1
|
Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther 2024; 25:2425127. [PMID: 39513594 PMCID: PMC11552246 DOI: 10.1080/15384047.2024.2425127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
Collapse
Affiliation(s)
- Shujuan Jin
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| | - Mengjiao Zhang
- Chenxi Women’s and Children’s Hospital, Huaihua, Hunan, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Yang F, Liu C, Li P, Wu A, Ma-Lauer Y, Zhang H, Su Z, Lu W, von Brunn A, Zhu D. Targeting Cyclophilin A and CD147 to Inhibit Replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and SARS-CoV-2-Induced Inflammation. Mol Pharmacol 2023; 104:239-254. [PMID: 37827578 DOI: 10.1124/molpharm.122.000587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 10/14/2023] Open
Abstract
Identification and development of effective therapeutics for coronavirus disease 2019 (COVID-19) are still urgently needed. The CD147-spike interaction is involved in the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 invasion process in addition to angiotensin-converting enzyme 2 (ACE2). Cyclophilin A (CyPA), the extracellular ligand of CD147, has been found to play a role in the infection and replication of coronaviruses. In this study, our results show that CyPA inhibitors such as cyclosporine A (CsA) and STG-175 can suppress the intracellular replication of SARS-CoV-2 by inhibiting the binding of CyPA to the SARS-CoV-2 nucleocapsid C-terminal domain (N-CTD), and the IC50 is 0.23 μM and 0.17 μM, respectively. Due to high homology, CsA also had inhibitory effects on SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), and the IC50 is 3.2 μM and 2.8 μM, respectively. Finally, we generated a formulation of phosphatidylserine (PS)-liposome-CsA for pulmonary drug delivery. These findings provide a scientific basis for identifying CyPA as a potential drug target for the treatment of COVID-19 as well as for the development of broad-spectrum inhibitors for coronavirus via targeting CyPA. Highlights: 1) SARS-CoV-2 infects cells via the binding of its S protein and CD147; 2) binding of SARS-CoV-2 N protein and CyPA is essential for viral replication; 3) CD147 and CyPA are potential therapeutic targets for SARS-CoV-2; and 4) CsA is a potential therapeutic strategy by interrupting CD147/CyPA interactions. SIGNIFICANCE STATEMENT: New severe acute respiratory syndrome coronavirus (SARS-CoV)-2 variants and other pathogenic coronaviruses (CoVs) are continually emerging, and new broad-spectrum anti-CoV therapy is urgently needed. We found that binding sites of cyclophilin A/cyclosporin A (CyPA/CsA) overlap with CyPA/N-CTD (nucleocapsid C-terminal domain), which shows the potential to target CyPA during SARS-CoV-2 infection. Here, we provide new evidence for targeting CyPA in the treatment of coronavirus disease 2019 (COVID-19) as well as the potential of developing CyPA inhibitors for broad-spectrum inhibition of CoVs.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Chenglong Liu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Pengyuan Li
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Aihua Wu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Yue Ma-Lauer
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Hao Zhang
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Zhuang Su
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Albrecht von Brunn
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| |
Collapse
|
3
|
Han JM, Jung HJ. Cyclophilin A/CD147 Interaction: A Promising Target for Anticancer Therapy. Int J Mol Sci 2022; 23:ijms23169341. [PMID: 36012604 PMCID: PMC9408992 DOI: 10.3390/ijms23169341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclophilin A (CypA), which has peptidyl-prolyl cis-trans isomerase (PPIase) activity, regulates multiple functions of cells by binding to its extracellular receptor CD147. The CypA/CD147 interaction plays a crucial role in the progression of several diseases, including inflammatory diseases, coronavirus infection, and cancer, by activating CD147-mediated intracellular downstream signaling pathways. Many studies have identified CypA and CD147 as potential therapeutic targets for cancer. Their overexpression promotes growth, metastasis, therapeutic resistance, and the stem-like properties of cancer cells and is related to the poor prognosis of patients with cancer. This review aims to understand the biology and interaction of CypA and CD147 and to review the roles of the CypA/CD147 interaction in cancer pathology and the therapeutic potential of targeting the CypA/CD147 axis. To validate the clinical significance of the CypA/CD147 interaction, we analyzed the expression levels of PPIA and BSG genes encoding CypA and CD147, respectively, in a wide range of tumor types using The Cancer Genome Atlas (TCGA) database. We observed a significant association between PPIA/BSG overexpression and poor prognosis, such as a low survival rate and high cancer stage, in several tumor types. Furthermore, the expression of PPIA and BSG was positively correlated in many cancers. Therefore, this review supports the hypothesis that targeting the CypA/CD147 interaction may improve treatment outcomes for patients with cancer.
Collapse
Affiliation(s)
- Jang Mi Han
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
- Correspondence: ; Tel.: +82-41-530-2354; Fax: +82-41-530-2939
| |
Collapse
|
4
|
Diaz-Ruiz A, Nader-Kawachi J, Calderón-Estrella F, Bermudez AM, Alvarez-Mejia L, Ríos C. Dapsone, More than an Effective Neuro and Cytoprotective Drug. Curr Neuropharmacol 2022; 20:194-210. [PMID: 34139984 PMCID: PMC9199557 DOI: 10.2174/1570159x19666210617143108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Dapsone (4,4'-diamino-diphenyl sulfone) is a synthetic derivative of sulfones, with the antimicrobial activity described since 1937. It is also a drug traditionally used in dermatological therapies due to its anti-inflammatory effect. In recent years its antioxidant, antiexcitotoxic, and antiapoptotic effects have been described in different ischemic damage models, traumatic damage, and models of neurodegenerative diseases, such as Parkinson's (PD) and Alzheimer's diseases (AD). Finally, dapsone has proven to be a safe and effective drug as a protector against heart, renal and pulmonary cells damage; that is why it is now employed in clinical trials with patients as a neuroprotective therapy by regulating the main mechanisms of damage that lead to cell death ObjectiveThe objective of this study is to provide a descriptive review of the evidence demonstrating the safety and therapeutic benefit of dapsone treatment, evaluated in animal studies and various human clinical trials Methods: We conducted a review of PubMed databases looking for scientific research in animals and humans, oriented to demonstrate the effect of dapsone on regulating and reducing the main mechanisms of damage that lead to cell death ConclusionThe evidence presented in this review shows that dapsone is a safe and effective neuro and cytoprotective treatment that should be considered for translational therapy.
Collapse
Affiliation(s)
- Araceli Diaz-Ruiz
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | | | - Francisco Calderón-Estrella
- Posgrado en Ciencias Biológicas de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alfonso Mata Bermudez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Ciudad de México, México
| | - Laura Alvarez-Mejia
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | - Camilo Ríos
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, México
| |
Collapse
|
5
|
Gu Y, Wang C, Chen S, Tang J, Guo X, Hu W, Cui A, Zhang D, Yu K, Chen M. A Critical Role of Peptidylprolyl Isomerase A Pseudogene 22/microRNA-197-3p/Peptidylprolyl Isomerase A Axis in Hepatocellular Carcinoma. Front Genet 2021; 12:604461. [PMID: 33790943 PMCID: PMC8006304 DOI: 10.3389/fgene.2021.604461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022] Open
Abstract
The burden of hepatocellular carcinoma (HCC) worldwide is increasing over time, while the underlying molecular mechanism of HCC development is still under exploration. Pseudogenes are classified as a special type of long non-coding RNAs (lncRNAs), and they played a vital role in regulating tumor-associated gene expression. Here, we report that a pseudogene peptidylprolyl isomerase A pseudogene 22 (PPIAP22) and its parental gene peptidylprolyl isomerase A (PPIA) were upregulated in HCC and were associated with the clinical outcomes of HCC. Further investigation revealed that PPIAP22 might upregulate the expression of PPIA through sponging microRNA (miR)-197-3p, behaving as competing endogenous RNA (ceRNA). PPIA could participate in the development of HCC by regulating mRNA metabolic process and tumor immunity based on the functional enrichment analysis. We also found a strong correlation between the expression levels of PPIA and the immune cell infiltration or the expression of chemokines, especially macrophage, C-C motif chemokine ligand 15 (CCL15), and C-X-C motif chemokine ligand 12 (CXCL12). Our findings demonstrate that the PPIAP22/miR-197-3p/PPIA axis plays a vital role in the progression of HCC by increasing the malignancy of tumor cells and regulating the immune cell infiltration, especially macrophage, through CCL15-CCR1 or CXCL12-CXCR4/CXCR7 pathways.
Collapse
Affiliation(s)
- Yuwei Gu
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Chao Wang
- Emergency Department, Huashan Hospital, Shanghai, China
| | - Shengsen Chen
- Department of Endoscopy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jia Tang
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Xiaoxiao Guo
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Wei Hu
- Shanghai Medical College of Fudan University, Shanghai, China
| | - An Cui
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Dian Zhang
- Emergency Department, Huashan Hospital, Shanghai, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China.,Emergency Department, Huashan Hospital, Shanghai, China
| |
Collapse
|
6
|
Chu MY, Huang HC, Li EM, Xu LY. CypA: A Potential Target of Tumor Radiotherapy and/or Chemotherapy. Curr Med Chem 2021; 28:3787-3802. [PMID: 33121398 DOI: 10.2174/0929867327666201029161055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023]
Abstract
Cyclophilin A (CypA) is a ubiquitous and highly conserved protein. CypA, the intracellular target protein for the immunosuppressant cyclosporine A (CsA), plays important cellular roles through peptidyl-prolyl cis-trans isomerase (PPIase). Increasing evidence shows that CypA is up-regulated in a variety of human cancers. In addition to being involved in the occurrence and development of multiple tumors, overexpression of CypA has also been shown to be strongly associated with malignant transformation. Surgery, chemotherapy and radiotherapy are the three main treatments for cancer. Chemotherapy and radiotherapy are often used as direct or adjuvant treatments for cancer. However, various side effects and resistance to both chemotherapy and radiotherapy bring great challenges to these two forms of treatment. According to recent reports, CypA can improve the chemosensitivity and/or radiosensitivity of cancers, possibly by affecting the expression of drug-resistant related proteins, cell cycle arrest and activation of the mitogen-activated protein kinase (MAPK) signaling pathways. In this review, we focus on the role of CypA in cancer, its impact on cancer chemotherapeutic and radiotherapy sensitivity, and the mechanism of action. It is suggested that CypA may be a novel potential therapeutic target for cancer chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Man-Yu Chu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - He-Cheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - En-Ming Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Koper-Lenkiewicz OM, Kamińska J, Reszeć J, Dymicka-Piekarska V, Ostrowska H, Karpińska M, Matowicka-Karna J, Tylicka M. Elevated plasma 20S proteasome chymotrypsin-like activity is correlated with IL-8 levels and associated with an increased risk of death in glial brain tumor patients. PLoS One 2020; 15:e0238406. [PMID: 32886667 PMCID: PMC7473512 DOI: 10.1371/journal.pone.0238406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION In cancer treatment an attempt has been made to pharmacologically regulate the proteasome functions, thus the aim was to test whether 20S proteasome chymotrypsin-like (ChT-L) activity has a role in glial brain tumors. Furthermore, we analyzed the correlation between proteasome activity and IL-8, CCL2, NF-κB1 and NF-κB2 concentrations, which impact on brain tumors has already been indicated. METHODS Plasma 20S proteasome ChT-L activity was assayed using the fluorogenic peptide substrate Suc-Leu-Leu-Val-Tyr-AMC in the presence of SDS. IL-8, CCL2, NF-κB1 and NF-κB2 concentration was analyzed with the use of ELISA method. Immunohistochemistry for IDH1-R132H was done on 5-microns-thick formalin-fixed, paraffin-embedded tumor sections with the use of antibody specific for the mutant IDH1-R132H protein. Labelled streptavidin biotin kit was used as a detection system. RESULTS Brain tumor patients had statistically higher 20S proteasome ChT-L activity (0.649 U/mg) compared to non-tumoral individuals (0.430 U/mg). IDH1 wild-type patients had statistically higher 20S proteasome ChT-L activity (1.025 U/mg) compared to IDH1 mutants (0.549 U/mg). 20S proteasome ChT-L activity in brain tumor patients who died as the consequence of a tumor (0.649) in the following 2 years was statistically higher compared to brain tumor patients who lived (0.430 U/mg). In brain tumor patients the 20S proteasome ChT-L activity positively correlated with IL-8 concentration. CONCLUSIONS Elevated 20S proteasome ChT-L activity was related to the increased risk of death in glial brain tumor patients. A positive correlation between 20S proteasome ChT-L activity and IL-8 concentration may indicate the molecular mechanisms regulating glial tumor biology. Thus research on proteasomes may be important and should be carried out to verify if this protein complexes may represent a potential therapeutic target to limit brain tumor invasion.
Collapse
Affiliation(s)
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | | | - Halina Ostrowska
- Department of Biology, Medical University of Białystok, Białystok, Poland
| | - Maria Karpińska
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
8
|
Downregulation of CyclophilinA/CD147 Axis Induces Cell Apoptosis and Inhibits Glioma Aggressiveness. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7035847. [PMID: 32775435 PMCID: PMC7396009 DOI: 10.1155/2020/7035847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023]
Abstract
Gliomas are the most common primary tumors in the brain with poor prognosis. Previous studies have detected high expression of Cyclophilin A (CyPA) and CD147, respectively, in glioma. However, the correlation between their expressions and glioma prognosis remains unclear. Here, we investigated the expression of CyPA and CD147 in different types of glioma and characterized their relationships with clinical features, prognosis, and cell proliferation. Results showed that CyPA and CD147 expressions were elevated in higher grade gliomas. Moreover, the knockdown of CyPA and CD147 by RNA interference significantly induced cell express apoptosis biomarkers such as Annexin V and inhibited proliferation biomarkers like EdU in glioma cells. In summary, our findings revealed that high expression of CyPA and CD147 correlated with glioma grades. Moreover, downregulation of the Cyclophilin A/CD147 axis induces cell apoptosis and inhibits glioma aggressiveness. Those indicating CyPA and CD147 could be used as both potential predictive biomarkers and a potential therapeutic target.
Collapse
|
9
|
Lu F, Li C, Sun Y, Jia T, Li N, Li H. Upregulation of miR-1825 inhibits the progression of glioblastoma by suppressing CDK14 though Wnt/β-catenin signaling pathway. World J Surg Oncol 2020; 18:147. [PMID: 32605563 PMCID: PMC7325653 DOI: 10.1186/s12957-020-01927-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mounting evidences displayed that miRNAs play crucial roles in tumor initiation and development. However, the regulation and relevant mechanism of miR-1825 in glioblastoma (GBM) remain unclear. METHODS qRT-PCR was used to detect miR-1825 and CDK14 mRNA expression. Western blot was applied for testing protein levels (VEGF, E-cadherin, N-cadherin, vimentin, β-catenin, c-myc, p-c-Jun). MTT and transwell assays were used for detecting GBM cell progression, including cell viability, migration, and invasion. RESULTS The results showed that miR-1825 was decreased in GBM tissue specimens by qRT-PCR and it was confirmed as a prognostic marker of GBM by Kaplan-Meier survival analysis. Moreover, we also found that miR-1825 upregulation suppressed GBM cell viability, tumor growth, invasion, and migration. Furthermore, CDK14 was first identified as the direct target of miR-1825 by Luciferase reporter assay. CDK14 acted as an oncogene in GBM development by immunohistochemistry. In addition, Western blot analysis demonstrated that miR-1825 regulated Wnt/β-catenin signaling pathway in GBM development. CONCLUSION In conclusion, miR-1825 upregulation suppressed GBM progression by targeting CDK14 through Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fengqin Lu
- Department of Geriatrics, Jinan Zhangqiu District Hospital of TCM, Jinan, 250200, China
| | - Chunhong Li
- Department of Public Health, Jinan Zhangqiu District Hospital of TCM, Jinan, 250200, China
| | - Yuping Sun
- Department of Neurology, the People's Hospital of Zhangqiu Area, Jinan, 250200, China
| | - Ting Jia
- Department of Gynaecology, the People's Hospital of Zhangqiu Area, Jinan, 250200, China
| | - Na Li
- Department of Radiology, the People's Hospital of Zhangqiu Area, Jinan, 250200, China
| | - Haiyan Li
- Department of Neurology, Qingdao Central Hospital, Qingdao University, No.127 Siliunan Road, Qingdao, 266042, China.
| |
Collapse
|
10
|
Liu J, Guo M, Lv Z, Wang Z, Shao Y, Li C. A cyclophilin A (CypA) from Apostichopus japonicus modulates NF-κB translocation as a cofactor. FISH & SHELLFISH IMMUNOLOGY 2020; 98:728-737. [PMID: 31740398 DOI: 10.1016/j.fsi.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
As a ubiquitously expressed protein, cyclophilin A (CypA) is involved in a variety of pathological process, including immune suppression, inflammation, cell apoptosis, viral infection and stress response. However, the functional roles of CypA were largely unknown in economic marine animals. In this report, a novel CypA gene from sea cucumber Apostichopus japonicus (designated as AjCypA) was cloned and its function roles in immune responses were explored. The full-length cDNA of AjCypA was 1297 bp containing an open reading frame of 489 bp encoding a putative protein of 162 amino acids (aa). A conserved cyclophilin-like domain (CLD) with PPIase signature was located from 5 to 155 aa sequences in AjCypA, in which five necessary aa residues was totally conserved. In healthy sea cucumbers, AjCypA was expressed in all detected tissues, with highly expressed in muscles and weakly expressed in coelomocytes. AjCypA transcripts was significantly induced 8.08-fold and 5.65-fold in coelomocytes when sea cucumbers challenged with Vibrio splendidus in vivo and LPS in vitro, respectively. The expression pattern is similar with the expression of AjRel in the same condition. Moreover, GST pull-down and immunofluorescence analysis both revealed that AjCypA might be interacted with AjRel. Furthermore, AjCypA knockdown not only inhibited the expression of inflammation cytokines, but also suppressed the translocation of AjRel in nucleus induced by LPS. Taken together, our results suggested that AjCypA play key roles in V. splendidus mediated immune responses via suppressing the nuclear translocation of AjRel activity in sea cucumber.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhenhui Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
11
|
Qi ZY, Wang F, Yue YY, Guo XW, Guo RM, Li HL, Xu YY. CYPA promotes the progression and metastasis of serous ovarian cancer (SOC) in vitro and in vivo. J Ovarian Res 2019; 12:118. [PMID: 31783885 PMCID: PMC6884760 DOI: 10.1186/s13048-019-0593-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is a type of gynaecological malignancy with high mortality in females. Serous ovarian cancer (SOC) is a distinct subtype of OC with poor early diagnosis. Given the limitations of traditional therapies, such as chemotherapy, targeted treatment is therefore a promising therapy to improve the survival rate of SOC patients. Cyclophilin A (CYPA) is a member of Cyclophilin family and thought to participates in multiple cellular processes such as cell transduction and immune modulation. Recently, various of studies indicated that CYPA has critical impact on cancer progression. CYPA could regulate cell proliferation, invasion, and chemoresistance of multiple types of cancers. However, it is still unclear whether it could affect ovarian cancer. In this study, we demonstrated that CYPA was highly expressed in SOC tissues compared with adjacent tissues. Further, CYPA was significantly associated with clinical stage and lymphnode metastasis of SOC patients. Additionally, data indicated that knockdown of CYPA by its shRNA dramatically reduces migration and invasion capacity of SOC cells in vitro and blocks tumor metastasis in vivo. Our study investigates the involvement of CYPA in the progression and metastasis of SOC, and therefore provides CYPA as a promising therapeutic target for SOC treatment.
Collapse
Affiliation(s)
- Zhi-Ying Qi
- Department of gynecolog, the second hospital of Tianjin medical university, No.23 Pingjiang road, Hexi district, Tianjin, 300211 China
| | - Fang Wang
- Department of gynecolog, the second hospital of Tianjin medical university, No.23 Pingjiang road, Hexi district, Tianjin, 300211 China
| | - Ying-Ying Yue
- Department of gynecolog, the second hospital of Tianjin medical university, No.23 Pingjiang road, Hexi district, Tianjin, 300211 China
| | - Xue-Wang Guo
- Department of gynecolog, the second hospital of Tianjin medical university, No.23 Pingjiang road, Hexi district, Tianjin, 300211 China
| | - Rui-Meng Guo
- Department of gynecolog, the second hospital of Tianjin medical university, No.23 Pingjiang road, Hexi district, Tianjin, 300211 China
| | - Hong-Lin Li
- Department of gynecolog, the second hospital of Tianjin medical university, No.23 Pingjiang road, Hexi district, Tianjin, 300211 China
| | - Yan-Ying Xu
- Department of gynecolog, the second hospital of Tianjin medical university, No.23 Pingjiang road, Hexi district, Tianjin, 300211 China
| |
Collapse
|
12
|
Luo X, Xu S, Zhong Y, Tu T, Xu Y, Li X, Wang B, Yang F. High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: A bioinformatics analysis. Oncol Lett 2019; 18:6171-6179. [PMID: 31788092 PMCID: PMC6865749 DOI: 10.3892/ol.2019.10988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to identify differentially regulated genes between the peritumoral brain zone (PBZ) and tumor core (TC) of glioblastoma (GBM), to elucidate the underlying molecular mechanisms and provide a target for the treatment of tumors. The GSE13276 and GSE116520 datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) for the PBZ and TC were obtained using the GEO2R tool. The bioinformatics and evolutionary genomics online tool Venn was used to identify common DEGs between the two datasets. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to analyze enriched pathways of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The Search Tool for the Retrieval of Interacting Genes/Proteins online tool was used to construct a protein-protein interaction (PPI) network of DEGs. Hub genes were identified using Cytohubba, a plug-in for Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was utilized to perform survival analysis. In total, 75 DEGs, including 12 upregulated and 63 downregulated genes, were identified. In the GO term analysis, these DEGs were mainly enriched in ‘regulation of angiogenesis’ and ‘central nervous system development’. Furthermore, in the KEGG pathway analysis, the DEGs were mainly enriched in ‘bladder cancer’ and ‘endocytosis’. When filtering the results of the PPI network analysis using Cytohubba, a total of 10 hub genes, including proteolipid protein 1, myelin associated oligodendrocyte basic protein, contactin 2, myelin oligodendrocyte glycoprotein, myelin basic protein, myelin associated glycoprotein, SRY-box transcription factor 10, C-X-C motif chemokine ligand 8 (CXCL8), vascular endothelial growth factor A (VEGFA) and plasmolipin, were identified. These hub genes were further subjected to GO term and KEGG pathway analysis, and were revealed to be enriched in ‘central nervous system development’, ‘bladder cancer’ and ‘rheumatoid arthritis’. These hub genes were used to perform survival analysis using the GEPIA database, and it was determined that VEGFA and CXCL8 were significantly associated with a reduction in the overall survival of patients with GBM. In conclusion, the results suggest that the recurrence of GBM is associated with high gene expression levels VEGFA and CXCL8, and the development of the central nervous system.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shangyi Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yali Zhong
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, P.R. China
| | - Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Youlin Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xianglong Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fubing Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
13
|
Flora GK, Anderton RS, Meloni BP, Guillemin GJ, Knuckey NW, MacDougall G, Matthews V, Boulos S. Microglia are both a source and target of extracellular cyclophilin A. Heliyon 2019; 5:e02390. [PMID: 31517118 PMCID: PMC6731207 DOI: 10.1016/j.heliyon.2019.e02390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) are lethal primary brain tumours whose pathogenesis is aided, at least partly, via a pro-tumorigenic microenvironment. This study investigated whether microglia, a cell component of the GBM microenvironment, mediates pro-tumorigenic properties via the action of cyclophilin A (CypA), a potent secretable chemokine and cytoprotectant that signals via the cell surface receptor, CD147. To this end, intracellular and secreted CypA expression was assessed in human primary microglia and BV2 microglial cells treated with the endotoxin, lipopolysaccharide (LPS) and the oxidative stress inducer, LY83583. We report that human primary microglia and BV2 microglia both express CypA and CD147, and that BV2 microglial cells secrete CypA in response to pro-inflammatory and oxidative stimuli. We also demonstrate for the first time that recombinant CypA (rCypA; 1nM-1000nM) dose-dependently increased wound healing and reduced basal cell death in BV2 microglial cells. To determine the cell-signalling pathways involved, we probed microglial cell lysates for changes in ERK1/2 and AKT phosphorylation, IκB degradation, and IL-6 secretion using Western blot and ELISA analysis. In summary, BV2 microglial cells secrete CypA in response to inflammatory and oxidative stress, and that rCypA increases cell viability and chemotaxis. Our findings suggest that rCypA is a pro-survival chemokine for microglia that may influence the GBM tumour microenvironment.
Collapse
Affiliation(s)
- Gurkiran Kaur Flora
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Health Sciences and Institute for Health Research, Fremantle, University of Notre Dame Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| | - Gabriella MacDougall
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Health Sciences and Institute for Health Research, Fremantle, University of Notre Dame Australia, Australia
| | - Vance Matthews
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Sherif Boulos
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
14
|
Yi SJ, Zhao J. Protein-protein interaction of a novel gene mBiot2-S and its potential function on carcinogenesis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Liu YS, Hsu JW, Lin HY, Lai SW, Huang BR, Tsai CF, Lu DY. Bradykinin B1 receptor contributes to interleukin-8 production and glioblastoma migration through interaction of STAT3 and SP-1. Neuropharmacology 2019; 144:143-154. [PMID: 30366000 DOI: 10.1016/j.neuropharm.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM), the most aggressive brain tumor, has a poor prognosis due to the ease of migration to surrounding healthy brain tissue. Recent studies have shown that bradykinin receptors are involved in the progression of various cancers. However, the molecular mechanism and pathological role of bradykinin receptors remains unclear. We observed the expressions of two major bradykinin receptors, B1R and B2R, in two different human GBM cell lines, U87 and GBM8901. Cytokine array analysis showed that bradykinin increases the production of interleukin (IL)-8 in GBM via B1R. Higher B1R levels correlate with IL-8 expression in U87 and GBM8901. We observed increased levels of phosphorylated STAT3 and SP-1 in the nucleus as well. Using chromatin immunoprecipitation assay, we found that STAT3 and SP-1 mediate IL-8 expression, which gets abrogated by the inhibition of FAK and STAT3. We further demonstrated that IL-8 expression and cell migration are also regulated by the SP-1. In addition, expression levels of STAT3 and SP-1 positively correlate with clinicopathological grades of gliomas. Interestingly, our results found that inhibition of HDAC increases IL-8 expression. Moreover, stimulation with bradykinin caused increases in acetylated SP-1 and p300 complex formation, which are abrogated by inhibition of FAK and STAT3. Meanwhile, knockdown of SP-1 and p300 decreased the augmentation of bradykinin-induced IL-8 expression. These results indicate that bradykinin-induced IL-8 expression is dependent on B1R which causes phosphorylated STAT3 and acetylated SP-1 to translocate to the nucleus, hence resulting in GBM migration.
Collapse
Affiliation(s)
- Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Jhih-Wen Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
16
|
Cellular Defense Mechanisms Following Nanomaterial Exposure: A Focus on Oxidative Stress and Cytotoxicity. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
The Multiple Roles of Peptidyl Prolyl Isomerases in Brain Cancer. Biomolecules 2018; 8:biom8040112. [PMID: 30314361 PMCID: PMC6316532 DOI: 10.3390/biom8040112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Peptidyl prolyl isomerases (PPIases) are broadly expressed enzymes that accelerate the cis-trans isomerization of proline peptide bonds. The most extensively studied PPIase family member is protein interacting with never in mitosis A1 (PIN1), which isomerizes phosphorylated serine/threonine–proline bonds. By catalyzing this specific cis-trans isomerization, PIN1 can alter the structure of its target proteins and modulate their activities in a number of different ways. Many proteins are targets of proline-directed phosphorylation and thus PIN1-mediated isomerization of proline bonds represents an important step in the regulation of a variety of cellular mechanisms. Numerous other proteins in addition to PIN1 are endowed with PPIase activity. These include other members of the parvulin family to which PIN1 belongs, such as PIN4, as well as several cyclophilins and FK506-binding proteins. Unlike PIN1, however, these other PPIases do not isomerize phosphorylated serine/threonine–proline bonds and have different substrate specificities. PIN1 and other PPIases are overexpressed in many types of cancer and have been implicated in various oncogenic processes. This review will discuss studies providing evidence for multiple roles of PIN1 and other PPIases in glioblastoma and medulloblastoma, the most frequent adult and pediatric primary brain tumors.
Collapse
|
18
|
Li T, Yan B, Ma Y, Weng J, Yang S, Zhao N, Wang X, Sun X. Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis 2018; 9:148. [PMID: 29396555 PMCID: PMC5833721 DOI: 10.1038/s41419-017-0182-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 4 (USP4) is a member of the deubiquitinating enzyme family, which plays an important role in human tumor diseases. However, the mechanisms by which USP4 facilitates tumor development, especially in hepatocellular carcinoma (HCC), remain unclear. Clinically, we found that USP4 is overexpressed in human HCC tissues compared with adjacent non-tumoral tissues and is significantly correlated with malignant phenotype characteristics, including tumor size, tumor number, differentiation, serum alpha-fetoprotein level, and vascular invasion. Moreover, Kaplan-Meier survival analysis showed a poor overall survival rate in patients with USP4-overexpressing tumors. Analyses of univariate and multivariate Cox proportional hazard models indicated that USP4 is a prognostic biomarker for poor outcome. Using in vitro and in vivo assays, we demonstrated that USP4 overexpression enhanced HCC cell growth, migration, and invasion. Mechanistically, cyclophilin A (CypA) was identified as an important molecule for USP4-mediated oncogenic activity in HCC. We observed that USP4 interacted with CypA and inhibited CypA degradation via deubiquitination in HCC cells. Subsequently, the USP4/CypA complex activated the MAPK signaling pathway and prevented CrkII phosphorylation. These data suggest that USP4 acts as a novel prognostic marker, offering potential therapeutic opportunities for HCC.
Collapse
Affiliation(s)
- Tianyi Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yang Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shouwen Yang
- Department of Gynaecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Nan Zhao
- Department of General Surgery, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
20
|
Wang G, Shen J, Sun J, Jiang Z, Fan J, Wang H, Yu S, Long Y, Liu Y, Bao H, Zhang KX, Han K, Zhu M, Zheng Y, Lin Z, Jiang C, Guo M. Cyclophilin A Maintains Glioma-Initiating Cell Stemness by Regulating Wnt/β-Catenin Signaling. Clin Cancer Res 2017; 23:6640-6649. [PMID: 28790108 DOI: 10.1158/1078-0432.ccr-17-0774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/02/2017] [Accepted: 08/03/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Glioma-initiating cells (GIC) are glioma stem-like cells that contribute to glioblastoma (GBM) development, recurrence, and resistance to chemotherapy and radiotherapy. They have recently become the focus of novel treatment strategies. Cyclophilin A (CypA) is a cytosolic protein that belongs to the peptidyl-prolyl isomerase (PPIase) family and the major intracellular target of the immunosuppressive drug cyclosporin A (CsA). In this study, we investigate the functions of CypA and its mechanism of action in GICs' development.Experimental Design: We analyzed differences in CypA expression between primary tumors and neurospheres from the GDS database, both before and after GIC differentiation. A series of experiments was conducted to investigate the role of CypA in GIC stemness, self-renewal, proliferation, radiotherapy resistance, and mechanism. We then designed glutathione S-transferase (GST) pulldown and coimmunoprecipitation assays to detect signaling activity.Results: In this study, we demonstrated that CypA promotes GIC stemness, self-renewal, proliferation, and radiotherapy resistance. Mechanistically, we found that CypA binds β-catenin and is recruited to Wnt target gene promoters. By increasing the interaction between β-catenin and TCF4, CypA enhances transcriptional activity.Conclusions: Our results demonstrate that CypA enhances GIC stemness, self-renewal, and radioresistance through Wnt/β-catenin signaling. Due to its promotive effects on GICs, CypA is a potential target for future glioma therapy. Clin Cancer Res; 23(21); 6640-9. ©2017 AACR.
Collapse
Affiliation(s)
- Guangzhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Medical Service Management, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jia Shen
- School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiabing Fan
- School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Long
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Liu
- Department of Medical Service Management, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Kelvin Xi Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California
| | - Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, Heilongjiang China
| | - Minwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongri Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
21
|
Nakano N, Sakashita S, Matsuoka R, Murata Y, Shiba-Ishii A, Kobayashi N, Sato Y, Noguchi M. Cyclophilin A expression and its prognostic significance in lung adenocarcinoma. Pathol Int 2017; 67:555-563. [PMID: 29027312 DOI: 10.1111/pin.12593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023]
Abstract
Cyclophilin A (CypA) has been reported to be upregulated in malignant tumors. CypA expression is thought to be associated with acquisition of tumor growth and anti-apoptotic function. Although upregulation of CypA has been reported in lung adenocarcinoma, its clinicopathological significance and roles in malignant progression remain unclear. Here we investigated the implications of CypA expression for outcome in patients with lung adenocarcinoma. Lung adenocarcinoma specimens from 198 cases were selected and reclassified according to the World Health Organization classification (4th edition) and the Noguchi classification. CypA expression was assessed by immunohistochemistry, and the H-score was calculated on the basis of intensity and proportion. The specificity of the antibody used was confirmed by Western blotting and the cut-off point was determined from the ROC curve. Sixty-seven cases (33.8%) had low CypA expression (CypA-L group) and 131 (66.2%) had high CypA expression (CypA-H group). Many cases of adenocarcinoma in situ were CypA-L, and advanced adenocarcinomas tended to be classified as CypA-H. Clinically, patients with CypA-H tumors showed a significantly poorer prognosis than those with CypA-L tumors. This is the first investigation of the implications of the CypA expression level in terms of the clinical characteristics of resected lung adenocarcinomas.
Collapse
Affiliation(s)
- Noriyuki Nakano
- Faculty of Medicine, Department of Pathology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Shingo Sakashita
- Faculty of Medicine, Department of Pathology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Ryota Matsuoka
- Faculty of Medicine, Department of Pathology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Yoshihiko Murata
- Faculty of Medicine, Department of Pathology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Aya Shiba-Ishii
- Faculty of Medicine, Department of Pathology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Naohiro Kobayashi
- Faculty of Medicine, Department of Thoracic Surgery, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Yukio Sato
- Faculty of Medicine, Department of Thoracic Surgery, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| | - Masayuki Noguchi
- Faculty of Medicine, Department of Pathology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan
| |
Collapse
|
22
|
Ginsenoside Rg3 Prevents Oxidative Stress-Induced Astrocytic Senescence and Ameliorates Senescence Paracrine Effects on Glioblastoma. Molecules 2017; 22:molecules22091516. [PMID: 28891967 PMCID: PMC6151485 DOI: 10.3390/molecules22091516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/22/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Senescent astrocytes in aging brain express senescence-associated secretory phenotype (SASP) and link with increased brain aging and its related diseases. In order to determine whether ginsenosides ameliorate the astrocytic senescence in vitro, human astrocytic CRT cells and primary rat astrocytes were used in the present study. Ginsenosides Rg1, Re, Rb1 and Rg3 (5 μg/mL) could effectively prevent the astrocytic senescence induced by H2O2 exposure. However, these ginsenosides did not reverse the astrocytic senescence. Importantly, senescent astrocytes herein produce SASP. The expression of major components of SASP, IL-6 and IL-8, are greatly increased in senescent astrocytes. Ginsenoside Rg3 (10 μg/mL) effectively suppressed the expressions of IL-6 and IL-8, which is associated with regulations of NF-κB and p38MAPK activation. In addition, after incubation with Rg3, conditioned medium from senescent astrocytic CRT cells significantly decreased the ability to promote the proliferation of astrocytoma U373-MG, U87-MG and U251-MG cells compared with non-treated senescent samples. Similar patterns were confirmed in chemotherapy-induced glioblastoma senescent cells. The present study explored a potential candidate for amelioration of astrocytic senescence and SASP in brain aging, which provided a basis for developing strategies to reduce the dark side of senescence in normal or pathological aging process.
Collapse
|
23
|
Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway. Mol Cell Biochem 2016; 422:85-95. [DOI: 10.1007/s11010-016-2808-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
24
|
Brichkina A, Nguyen NT, Baskar R, Wee S, Gunaratne J, Robinson RC, Bulavin DV. Proline isomerisation as a novel regulatory mechanism for p38MAPK activation and functions. Cell Death Differ 2016; 23:1592-601. [PMID: 27233083 DOI: 10.1038/cdd.2016.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
The stress-induced p38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in multiple physiological processes, including cancer. In turn, p38MAPK phosphorylation at Thr180 and Tyr182 is a key regulatory mechanism for its activation and functions. Here we show that this mechanism is actively regulated through isomerisation of Pro224. Different cyclophilins can isomerise this proline residue and modulate the ability of upstream kinases to phosphorylate Thr180 and Tyr182. In vivo mutation of Pro224 to Ile in endogenous p38MAPK significantly reduced its phosphorylation and activity. This resulted in attenuation of p38MAPK signalling, which in turn caused an enhanced apoptosis and sensitivity to a DNA-damaging drug, cisplatin. We further found a reduction in size and number of lesions in homozygous mice carrying the p38MAPK P224I substitution in a K-ras model of lung tumorigenesis. We propose that cyclophilin-dependent isomerisation of p38MAPK is an important novel mechanism in regulating p38MAPK phosphorylation and functions. Thus, inhibition of this process, including with drugs that are in clinical trials, may improve the efficacy of current anti-cancer therapeutic regimes.
Collapse
Affiliation(s)
- A Brichkina
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - N Tm Nguyen
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - R Baskar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - S Wee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - J Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - R C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - D V Bulavin
- Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM, U1081-UMR CNRS 7284, University of Nice - Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
25
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|
26
|
Ashour AE, Ahmed AF, Kumar A, Zoheir KMA, Aboul-Soud MA, Ahmad SF, Attia SM, Abd-Allah ARA, Cheryan VT, Rishi AK. Thymoquinone inhibits growth of human medulloblastoma cells by inducing oxidative stress and caspase-dependent apoptosis while suppressing NF-κB signaling and IL-8 expression. Mol Cell Biochem 2016; 416:141-55. [PMID: 27084536 DOI: 10.1007/s11010-016-2703-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor of childhood. The transcription factor NF-κB is overexpressed in human MB and is a critical factor for MB tumor growth. NF-κB is known to regulate the expression of interleukin-8 (IL-8), the chemokine that enhances cancer cell growth and resistance to chemotherapy. We have recently shown that thymoquinone (TQ) suppresses growth of hepatocellular carcinoma cells in part by inhibiting NF-κB signaling. Here we sought to extend these studies in MB cells and show that TQ suppresses growth of MB cells in a dose- and time-dependent manner, causes G2M cell cycle arrest, and induces apoptosis. TQ significantly increased generation of reactive oxygen species (ROS), while pretreatment of MB cells with the ROS scavenger N-acetylcysteine (NAC) abrogated TQ-induced cell death and apoptosis, suggesting that TQ-induced cell death and apoptosis are oxidative stress-mediated. TQ inhibitory effects were associated with inhibition of NF-κB and altered expression of its downstream effectors IL-8 and its receptors, the anti-apoptotic Bcl-2, Bcl-xL, X-IAP, and FLIP, as well as the pro-apoptotic TRAIL-R1, caspase-8, caspase-9, Bcl-xS, and cytochrome c. TQ-triggered apoptosis was substantiated by up-regulation of the executioner caspase-3 and caspase-7, as well as cleavage of the death substrate poly(ADP-ribose)polymerase. Interestingly, pretreatment of MB cells with NAC or the pan-caspase inhibitor zVAD-fmk abrogated TQ-induced apoptosis, loss of cyclin B1 and NF-κB activity, suggesting that these TQ-mediated effects are oxidative stress- and caspase-dependent. These findings reveal that TQ induces both extrinsic and intrinsic pathways of apoptosis in MB cells, and suggest its potential usefulness in the treatment of MB.
Collapse
Affiliation(s)
- Abdelkader E Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ashok Kumar
- Vitiligo Research Chair, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Khairy M A Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.,Cell Biology Department, National Research Centre, Cairo, Egypt
| | - Mourad A Aboul-Soud
- Medical and Molecular Genetics Research Chair, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Adel R A Abd-Allah
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Vino T Cheryan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Arun K Rishi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.,John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| |
Collapse
|
27
|
Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol 2016; 13:9. [PMID: 26888332 PMCID: PMC4756536 DOI: 10.1186/s12989-016-0117-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 01/26/2016] [Indexed: 11/28/2022] Open
Abstract
Background The increased incorporation of silver nanoparticles (Ag NPs) into consumer products makes the characterization of potential risk for humans and other organisms essential. The oral route is an important uptake route for NPs, therefore the study of the gastrointestinal tract in respect to NP uptake and toxicity is very timely. The aim of the present study was to evaluate the effects of Ag NPs and ions on a Caco-2/TC7:HT29-MTX intestinal co-culture model with mucus secretion, which constitutes an important protective barrier to exogenous agents in vivo and may strongly influence particle uptake. Methods The presence of the mucus layer was confirmed with staining techniques (alcian blue and toluidine blue). Mono and co-cultures of Caco-2/TC7 and HT29-MTX cells were exposed to Ag NPs (Ag 20 and 200 nm) and AgNO3 and viability (alamar blue), ROS induction (DCFH-DA assay) and IL-8 release (ELISA) were measured. The particle agglomeration in the media was evaluated with DLS and the ion release with ultrafiltration and ICP-MS. The effects of the Ag NPs and AgNO3 on cells in co-culture were studied at a proteome level with two-dimensional difference in gel electrophoresis (2D-DIGE) followed by Matrix Assisted Laser Desorption Ionization - Time Of Flight/ Time Of Flight (MALDI-TOF/TOF) mass spectrometry (MS). Intracellular localization was assessed with NanoSIMS and TEM. Results The presence of mucus layer led to protection against ROS and decrease in IL-8 release. Both Ag 20 and 200 nm NPs were taken up by the cells and Ag NPs 20 nm were mainly localized in organelles with high sulfur content. A dose- and size-dependent increase in IL-8 release was observed with a lack of cytotoxicity and oxidative stress. Sixty one differentially abundant proteins were identified involved in cytoskeleton arrangement and cell cycle, oxidative stress, apoptosis, metabolism/detoxification and stress. Conclusions The presence of mucus layer had an impact on modulating the induced toxicity of NPs. NP-specific effects were observed for uptake, pro-inflammatory response and changes at the proteome level. The low level of overlap between differentially abundant proteins observed in both Ag NPs and AgNO3 treated co-culture suggests size-dependent responses that cannot only be attributed to soluble Ag. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0117-9) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Henker C, Kriesen T, Fürst K, Goody D, Glass Ä, Pützer BM, Piek J. Effect of 10 different polymorphisms on preoperative volumetric characteristics of glioblastoma multiforme. J Neurooncol 2015; 126:585-92. [PMID: 26603163 DOI: 10.1007/s11060-015-2005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
There is a distinct diversity between the appearance of every glioblastoma multiforme (GBM) on pretreatment magnetic resonance imaging (MRI) with a potential impact on clinical outcome and survival of the patients. The object of this study was to determine the impact of 10 different single nucleotide polymorphisms (SNPs) on various volumetric parameters in patients harboring a GBM. We prospectively analyzed 20 steroid-naïve adult patients who had been treated for newly diagnosed GBM. The volumetry was performed using MRI with the help of a semiautomated quantitative software measuring contrast enhancing tumor volume including necrosis, central necrosis alone and peritumoral edema (PTE). We calculated ratios between the tumor volume and edema (ETR), respectively necrosis (NTR). SNP analysis was done using genomic DNA extracted from peripheral blood genotyped via PCR and sequencing. There was a strong correlation between tumor volume and PTE (p < 0.001), necrosis (p < 0.001) and NTR (p = 0.003). Age and sex had no influence on volumetric data. The Aquaporin 4-31G > A SNP had a significant influence on the ETR (p = 0.042) by decreasing the measured edema compared with the tumor volume. The Interleukin 8-251A > T SNP was significantly correlated with an increased tumor (p = 0.048), PTE (p = 0.033) and necrosis volume (p = 0.028). We found two SNPs with a distinct impact on pretreatment tumor characteristics, presenting a potential explanation for the individual diversity of GBM appearance on MRI and influence on survival.
Collapse
Affiliation(s)
- Christian Henker
- Department of Neurosurgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Thomas Kriesen
- Department of Neurosurgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Katharina Fürst
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Jürgen Piek
- Department of Neurosurgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
29
|
Fabbri E, Brognara E, Montagner G, Ghimenton C, Eccher A, Cantù C, Khalil S, Bezzerri V, Provezza L, Bianchi N, Finotti A, Borgatti M, Moretto G, Chilosi M, Cabrini G, Gambari R. Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer 2015; 15:661. [PMID: 26449498 PMCID: PMC4598972 DOI: 10.1186/s12885-015-1659-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Different strategies have been proposed to target neoangiogenesis in gliomas, besides those targeting Vascular Endothelial Growth Factor (VEGF). The chemokine Interleukin-8 (IL-8) has been shown to possess both tumorigenic and proangiogenic properties. Although different pathways of induction of IL-8 gene expression have been already elucidated, few data are available on its post-transcriptional regulation in gliomas. METHODS Here we investigated the role of the microRNA miR-93 on the expression levels of IL-8 and other pro-inflammatory genes by RT-qPCR and Bio-Plex analysis. We used different disease model systems, including clinical samples from glioma patients and two glioma cell lines, U251 and T98G. RESULTS IL-8 and VEGF transcripts are highly expressed in low and high grade gliomas in respect to reference healthy brain; miR-93 expression is also increased and inversely correlated with transcription of IL-8 and VEGF genes. Computational analysis showed the presence of miR-93 consensus sequences in the 3'UTR region of both VEGF and IL-8 mRNAs, predicting possible interaction with miR-93 and suggesting a potential regulatory role of this microRNA. In vitro transfection with pre-miR-93 and antagomiR-93 inversely modulated VEGF and IL-8 gene expression and protein release when the glioma cell line U251 was considered. Similar data were obtained on IL-8 gene regulation in the other glioma cell line analyzed, T98G. The effect of pre-miR-93 and antagomiR-93 in U251 cells has been extended to the secretion of a panel of cytokines, chemokines and growth factors, which consolidated the concept of a role of miR-93 in IL-8 and VEGF gene expression and evidenced a potential regulatory role also for MCP-1 and PDGF (also involved in angiogenesis). CONCLUSION In conclusion, our results suggest an increasing role of miR-93 in regulating the level of expression of several genes involved in the angiogenesis of gliomas.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Eleonora Brognara
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Giulia Montagner
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Claudio Ghimenton
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Albino Eccher
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Cinzia Cantù
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Susanna Khalil
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Valentino Bezzerri
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Lisa Provezza
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| | - Giuseppe Moretto
- Department of Neurosciences, University-Hospital of Verona, P.le A Stefani n.1, Verona, 37126, Italy.
| | - Marco Chilosi
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Giulio Cabrini
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University-Hospital of Verona, P.le A Stefani n.1, 37126, Verona, Italy.
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| |
Collapse
|
30
|
Guo M, Zhang X, Wang G, Sun J, Jiang Z, Khadarian K, Yu S, Zhao Y, Xie C, Zhang K, Zhu M, Shen H, Lin Z, Jiang C, Shen J, Zheng Y. miR-603 promotes glioma cell growth via Wnt/β-catenin pathway by inhibiting WIF1 and CTNNBIP1. Cancer Lett 2015; 360:76-86. [PMID: 25681036 DOI: 10.1016/j.canlet.2015.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common and deadly type of brain tumor. In spite of progressive treatments, patient prognosis has not improved significantly. MicroRNAs are considered promising candidates for glioma therapy. MiR-603 was found overexpressed in both glioma tissues and cell lines. MiR-603 promoted cell proliferation, cell cycle progression and neurosphere formation. Conversely, inhibition of miR-603 remarkably reduced these effects. We confirmed that WIF1 and CTNNBIP1 are bona fide targets of miR-603. The negative correlation between miR-603 and these molecules' expression was shown by Pearson correlation in 50 primary glioma tissue samples. Furthermore, overexpression of miR-603 promoted nuclear β-catenin levels and TOPflash luciferase activity, indicating that miR-603 activates the Wnt/β-catenin signaling pathway. Our in vivo results confirmed the positive role of miR-603 in glioma development. We demonstrate that miR-603 regulates glioma development via its WIF1 and CTNNBIP1 targets, which suggests that miR-603 may be a promising candidate for therapeutic applications in glioma treatment.
Collapse
Affiliation(s)
- Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xiaoming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guangzhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Medical Service Management, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Kevork Khadarian
- Dental School, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Kelvin Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | - Minwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jia Shen
- Dental School, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yongri Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
31
|
Novel role for cyclophilin A in regulation of chondrogenic commitment and endochondral ossification. Mol Cell Biol 2015; 35:2119-30. [PMID: 25870110 DOI: 10.1128/mcb.01414-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/01/2015] [Indexed: 11/20/2022] Open
Abstract
Recent studies showed that cyclophilin A (CypA) promotes NF-κB/p65 nuclear translocation, resulting in enhanced NF-κB activity and altered expression of its target genes, such as the Sox9 transcriptional factor, which plays a critical role in chondrogenic differentiation and endochondral ossification. In this report, we unveil the role of CypA in signal-induced chondrogenic differentiation and endochondral ossification. Expression levels of the chondrogenic differentiation markers and transcriptional regulators Sox9 and Runx2 were all significantly lower in CypA knockdown chondrogenic cells than in wild-type cells, indicating that CypA plays a functional role in chondrogenic differentiation. In vitro differentiation studies using micromass cultures of mouse limb bud cells further supported the conclusion that CypA is needed for chondrogenic differentiation. Newborn CypA-deficient pups double stained with alcian blue and alizarin red exhibited generalized, pronounced skeletal defects, while high-resolution micro-computed tomography (microCT) analyses of the femurs and lumbar vertebrae revealed delayed or incomplete endochondral ossification. Comparative histology and immunohistochemistry (IHC) analyses further verified the effects of CypA deficiency on chondrogenic differentiation. Our results provide evidence for the important contribution of CypA as a pertinent component acting through NF-κB-Sox9 in regulation of chondrogenesis signaling. These findings are important to better understand signal-induced chondrogenesis of chondrogenic progenitors in physiological and pathophysiological contexts.
Collapse
|
32
|
Secreted cyclophilin A mediates G1/S phase transition of cholangiocarcinoma cells via CD147/ERK1/2 pathway. Tumour Biol 2014; 36:849-59. [DOI: 10.1007/s13277-014-2691-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022] Open
|
33
|
Sun S, Guo M, Zhang JB, Ha A, Yokoyama KK, Chiu RH. Cyclophilin A (CypA) interacts with NF-κB subunit, p65/RelA, and contributes to NF-κB activation signaling. PLoS One 2014; 9:e96211. [PMID: 25119989 PMCID: PMC4130471 DOI: 10.1371/journal.pone.0096211] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/04/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Peptidyl-prolyl isomerase cyclophilin A (CypA) plays important roles in signaling, protein translocation, inflammation, and cancer formation. However, little is known about the mechanisms by which CypA exerts its effects. C57BL/6 Ppia (encoding CypA)-deficient embryonic fibroblasts show reduced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), the p65/RelA subunit, suggesting that CypA may mediate modulation of NF-κB activity to exert its biological effects. METHODOLOGY Western blotting and qRT-PCR analyses were used to evaluate the association of CypA deficiency with reduced activation of NF-κB/p65 at the protein level. GST pull-down and co-immunoprecipitation were used to examine interactions between CypA and p65/RelA. Truncation mutants and site-directed mutagenesis were used to determine the sequences of p65/RelA required for interactions with CypA. Enhancement of p65/RelA nuclear translocation by CypA was assessed by co-transfection and immunofluorescent imaging. Treatment of cells with cycloheximide that were harvested at various time points for Western blot analyses was carried out to evaluate p65/RelA protein stability. The functional activity of NF-κB was assessed by electrophoretic mobility-shift assays (EMSA), luciferase assays, and changes in expression levels of target genes. RESULTS GST pull-down assays in vitro and co-immunoprecipitation analyses in vivo provided evidence for protein-protein interactions. These interactions were further supported by identification of a CypA-binding consensus-like sequence within NF-κB subunit p65 at the N-terminal 170-176 amino acid residues. Significantly, CypA provided stability for NF-κB p65 and promoted NF-κB p65 nuclear translocation, resulting in increased nuclear accumulation and enhanced NF-κB activity. CONCLUSIONS Our findings revealed important mechanisms that regulate NF-κB activation, and offer new insights into the role of CypA in aberrant activation of NF-κB-mediated signaling for altered expression of its target genes, resulting in pathological effects in various diseases.
Collapse
Affiliation(s)
- Shan Sun
- Dental and Craniofacial Research Institute and School of Dentistry, University of California, Los Angeles, CA, United States of America
| | - Mian Guo
- Dental and Craniofacial Research Institute and School of Dentistry, University of California, Los Angeles, CA, United States of America
- Department of Neurosurgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilonjiang, China
| | - James Beiji Zhang
- Dental and Craniofacial Research Institute and School of Dentistry, University of California, Los Angeles, CA, United States of America
| | - Albert Ha
- Dental and Craniofacial Research Institute and School of Dentistry, University of California, Los Angeles, CA, United States of America
| | | | - Robert H. Chiu
- Dental and Craniofacial Research Institute and School of Dentistry, University of California, Los Angeles, CA, United States of America
- Surgical Oncology & Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States of America
| |
Collapse
|
34
|
Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions. Proc Natl Acad Sci U S A 2014; 111:6521-6. [PMID: 24733941 DOI: 10.1073/pnas.1404462111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand how pairwise cellular interactions influence cellular architectures, we measured the levels of functional proteins associated with EGF receptor (EGFR) signaling in pairs of U87EGFR variant III oncogene receptor cells (U87EGFRvIII) at varying cell separations. Using a thermodynamics-derived approach we analyzed the cell-separation dependence of the signaling stability, and identified that the stable steady state of EGFR signaling exists when two U87EGFRvIII cells are separated by 80-100 μm. This distance range was verified as the characteristic intercellular separation within bulk cell cultures. EGFR protein network signaling coordination for the U87EGFRvIII system was lowest at the stable state and most similar to isolated cell signaling. Measurements of cultures of less tumorigenic U87PTEN cells were then used to correctly predict that stable EGFR signaling occurs for those cells at smaller cell-cell separations. The intimate relationship between functional protein levels and cellular architectures explains the scattered nature of U87EGFRvIII cells relative to U87PTEN cells in glioblastoma multiforme tumors.
Collapse
|
35
|
Yan Z, Xu L, Han J, Wu YJ, Wang W, Yao W, Wu W. Transcriptional and posttranscriptional regulation and endocytosis were involved in zinc oxide nanoparticle-induced interleukin-8 overexpression in human bronchial epithelial cells. Cell Biol Toxicol 2014; 30:79-88. [DOI: 10.1007/s10565-014-9270-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
36
|
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2013; 49:1212-44. [PMID: 24271659 DOI: 10.1007/s12035-013-8593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor with a grave prognosis. Recurrence is inevitable even with maximal surgical resection, in large part because GBM is a highly invasive tumor. Invasiveness also contributes to the failure of multiple cornerstones of GBM therapy, including radiotherapy, temozolomide chemotherapy, and vascular endothelial growth factor blockade. In recent years there has been significant progress in the identification of protein biomarkers of invasive phenotype in GBM. In this article, we comprehensively review the literature and survey a broad spectrum of biomarkers, including proteolytic enzymes, extracellular matrix proteins, cell adhesion molecules, neurodevelopmental factors, cell signaling and transcription factors, angiogenic effectors, metabolic proteins, membrane channels, and cytokines and chemokines. In light of the marked variation seen in outcomes in GBM patients, the systematic use of these biomarkers could be used to form a framework for better prediction, prognostication, and treatment selection, as well as the identification of molecular targets for further laboratory investigation and development of nascent, directed therapies.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611-2911, USA
| | | | | | | |
Collapse
|
37
|
Yeung YT, McDonald KL, Grewal T, Munoz L. Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol 2013; 168:591-606. [PMID: 23062197 PMCID: PMC3579281 DOI: 10.1111/bph.12008] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 12/14/2022] Open
Abstract
Despite considerable amount of research, the poor prognosis of patients diagnosed with glioblastoma multiforme (GBM) critically needs new drug development to improve clinical outcomes. The development of an inflammatory microenvironment has long been considered important in the initiation and progression of glioblastoma; however, the success of developing therapeutic approaches to target inflammation for GBM therapy has yet been limited. Here, we summarize the accumulating evidence supporting a role for inflammation in the pathogenesis of glioblastoma, discuss anti-inflammatory targets that could be relevant for GBM treatment and provide a perspective on the challenges faced in the development of drugs that target GBM inflammation. In particular, we will review the function of IL-1β, IL-6 and IL-8 as well as the potential of kinase inhibitors targeting key players in inflammatory cell signalling cascades such as JAK, JNK and p38 MAPK.
Collapse
Affiliation(s)
- Y T Yeung
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
38
|
Kast RE, Lefranc F, Karpel-Massler G, Halatsch ME. Why dapsone stops seizures and may stop neutrophils' delivery of VEGF to glioblastoma. Br J Neurosurg 2012; 26:813-7. [PMID: 22551309 DOI: 10.3109/02688697.2012.674577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lopez-Gomez et al. recently published remarkable but mechanistically unexplained empirical evidence that the old antibiotic dapsone has antiepileptic activity. We addressed the question "Why should a sulfone antibiotic reduce seizures?". We report here our conclusions based on data from past studies that seizures are associated with elevated interleukin-8 (IL-8) and that dapsone inhibits IL-8 release and function in several different clinical and experimental contexts. Diverse CNS insults cause an increase in CNS IL-8. Thus, the pro-inflammatory environment generated by increase IL-8 leads to a lower seizure threshold. Together this evidence indicates dapsone exerts anti-seizure activity by diminishing IL-8 signalling. Since IL-8 is clearly upregulated in glioblastoma and contributes to the florid angiogenesis of that disease, and since interference with IL-8 function has been shown to inhibit glioblastoma invasion and growth in several experimental models, and dapsone has been repeatedly been shown to clinically inhibit IL-8 function when used to treat human neutrophilic dermatoses, we believe that dapsone thereby reduces seizures by countering IL-8 function and may similarly retard glioblastoma growth by such anti-IL-8 function.
Collapse
Affiliation(s)
- R E Kast
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|
39
|
Park HS, Park KI, Nagappan A, Lee DH, Kang SR, Kim JA, Kim EH, Han DY, Kim GS. Proteomic Analysis of Effects on Natural Herb Additive Containing Immunoglobulin Yolksac (IgY) in Pigs. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:477-88. [DOI: 10.1142/s0192415x1100897x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thirty male pigs were infected orally with E. coli and Salmonella typhimurium, and divided into a control group and two additive groups to determine the effect of an additive mixture on the changes in protein expression. The pigs were given a food supplemented with a natural herbal additive containing immunoglobulin yolksac (IgY) at concentrations of 0.5% or 1%. On the 1st day and after eight weeks of feeding, the body weight gain, food intake and serum GOT/GPT levels were examined. The GOT/GPT levels on the 1st day were similar in the three groups. However, after eight weeks of feeding, the GOT level was significantly lower in the additive treatment groups (0.5% and 1.0%). In addition, the changes in the spleen proteome as a response to the herbal additive were examined using two-dimensional polyacrylamide gel electrophoresis. A total of 31 differentially expressed protein spots were identified by comparing the protein profiles of the control and additive treated porcine spleens. Finally, 19 proteins were detected by MALDI-TOF/MS. Overall, the proteins detected are involved in a range of biological process, such as metabolic processes, biological processes, transport, carbohydrate metabolic processes, generation of precursors and energy. In conclusion, these results support of the hypothesis that a natural herbal additive containing IgY can affect the immune regulation system and reduce the stress of microbial infections.
Collapse
Affiliation(s)
- Hyeon-Soo Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Kwang-Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Arulkumar Nagappan
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Do-Hoon Lee
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Sang-Rim Kang
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Jin-A Kim
- Korea National Animal Research Resource Center, Republic of Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Gazwa, Jinju 660-701, Republic of Korea
| | - Dae-Yong Han
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| |
Collapse
|
40
|
Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW. A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 2011; 33:312-9. [PMID: 22159219 DOI: 10.1093/carcin/bgr289] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glioma cells in situ are surrounded by microglia, suggesting the potential of glioma-microglia interactions to produce various outcomes. As chemokines are important mediators of cell-cell communication, we sought first to identify commonly expressed chemokines in 16 human glioma lines. We found CCL2 (macrophage chemoattractant protein-1) messenger RNA to be expressed by the majority of glioma lines. However, these lines did not express the CCL2 receptor, CCR2, which was found on microglia. Next, we overexpressed CCL2 in the U87 glioma line, which has low basal level of CCL2, to investigate the hypothesis that glioma-secreted CCL2 interacts with microglia to affect glioma growth. Stable clones with 10- to 12-fold elevation of CCL2 have similar growth rate and invasive capacity as vector controls when cultured in isolation. However, in coculture with microglia in a three-dimensional collagen gel matrix, the invasiveness of CCL2-overexpressing clones was increased. Gene array analyses were then undertaken and they revealed that interleukin (IL)-6 was consistently increased in the coculture. Recombinant IL-6 enhanced the invasiveness of glioma cells when these were cultured alone, whereas a neutralizing antibody to IL-6 attenuated the microglia-stimulated glioma invasiveness. Finally, we found that human glioma specimens in situ contained IL-6 immunoreactivity that was expressed on CD68+ cells. This study has uncovered a mechanism by which glioma cells exploit microglia for increased invasiveness. Specifically, glioma-derived CCL2 acts upon CCR2-bearing microglia, which then produces IL-6 to stimulate gliomas. The CCL2/CCR2/IL-6 loop is a potential therapeutic target for the currently incurable malignant gliomas.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Obchoei S, Weakley SM, Wongkham S, Wongkham C, Sawanyawisuth K, Yao Q, Chen C. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer 2011; 10:102. [PMID: 21871105 PMCID: PMC3173387 DOI: 10.1186/1476-4598-10-102] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/26/2011] [Indexed: 12/01/2022] Open
Abstract
Background Cyclophilin A (CypA) expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of CypA in liver fluke-associated cholangiocarcinoma (CCA) are not presently known. In this study, we investigated the expression of CypA in CCA tumor tissues and CCA cell lines as well as regulation mechanisms of CypA in tumor growth using CCA cell lines. Methods CypA expression was determined by real time RT-PCR, Western blot or immunohistochemistry. CypA silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell proliferation was assessed using MTS assay or Ki-67 staining. The effect of silencing CypA on CCA tumor growth was determined in nude mice. The effect of CypA knockdown on ERK1/2 activation was assessed by Western blot. Results CypA was upregulated in 68% of CCA tumor tissues. Silencing CypA significantly suppressed cell proliferation in several CCA cell lines. Likewise, inhibition of CypA peptidyl-prolyl cis-trans isomerase (PPIase) activity using cyclosporin A (CsA) decreased cell proliferation. In contrast, overexpression of CypA resulted in 30% to 35% increases in proliferation of CCA cell lines. Interestingly, neither silence nor overexpression of CypA affected cell proliferation of a non-tumor human cholangiocyte cell line, MMNK1. Suppression of CypA expression attenuated ERK1/2 activity in CCA M139 cells by using both transient and stable knockdown methods. In the in vivo study, there was a 43% reduction in weight of tumors derived from CypA-silenced CCA cell lines compared with control vector CCA tumors in mice; these tumors with stable CypA silencing showed a reduced cell proliferation. Conclusions CypA is upregulated in majority of CCA patients' tissues and confers a significant growth advantage in CCA cells. Suppression of CypA expression decreases proliferation of CCA cell lines in vitro and reduces tumor growth in the nude mouse model. Inhibition of CypA activity also reduces CCA cell proliferation. The ERK1/2 pathway may be involved in the CypA-mediated CCA cell proliferation. Thus, CypA may represent an important new therapeutic target for liver fluke-associated CCA.
Collapse
Affiliation(s)
- Sumalee Obchoei
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Takapoo M, Chamseddine AH, Bhalla RC, Miller FJ. Glutathione peroxidase-deficient smooth muscle cells cause paracrine activation of normal smooth muscle cells via cyclophilin A. Vascul Pharmacol 2011; 55:143-8. [PMID: 21782974 DOI: 10.1016/j.vph.2011.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/31/2011] [Accepted: 07/06/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Reduced activity of the antioxidant glutathione peroxidase-1 (GPx1) correlates with increased risk of cardiovascular events in patients with coronary artery disease. However, it remains unclear whether this imbalance in antioxidant capacity directly contributes to activation of vascular cells. In response to oxidative stress, smooth muscle cells (SMCs) secrete the pro-inflammatory immunomodulator cyclophilin A (CyPA). We hypothesized that reduction in vascular cell GPx1 activity causes secretion of CyPA and paracrine-mediated activation of NF-κB and proliferation of SMCs. METHODS/RESULTS Using a murine model of GPx1 deficiency (GPx1(+/-)), we found elevated levels of hydrogen peroxide levels and increased secretion of CyPA in both arterial segments and cultured SMCs as compared to wild type (WT). Conditioned media from GPx1(+/-) SMCs caused increased NF-κB activation of quiescent WT SMCs, and this was inhibited by the antioxidant N-acetyl-l-cysteine or by cyclosporine A (CsA). In co-culture experiments, SMCs derived from GPx1(+/-) aorta caused increased proliferation of WT SMCs, which was also inhibited by CsA. CONCLUSIONS Reduction in vascular cell GPx1 activity and the associated increase in oxidative stress cause CyPA-mediated paracrine activation of SMCs. These findings identify a novel mechanism by which an imbalance in antioxidant capacity may contribute to vascular disease.
Collapse
Affiliation(s)
- Maysam Takapoo
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | | | | | | |
Collapse
|