelic imbalance on chromosome 16 was analyzed in 73 HCCs using 53 microsatellite markers. WWOX mRNA in HCC cell lines and primary HCCs was measured by real-time RT-PCR. Effects of WWOX on proliferation and apoptosis and the interaction between WWOX and JNK inhibition were examined. RESULTS Loss on chromosome 16 occurred in 34 of 73 HCCs. Of 11 HCC cell lines, 2 had low, 7 intermediate, and 2 had high WWOX mRNA. Of 51 primary tumors, 23 had low WWOX mRNA. Forced expression of WWOX in SNU387 cells decreased FGF2-mediated proliferation and enhanced apoptosis induced by staurosporine and the JNK inhibitor SP600129. Conversely, knockdown of WWOX in SNU449 cells using shRNA targeting WWOX increased proliferation and resistance to SP600129-induced apoptosis. CONCLUSIONS WWOX induces apoptosis and inhibits human HCC cell growth through a mechanism enhanced by JNK inhibition.
Collapse
Affiliation(s)
- Ileana Aderca
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Catherine D. Moser
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Manivannan Veerasamy
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Grand Rapids Medical Education & Research Center / Michigan State University, Grand Rapids, MI, USA
| | - Ahmad H. Bani-Hani
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Ruben Bonilla-Guerrero
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Kadra Ahmed
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Abdirashid Shire
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Sophie C. Cazanave
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Damian P. Montoya
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Teresa A. Mettler
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Lawrence J. Burgart
- Division of Anatomic Pathology, University of Minnesota College of Medicine and Abbott Northwestern Hospital, Minneapolis, MN, USA
| | - David M. Nagorney
- Division of Gastroenterologic and General Surgery, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Jin-Ping Lai
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Lewis R. Roberts
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|