1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Lee HH, Chuang HY, Lin K, Yeh CT, Wang YM, Chi HC, Lin KH. RNASE4 promotes malignant progression and chemoresistance in hypoxic glioblastoma via activation of AXL/AKT and NF-κB/cIAPs signaling pathways. Am J Cancer Res 2024; 14:4320-4336. [PMID: 39417186 PMCID: PMC11477813 DOI: 10.62347/udbj5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous in vitro and in vivo functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes. Functional assays corroborated the pivotal influences of RNASE4 on key tumorigenic processes such as cell proliferation, migration, invasion, stemness properties and temozolomide (TMZ) resistance. Further, Gene Set Enrichment Analysis (GSEA) illuminated the involvement of RNASE4 in modulating epithelial-mesenchymal transition (EMT) via activation of AXL, AKT and NF-κB signaling pathways. Furthermore, recombinant human RNASE4 (hRNASE4)-mediated NF-κB activation through IκBα phosphorylation and degradation could result in the upregulation of inhibitors of apoptosis proteins (IAPs), such as cIAP1, cIAP2, and SURVIVIN. Notably, treating RNASE4-induced TMZ-resistant cells with the SURVIVIN inhibitor YM-155 significantly restored cellular sensitivity to TMZ therapy. Herein, this study positions RNASE4 as a potent prognostic biomarker and therapeutic target, offering new insights into molecular pathogenesis of GBM and new avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Dizziness and Balance Disorder Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
- Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
| | - Hao-Yu Chuang
- School of Medicine, China Medical UniversityTaichung 40447, Taiwan
- Translational Cell Therapy Center, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, China Medical University Beigang HospitalBeigang Township, Yunlin 65152, Taiwan
| | - Kent Lin
- Northern Clinical School, Faculty of Medicine and Health, The University of SydneyNSW 2006, Australia
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
| | - Yi-Min Wang
- Department of Neurosurgery, An Nan Hospital, China Medical UniversityTainan 709204, Taiwan
| | - Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404333, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 40447, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 330, Taiwan
| |
Collapse
|
3
|
Kobyakova MI, Senotov AS, Krasnov KS, Lomovskaya YV, Odinokova IV, Kolotova AA, Ermakov AM, Zvyagina AI, Fadeeva IS, Fetisova EI, Akatov VS, Fadeev RS. Pro-Inflammatory Activation Suppresses TRAIL-induced Apoptosis of Acute Myeloid Leukemia Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:431-440. [PMID: 38648763 DOI: 10.1134/s0006297924030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 04/25/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture. In this study, we investigated mechanisms of this phenomenon using Western blot analysis, caspase 3 enzymatic activity analysis, quantitative reverse transcription-PCR, and flow cytometry. The results showed that the increased resistance to the TRAIL-induced cell death of AML THP-1 cells during their pro-inflammatory activation is associated with the decrease in the surface expression of the proapoptotic receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, as well as with the increased content of members of the IAPs family - Livin and cIAP2. The results of this article open up new insights into the role of inflammation in formation of the resistance of AML cells to the action of mediators of antitumor immunity, in particular TRAIL.
Collapse
Affiliation(s)
- Margarita I Kobyakova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630060, Russia
| | - Anatoly S Senotov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina V Odinokova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anastasia A Kolotova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Artem M Ermakov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alena I Zvyagina
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina S Fadeeva
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena I Fetisova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir S Akatov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
4
|
Wang R, Wang Y, Liu X, Liu M, Sun L, Pan X, Hu H, Jiang B, Zou Y, Liu Q, Gong Y, Wang M, Sun G. Anastasis enhances metastasis and chemoresistance of colorectal cancer cells through upregulating cIAP2/NFκB signaling. Cell Death Dis 2023; 14:388. [PMID: 37391410 PMCID: PMC10313691 DOI: 10.1038/s41419-023-05916-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Chemotherapy is a common strategy to treat cancer. However, acquired resistance and metastasis are the major obstacles to successful treatment. Anastasis is a process by which cells survive executioner caspase activation when facing apoptotic stress. Here we demonstrate that colorectal cancer cells can undergo anastasis after transient exposure to chemotherapeutic drugs. Using a lineage tracing system to label and isolate cells that have experienced executioner caspase activation in response to drug treatment, we show that anastasis grants colorectal cancer cells enhanced migration, metastasis, and chemoresistance. Mechanistically, treatment with chemotherapeutic drugs induces upregulated expression of cIAP2 and activation of NFκB, which are required for cells to survive executioner caspase activation. The elevated cIAP2/NFκB signaling persists in anastatic cancer cells to promote migration and chemoresistance. Our study unveils that cIAP2/NFκB-dependent anastasis promotes acquired resistance and metastasis after chemotherapy.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohe Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Menghao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Biswas DD, Martin RK, Brown LN, Mockenhaupt K, Gupta AS, Surace MJ, Tharakan A, Yester JW, Bhardwaj R, Conrad DH, Kordula T. Cellular inhibitor of apoptosis 2 (cIAP2) restricts neuroinflammation during experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:158. [PMID: 35718775 PMCID: PMC9208101 DOI: 10.1186/s12974-022-02527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown.
Methods We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. Results cIAP2−/− mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. Conclusions Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02527-6.
Collapse
Affiliation(s)
- Debolina D Biswas
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - LaShardai N Brown
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela S Gupta
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael J Surace
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Anuj Tharakan
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jessie W Yester
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Reetika Bhardwaj
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Tang Z, Dokic I, Knoll M, Ciamarone F, Schwager C, Klein C, Cebulla G, Hoffmann DC, Schlegel J, Seidel P, Rutenberg C, Brons S, Herold-Mende C, Wick W, Debus J, Lemke D, Abdollahi A. Radioresistance and Transcriptional Reprograming of Invasive Glioblastoma Cells. Int J Radiat Oncol Biol Phys 2021; 112:499-513. [PMID: 34534627 DOI: 10.1016/j.ijrobp.2021.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/13/2021] [Accepted: 09/06/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Infiltrative growth pattern is a hallmark of glioblastoma (GBM). Radiation therapy aims to eradicate microscopic residual GBM cells after surgical removal of the visible tumor bulk. However, in-field recurrences remain the major pattern of therapy failure. We hypothesized that the radiosensitivity of peripheral invasive tumor cells (peri) may differ from the predominantly investigated tumor bulk. METHODS AND MATERIALS Invasive GBM populations were generated via debulking of the visible tumor core and serial orthotopic transplantation of peri cells, and sustained proinvasive phenotype of peri cells was confirmed in vitro by scratch assay and time lapse imaging. In parallel, invasive GBM cells were selected by transwell assay and from peri cells of patient-derived 3-dimensional spheroid cultures. Transcriptome analysis deciphered a GBM invasion-associated gene signature, and functional involvement of key pathways was validated by pharmacologic inhibition. RESULTS Compared with the bulk cells, invasive GBM populations acquired a radioresistant phenotype characterized by increased cell survival, reduced cell apoptosis, and enhanced DNA double-strand break repair proficiency. Transcriptome analysis revealed a reprograming of invasive cells toward augmented activation of epidermal growth factor receptor- and nuclear factor-κB-related pathways, whereas metabolic processes were downregulated. An invasive GBM score derived from this transcriptional fingerprint correlated well with patient outcome. Inhibition of epidermal growth factor receptor and nuclear factor-κB signaling resensitized invasive cells to irradiation. Invasive cells were eradicated with similar efficacy by particle therapy with carbon ions. CONCLUSIONS Our data indicate that invasive tumor cells constitute a phenotypically distinct and highly radioresistant GBM subpopulation with prognostic impact that may be vulnerable to targeted therapy and carbon ions.
Collapse
Affiliation(s)
- Zili Tang
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Ivana Dokic
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Maximilian Knoll
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Federica Ciamarone
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Christian Schwager
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Carmen Klein
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Gina Cebulla
- German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dirk C Hoffmann
- German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julian Schlegel
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Philipp Seidel
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Christiane Rutenberg
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Christel Herold-Mende
- German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Dieter Lemke
- German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
| | - Amir Abdollahi
- Division of Molecular & Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Faculty of Medicine (MFHD) of the Heidelberg University, and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; CCU Translational Radiation Oncology, CCU Radiation Oncology, CCU Neurooncology, National Center for Tumor Diseases (NCT) German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Departments of Neurology, Neurosurgery and Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
| |
Collapse
|
7
|
Xu W, Hu J, Liu W, Zhu Q, Gong X, Zhu P, Yang X, Xia R, Xue R. Remimazolan inhibits glioma cell growth and induces apoptosis through down-regulation of NF-κB pathway. IUBMB Life 2020; 73:341-348. [PMID: 33368968 DOI: 10.1002/iub.2433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Glioma alone accounts for 30% of various kinds of primary brain tumors and is the highest cause of mortality associated with intracranial malignant cancers. In the present study, Suzuki-coupling products of remimazolan were synthesized and investigated for anti-neoplastic property against glioma cells. RFMSP treatment for 48 hr suppressed viabilities of U-118MG and U87MG cells in dose dependent manner. Exposure of primary astrocytes to RFMSP at 2-20 μM concentration range minimally affected viabilities. RFMSP treatment at 5 μM doses raised apoptotic cell count to 53.8 ± 2.3% and 48.2 ± 1.8%, respectively in U-118MG and U87MG cells. Treatment of the cells with RFMSP induced nuclear condensation and subsequent fragmentation. In RFMSP treated U-118MG and U87MG cells, NF-κB p65 expression was markedly suppressed compared to the control cells. Additionally, RFMSP treatment decreased the ratio of nuclear to total NF-κB p65 level in both the cell lines. Treatment of U-118MG and U87MG cells with 5 μM RFMSP for 48 hr caused a marked down-regulation in survivin and XIAP levels. Treatment with RFMSP promoted Bax expression and suppressed Bcl-2 level. The caspase-9 and -3 activation was markedly induced by RFMSP treatment in U-118MG and U87MG cells compared to the control cells. In summary, the RFMSP synthesized by Suzuki-coupling of RFMSP inhibited glioma cell survival via DNA damage mediated apoptosis. The anti-glioma potential of RFMSP involved down-regulation of NF-κB expression, targeted survivin & XIAP levels and induced caspase activation in glioma cells. Therefore, RFMSP may be studied further as therapeutic agent for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Xu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jiamei Hu
- Department of Obstetrics, The Third People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Weiwei Liu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Qiong Zhu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xuan Gong
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Pengpeng Zhu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao Yang
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Rui Xia
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Rui Xue
- Department of Anesthesiology, People's Hospital of Shiyan, People's Hospital affiliated to Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
8
|
Feng K, Zhang J, Zhang Y, Jiang T, Lv Z, Yu M. Simultaneous determination of FL118 and W34 in rat Blood by LC-MS/MS: Application to pharmacokinetic studies. Biomed Chromatogr 2020; 34:e4944. [PMID: 32639034 DOI: 10.1002/bmc.4944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/03/2020] [Accepted: 07/06/2020] [Indexed: 11/06/2022]
Abstract
W34 is a prodrug of FL118, and it can be converted to FL118 via a hydrolysis reaction. In this report, a highly sensitive LC-MS/MS method using a C18 column was validated and used for the simultaneous determination of W34 and FL118 in rat blood. A stepwise gradient elution with 0.1% formic acid in water and acetonitrile was employed. The assays were linear over a concentration range of 0.50-50.0 ng/ml for both W34 and FL118. The accuracy of the validation method ranged from 89.74 to 98.94% for W34 and from 88.61 to 94.60% for FL118. The precision was within 7.15% for W34 and 9.63% for FL118. Extraction recoveries of W34 were 94.56-100.49 and 87.67-106.32% for FL118. No significant matrix effects for both W34 and FL118 were observed in blood. The assay has been successfully applied to biological samples obtained from a stability and pharmacokinetic study of W34 and FL118.
Collapse
Affiliation(s)
- Kun Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yixuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China.,Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao, China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China.,Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China.,Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao, China
| |
Collapse
|
9
|
Yuan L, Wang F, Zhang T, Zhang Y, Pan H, Lv G, Zhang B. Inhibition of glioma cell viability by jatrophone via NF-κB down-regulation and apoptosis inhibitor up-regulation. Arch Med Sci 2020; 21:224-232. [PMID: 40190312 PMCID: PMC11969555 DOI: 10.5114/aoms.2020.94439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/23/2020] [Indexed: 04/09/2025] Open
Abstract
Introduction The present study evaluated the pro-survival signaling pathway inhibition potential of jatrophone in glioblastoma cells with the intention to develop effective treatment for glioblastoma. Material and methods Changes in proliferation of cells were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological changes were evaluated by electron microscopy and apoptosis by flow cytometry. Results The proliferative potential of glioma cells showed significant reduction on treatment with jatrophone. The shrinkage and detachment from the flask surface was prominent in glioma cells on treatment with 15 µM jatrophone. Treatment with jatrophone (4.8 µM) for 72 h increased apoptosis in U87MG and A172 cells. The immunocytochemistry showed a significant decrease in the level of intracellular NF-κB p65 in glioma cells on treatment with jatrophone. Jatrophone treatment significantly suppressed nuclear NF-κB p65/total NF-κB p65 in glioma cells. Treatment with jatrophone suppressed levels of survivin, XIAP and Bcl-2 in glioma cells relative to control. The Bax level in glioma cells was enhanced markedly relative to control on treatment with jatrophone. Activation of caspase-9 and -3 in glioma cells was markedly increased on treatment with jatrophone. Conclusions Jatrophone acts as inhibitory agent for glioblastoma cell proliferation and mediator of apoptosis. Therefore, jatrophone can be used as a therapeutic agent for glioblastoma treatment.
Collapse
Affiliation(s)
- Lei Yuan
- Postgraduate Training Base of Rocket Army Special Medical Center of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fei Wang
- Department of Neurosurgery, Rocket Army Medical Center, Beijing, China
| | - Ting Zhang
- Postgraduate Training Base of Rocket Army Special Medical Center of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Neurosurgery, Rocket Army Medical Center, Beijing, China
| | - Yiming Zhang
- Department of Neurosurgery, Rocket Army Medical Center, Beijing, China
| | - Hong Pan
- Department of Neurosurgery, Rocket Army Medical Center, Beijing, China
| | - Guoguang Lv
- Department of Neurosurgery, Rocket Army Medical Center, Beijing, China
| | - Baozhong Zhang
- Department of Neurosurgery, Rocket Army Medical Center, Beijing, China
| |
Collapse
|
10
|
Ramaswamy P, Goswami K, Dalavaikodihalli Nanjaiah N, Srinivas D, Prasad C. TNF-α mediated MEK-ERK signaling in invasion with putative network involving NF-κB and STAT-6: a new perspective in glioma. Cell Biol Int 2019; 43:1257-1266. [PMID: 30839135 DOI: 10.1002/cbin.11125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumor with poor prognosis. Invasion involves pro-inflammatory cytokines and major signaling hubs. Tumor necrosis factor-α (TNF-α) acts as a master switch in establishing an intricate link between inflammation and cancer. The present study attempted to explore the possible implication of MAPK extracellular signaling-regulated kinase kinase (MEK)-extracellular signaling-regulated kinase (ERK) signaling pathway and expression of nuclear factor-κB (NF-κB), signal transducers and activators of transcription-6 (STAT-6), ERK, and phosphorylated-ERK (p-ERK) signaling proteins in TNF-α microenvironment. U0126 and PD98059 were used to inhibit the MEK-ERK1/2 pathway. TNF-α stimulation enhanced invasion in U87MG, U251MG and patient-derived primary glioma cells, whereas cell viability was not altered. Matrix metalloproteinase-2 (MMP-2) activity was increased only in U251MG glioma cells. These data suggest that TNF-α microenvironment plays an important role in the invasion of U251MG, U87MG, and patient-derived primary glioma cells, without any cytotoxic effect. The MMP-2 activity is differentially regulated by TNF-α stimulation in these cells. TNF-α stimulation upregulated the protein expression of ERK-1, ERK-2 and also increased the level of p-ERK1/2. TNF-α stimulation further upregulated the expression of NF-κB1, STAT-6 in tandem with Ras-MEK signaling system in U87MG cells, which emphasized the possible involvement of these signaling hubs in the glioma microenvironment. MEK-ERK inhibitors significantly attenuated the invasion of U87MG cells mediated by the TNF-α stimulation, probably through their inhibitory impact on p-ERK1/2 and ERK-2. This study provides the possible rationale of invasion by glioma cells in a TNF-α-induced pro-inflammatory milieu, which involves direct role of MEK-ERK signaling, with possible implication of NF-κB and STAT-6.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, 492099, India
| | | | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - Chandrajit Prasad
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| |
Collapse
|
11
|
Wang J, Hjelmeland AB, Nabors LB, King PH. Anti-cancer effects of the HuR inhibitor, MS-444, in malignant glioma cells. Cancer Biol Ther 2019; 20:979-988. [PMID: 30991885 DOI: 10.1080/15384047.2019.1591673] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma is a highly malignant and typically fatal tumor of the central nervous system. The tumor is characterized by marked cellular and molecular heterogeneity, including a subpopulation of brain tumor initiating cells (BTICs) that are highly resistant to radiation and chemotherapy. We previously reported that the RNA-binding protein HuR is: (1) overexpressed in glioblastoma, (2) necessary for tumor growth in vivo, and (3) a positive regulator of tumor-promoting genes in glioblastoma. These findings provide strong evidence that HuR might be a viable therapeutic target in glioblastoma. In this report, we investigated the effects of MS-444, a small molecule inhibitor of HuR, in xenograft-derived human glioblastoma cells and BTICs. We found that MS-444 treatment of glioblastoma cells resulted in loss of viability and induction of apoptosis, with evidence implicating death receptor 5. BTICs were particularly sensitive to MS-444. At sub-lethal doses, MS-444 attenuated invasion of glioblastoma cells and BTICs in a transwell model. At the molecular level, MS-444 treatment led to an attenuation of mRNAs in different tumor promoting pathways including angiogenesis, immune evasion and suppression of apoptosis. Although cytoplasmic HuR was reduced with MS-444 treatment, the attenuation of mRNAs could not be explained by RNA destabilization. In summary, this report provides proof of concept that small molecule inhibition of HuR could be a viable approach for treatment of glioblastoma.
Collapse
Affiliation(s)
- Jiping Wang
- a Departments of Neurology , University of Alabama , Birmingham , AL
| | - Anita B Hjelmeland
- b Cell, Developmental, and Integrative Biology , University of Alabama , Birmingham , AL
| | - L Burt Nabors
- a Departments of Neurology , University of Alabama , Birmingham , AL
| | - Peter H King
- a Departments of Neurology , University of Alabama , Birmingham , AL.,b Cell, Developmental, and Integrative Biology , University of Alabama , Birmingham , AL.,c Birmingham Veterans Affairs Medical Center , Birmingham , AL
| |
Collapse
|
12
|
Mucin 1 downregulation impairs the anti-necroptotic effects of glucocorticoids in human bronchial epithelial cells. Life Sci 2019; 221:168-177. [PMID: 30738043 DOI: 10.1016/j.lfs.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
AIMS To investigate whether mucin 1 (MUC1) downregulation reduced the sensitivity of tumor necrosis factor-alpha (TNF-α)-induced bronchial epithelial cells to glucocorticoid-mediated necroptosis and explore the underlying mechanisms. MAIN METHODS The human lung bronchial epithelial cell line (16HBE) was transfected with small interfering RNA (siRNA) against MUC1 and then stimulated by TNF-α, where some cells were pretreated with dexamethasone. Flow cytometry was performed to analyze necroptosis in 16HBE cells, and western blot analysis was used to detect protein expression levels of MUC1, glucocorticoid receptor (GR)α, GRβ, NF-κB p65, phospho-p65 (p-p65), and histone deacetylase-2 (HDAC2). Additionally, nuclear translocation of MUC1 and GRα was assessed by immunofluorescence. KEY FINDINGS We observed that MUC1 downregulation by siRNA significantly augmented TNF-α-induced necroptosis in 16HBE cells, and that dexamethasone showed impaired anti-necroptotic effects of MUC1 downregulation. Furthermore, we found that GRα nuclear translocation was inhibited in 16HBE cells with MUC1 downregulation, and that dexamethasone-mediated inhibition of p65 phosphorylation was lower in cells transfected with MUC1-siRNA compared to those transfected with negative control siRNA. SIGNIFICANCE Impaired GRα nuclear translocation and inhibited p-p65 expression might contribute to glucocorticoid resistance caused by MUC1 deficiency in TNF-α-induced necroptosis in 16HBE cells, and should be considered as a potential target for the development of novel therapeutics for asthma.
Collapse
|
13
|
Wu G, Mai X, Liu F, Lin M, Dong X, Xu Q, Hao C, Zhang L, Yu R, Jiang T. Synthesis of novel 10,11-methylenedioxy-camptothecin glycoside derivatives and investigation of their anti-tumor effects in vivo. RSC Adv 2019; 9:11142-11150. [PMID: 35520228 PMCID: PMC9063016 DOI: 10.1039/c9ra00315k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
10,11-Methylenedioxy-camptothecin (FL118) is a novel camptothecin analogue that possesses exceptional antitumor efficacy in human tumor xenograft models. The aim of the current study was to develop novel 20-substituted FL118 derivatives coupled with glycosyl-succinic acid esters with improved antitumor efficacy. These FL118 glycoside derivatives were designed, synthesized and their cytotoxicity evaluated in three tumor cell lines (A-549, MDA-MB-231 and RM-1). All of the derivatives showed superior in vitro cytotoxic activity and were more potent than irinotecan in A549 and MDA-MB-231 cells. In mouse prostate cancer cells RM-1, 10,11-methylenedioxy-camptothecin rhamnoside 11b displayed significant activities with IC50 of 48.27 nM. Western blot analysis demonstrated that 11b inhibited survivin expression and induced cancer cells apoptosis. Further cell cycle analyses clearly showed 11b induced G2/M phase cell cycle arrest. Molecule docking studies suggested that the binding mode of 11b was different from that of the crystal complex of ligand topotecan in Top1/DNA. Importantly, 11b showed high in vivo antitumor efficacy in the RM-1 mouse model with transplantation of prostate cancer (TGI = 44.9%) at dose of 9 mg kg−1 without apparent toxicity. In a RM-1 xenograft model, 11b had superior in vivo antitumor efficacy (TGI = 44.9%) at a dose of 9 mg kg−1.![]()
Collapse
|
14
|
1,4- β-d-Glucomannan from Dendrobium officinale Activates NF- кB via TLR4 to Regulate the Immune Response. Molecules 2018; 23:molecules23102658. [PMID: 30332800 PMCID: PMC6222441 DOI: 10.3390/molecules23102658] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 11/18/2022] Open
Abstract
2,3-O-acetylated-1,4-β-d-glucomannan (DOP-1-1) is a polysaccharide isolated from the stem of Dendrobium officinale. DOP-1-1 has been demonstrated to have remarkable immunomodulatory properties, but little is known about the influence of its structural diversity on bioactivity (and even less about the exact mechanism underlying its immune responses). First, DOP-1-1 was stabilized at different temperatures and pH conditions based on differential scanning calorimetry and size exclusion-chromatography–high-performance liquid chromatography. Then, a detailed study on the effects of DOP-1-1 on a human leukemia monocytic cell line (THP-1) under normal conditions was undertaken. DOP-1-1 promoted the translocation of nuclear factor-kappa B (NF-κB) and degradation of IκB proteins. The expression of genes and proteins closely associated with the immune, survival and apoptotic functions of NF-κB were analyzed by quantitative real-time RT-PCR. Furthermore, CCL4 and IP10 were confirmed to be the novel targets of the immune response stimulated by DOP-1-1. The phosphorylation of NF-кB was inhibited by treatment with a toll-like receptor 4 (TLR4) antagonist (TAK-242) and myeloid differentiation factor 88 (MyD88) inhibitor (ST2825). These data suggested: (i) the O-acetylated glucomannan DOP-1-1 is present in the steady state in low-pH solutions; (ii) DOP-1-1 can induce an immune response through NF-кB mediated by a TLR4 signaling pathway; and (iii) CCL4 and IP10 could be the novel targets of the immune response stimulated by O-acetylated glucomannan.
Collapse
|
15
|
Cao J, Qiu J, Wang X, Lu Z, Wang D, Feng H, Li X, Liu Q, Pan H, Han X, Wei J, Liu S, Wang L. Identification of microRNA-124 in regulation of Hepatocellular carcinoma through BIRC3 and the NF-κB pathway. J Cancer 2018; 9:3006-3015. [PMID: 30210622 PMCID: PMC6134807 DOI: 10.7150/jca.25956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) being proved to be involved in the carcinogenesis of numerous tumors. MicroRNA-124 (miR-124), identified as a tumor suppressor, has been demonstrated to exert pivotal roles in multiple processes of tumorigenesis. The present study demonstrated that miR-124 was low-expressed in human hepatocellular carcinoma (HCC) tissues and cell lines. In addition, overexpression of miR-124 through infected with miR-124 lentivirus inhibited the proliferation and migration of HCC in vitro and tumorigenesis in vivo, whereas inhibition of miR-124 expression can reverse the process. Moreover, Baculoviral IAP Repeat Containing 3 (BIRC3) was identified as a target gene of miR-124. The BIRC3 mRNA expression was increased in HCC tissues and negatively correlated with miR-124 expression. Knockdown of BIRC3 recovered the miR-124-induced inhibiting effect on HCC progression. Furthermore, we found that up-regulation of miR-124 significantly inhibited p-P65, p-IκBα and c-Myc proteins expression. However, the effect of miR-124 up-regulation on HCC development was partly reversed by BIRC3 restoration. In conclusion, our data proved that miR-124 inhibits the proliferation and migration of HCC at least partly through targeting BIRC3 and regulating NF-κB signaling pathway, and it may be a therapeutic target for HCC prognosis.
Collapse
Affiliation(s)
- Jia Cao
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Qiu
- Qingdao Municipal Hospital, Department of stomatology, Qingdao, 266071, China
| | - Xi Wang
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - ZhenHui Lu
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Danni Wang
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - HuiMin Feng
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - XiaoHan Li
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - QiaoQiao Liu
- Qingdao Municipal Hospital, Department of stomatology, Qingdao, 266071, China
| | - HuaZheng Pan
- The Affiliated Hospital of Qingdao University, Medical Animal Lab, Qingdao, 266003, China
| | - XueBo Han
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China
| | - Jun Wei
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - ShiHai Liu
- The Affiliated Hospital of Qingdao University, Medical Animal Lab, Qingdao, 266003, China
| | - LiBin Wang
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| |
Collapse
|
16
|
Wang T, Chen Z, Zhang W. Regulation of autophagy inhibition and inflammatory response in glioma by Wnt signaling pathway. Oncol Lett 2017; 14:7197-7200. [PMID: 29344152 PMCID: PMC5754920 DOI: 10.3892/ol.2017.7103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to investigate the mechanism of the function of Wnt signaling pathway in regulating autophagy and inflammatory response in glioma cells. Human brain glioma cells U118 were selected and divided into three groups: i) the Wnt signaling inhibitor IWR-1 group (the observation group); ii) the PBS negative control group (the PBS group) and iii) the blank control group. After 24 h culture, Wnt5a/β-catenin protein, autophagy marker, microtubule-associated-proteins-1A1B-light-chain-3C (LC-3) II and Beclin I, and inflammatory factors IL-6 and TNF-α protein expression levels were evaluated using western blotting. Compared with both control groups, Wnt5a/β-catenin, IL-6 and TNF-α protein expression levels were significantly lower, and LC-3II and Beclin I protein expression levels were significantly higher in the observation group. In conclusion, Wnt5a/β-catenin signaling pathway regulates autophagy and inflammatory response of glioma cells.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Zhixia Chen
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| |
Collapse
|
17
|
Gressot LV, Doucette T, Yang Y, Fuller GN, Manyam G, Rao A, Latha K, Rao G. Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget 2017; 8:12695-12704. [PMID: 27074575 PMCID: PMC5355046 DOI: 10.18632/oncotarget.8657] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Gliomas, the most common primary brain tumor in humans, include a spectrum of disease. High-grade gliomas (HGG), such as glioblastoma, may arise from low-grade gliomas (LGG) that have a more indolent course. The process of malignant transformation (MT) of LGG to HGG is poorly understood but likely involves the activation of signaling programs that suppress apoptosis. We previously showed that Survivin (BIRC5) plays a role in malignant progression of glioma. Here, we investigated the role of the remaining members of the Inhibitors of Apoptosis (IAP) family on promoting MT in glioma. Utilizing expression data from the cancer genome atlas (TCGA), we identified BIRC3 as a key facilitator of MT from LGG to HGG. TCGA HGGs with high expression of BIRC 3 demonstrated a survival disadvantage and expression levels of BIRC3 were also significantly higher in TCGA HGG compared to TCGA LGG cases. We validated our findings from TCGA by using matched human specimens to show that BIRC expression is increased in HGG compared to their precursor LGG lesions. Using a unique murine model of glioma, we show that overexpression of BIRC3 promotes higher grade glioma and significantly reduces tumor-free survival in mice.
Collapse
Affiliation(s)
- Loyola V Gressot
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tiffany Doucette
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuhui Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Khatri Latha
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Wang D, Berglund AE, Kenchappa RS, MacAulay RJ, Mulé JJ, Etame AB. BIRC3 is a biomarker of mesenchymal habitat of glioblastoma, and a mediator of survival adaptation in hypoxia-driven glioblastoma habitats. Sci Rep 2017; 7:9350. [PMID: 28839258 PMCID: PMC5570925 DOI: 10.1038/s41598-017-09503-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Tumor hypoxia is an established facilitator of survival adaptation and mesenchymal transformation in glioblastoma (GBM). The underlying mechanisms that direct hypoxia-mediated survival in GBM habitats are unclear. We previously identified BIRC3 as a mediator of therapeutic resistance in GBM to standard temozolomide (TMZ) chemotherapy and radiotherapy (RT). Here we report that BIRC3 is a biomarker of the hypoxia-mediated adaptive mesenchymal phenotype of GBM. Specifically, in the TCGA dataset elevated BIRC3 gene expression was identified as a superior and selective biomarker of mesenchymal GBM versus neural, proneural and classical subtypes. Further, BIRC3 protein was highly expressed in the tumor cell niches compared to the perivascular niche across multiple regions in GBM patient tissue microarrays. Tumor hypoxia was found to mechanistically induce BIRC3 expression through HIF1-alpha signaling in GBM cells. Moreover, in human GBM xenografts robust BIRC3 expression was noted within hypoxic regions of the tumor. Importantly, selective inhibition of BIRC3 reversed therapeutic resistance of GBM cells to RT in hypoxic microenvironments through enhanced activation of caspases. Collectively, we have uncovered a novel role for BIRC3 as a targetable biomarker and mediator of hypoxia-driven habitats in GBM.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | - Robert J MacAulay
- Department of Anatomic Pathology, and H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - James J Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Arnold B Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
19
|
Narsia N, Ramagiri P, Ehrmann J, Kolar Z. Transcriptome analysis reveals distinct gene expression profiles in astrocytoma grades II-IV. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:261-271. [PMID: 28452381 DOI: 10.5507/bp.2017.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Astrocytoma is the most prevalent form of primary brain cancer categorized into four histological grades by the World Health Organization. Investigation into individual grades of astrocytoma by previous studies has provided some insight into dysregulation of regulatory networks associated with increasing astrocytoma grades. However, further understanding of key mechanisms that distinguish different astrocytoma grades is required to facilitate targeted therapies. METHODS In this study, we utilized a large cohort of publicly available RNA sequencing data from patients with diffuse astrocytoma (grade II), anaplastic astrocytoma (grade III), primary glioblastoma (grade IV), secondary glioblastoma (grade IV), recurrent glioblastoma (grade IV), and normal brain samples to identify genetic similarities and differences between these grades using bioinformatics applications. RESULTS Our analysis revealed a distinct gene expression pattern between grade II astrocytoma and grade IV glioblastoma (GBM). We also identified genes that were exclusively expressed in each of the astrocytoma grades. Furthermore, we identified known and novel genes involved in key pathways in our study. Gene set enrichment analysis revealed a distinct expression pattern of transcriptional regulators in primary GBM. Further investigation into molecular processes showed that the genes involved in cell proliferation and invasion were shared across all subtypes of astrocytoma. Also, the number of genes involved in metastasis, regulation of cell proliferation, and apoptosis increased with tumor grade. CONCLUSIONS We confirmed existing findings and shed light on some important genes and molecular processes that will improve our understanding of glioma biology.
Collapse
Affiliation(s)
- Nato Narsia
- Department of Clinical and Molecular Pathology and Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Pradeep Ramagiri
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jiri Ehrmann
- Department of Clinical and Molecular Pathology and Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Zdenek Kolar
- Department of Clinical and Molecular Pathology and Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| |
Collapse
|
20
|
Wu D, Luo N, Wang L, Zhao Z, Bu H, Xu G, Yan Y, Che X, Jiao Z, Zhao T, Chen J, Ji A, Li Y, Lee GD. Hydrogen sulfide ameliorates chronic renal failure in rats by inhibiting apoptosis and inflammation through ROS/MAPK and NF-κB signaling pathways. Sci Rep 2017; 7:455. [PMID: 28352125 PMCID: PMC5428696 DOI: 10.1038/s41598-017-00557-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Chronic renal failure (CRF) is a major public health problem worldwide. Hydrogen sulfide (H2S) plays important roles in renal physiological and pathophysiological processes. However, whether H2S could protect against CRF in rats remains unclear. In this study, we found that H2S alleviated gentamicin-induced nephrotoxicity by reducing reactive oxygen species (ROS)-mediated apoptosis in normal rat kidney-52E cells. We demonstrated that H2S significantly improved the kidney structure and function of CRF rats. We found that H2S decreased the protein levels of Bax, Caspase-3, and Cleaved-caspase-3, but increased the expression of Bcl-2. Treatment with H2S reduced the levels of malondialdehyde and ROS and increased the activities of superoxide dismutase and glutathione peroxidase. H2S significantly abolished the phosphorylation of extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal kinase, and p38 in the kidney of CRF rats. Furthermore, H2S decreased the expression levels of tumor necrosis factor-α, interleukin (IL)-6, IL-10, and monocyte chemoattractant protein-1, as well as the protein levels of p50, p65, and p-p65 in the kidney of CRF rats. In conclusion, H2S could ameliorate adenine-induced CRF in rats by inhibiting apoptosis and inflammation through ROS/mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Medicine, Kaifeng, 475004, Henan, China
| | - Ning Luo
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Lianqu Wang
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Zhijun Zhao
- Luohe Medical College, Luohe, 462002, Henan, China
| | - Hongmin Bu
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Guoliang Xu
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Yongjun Yan
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Xinping Che
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Zhiling Jiao
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Tengfu Zhao
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Jingtao Chen
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Ailing Ji
- Henan University School of Medicine, Kaifeng, 475004, Henan, China
| | - Yanzhang Li
- Henan University School of Medicine, Kaifeng, 475004, Henan, China.
| | - Garrick D Lee
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China.
| |
Collapse
|
21
|
Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun 2017; 8:ncomms14278. [PMID: 28198370 PMCID: PMC5330852 DOI: 10.1038/ncomms14278] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
Small-molecule inhibitor of apoptosis (IAP) antagonists, called Smac mimetic compounds (SMCs), sensitize tumours to TNF-α-induced killing while simultaneously blocking TNF-α growth-promoting activities. SMCs also regulate several immunomodulatory properties within immune cells. We report that SMCs synergize with innate immune stimulants and immune checkpoint inhibitor biologics to produce durable cures in mouse models of glioblastoma in which single agent therapy is ineffective. The complementation of activities between these classes of therapeutics is dependent on cytotoxic T-cell activity and is associated with a reduction in immunosuppressive T-cells. Notably, the synergistic effect is dependent on type I IFN and TNF-α signalling. Furthermore, our results implicate an important role for TNF-α-producing cytotoxic T-cells in mediating the anti-cancer effects of immune checkpoint inhibitors when combined with SMCs. Overall, this combinatorial approach could be highly effective in clinical application as it allows for cooperative and complimentary mechanisms in the immune cell-mediated death of cancer cells. Smac mimetics sensitize cancer cells to the extrinsic cell death pathway and stimulate anti-tumour immunity. In this study, the authors show that Smac mimetics can synergize with immune checkpoint inhibitors to control tumour growth in mouse cancer models, including aggressive CNS tumours, in a cytotoxic CD8+ T-cell- and TNFα-dependent manner.
Collapse
|
22
|
Rajbhandari R, McFarland BC, Patel A, Gerigk M, Gray GK, Fehling SC, Bredel M, Berbari NF, Kim H, Marks MP, Meares GP, Sinha T, Chuang J, Benveniste EN, Nozell SE. Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma. Oncotarget 2016; 6:17805-16. [PMID: 26164206 PMCID: PMC4627347 DOI: 10.18632/oncotarget.4596] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastomas (GBMs) are deadly tumors of the central nervous system. Most GBM exhibit homozygous deletions of the CDKN2A and CDKN2B tumor suppressors at 9p21.3, although loss of CDKN2A/B alone is insufficient to drive gliomagenesis. MIR31HG, which encodes microRNA-31 (miR-31), is a novel non-coding tumor suppressor positioned adjacent to CDKN2A/B at 9p21.3. We have determined that miR-31 expression is compromised in >72% of all GBM, and for patients, this predicts significantly shortened survival times independent of CDKN2A/B status. We show that miR-31 inhibits NF-κB signaling by targeting TRADD, its upstream activator. Moreover, upon reintroduction, miR-31 significantly reduces tumor burden and lengthens survival times in animal models. As such, our work identifies loss of miR-31 as a novel non-coding tumor-driving event in GBM.
Collapse
Affiliation(s)
- Rajani Rajbhandari
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Braden C McFarland
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashish Patel
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Magda Gerigk
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - G Kenneth Gray
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel C Fehling
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Markus Bredel
- Radiation Oncology at the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicolas F Berbari
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hyunsoo Kim
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Margaret P Marks
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gordon P Meares
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tanvi Sinha
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey Chuang
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Etty N Benveniste
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Susan E Nozell
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Wang D, Berglund A, Kenchappa RS, Forsyth PA, Mulé JJ, Etame AB. BIRC3 is a novel driver of therapeutic resistance in Glioblastoma. Sci Rep 2016; 6:21710. [PMID: 26888114 PMCID: PMC4757860 DOI: 10.1038/srep21710] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Genome-wide analysis of glioblastoma (GBM) reveals pervasive aberrations in apoptotic signaling pathways that collectively contribute to therapeutic resistance. Inhibitors of apoptosis proteins (IAP) exert critical control on the terminal segment of apoptosis leading to apoptosis evasion. In this study, we uncover a unique role for BIRC3, as an IAP that is critical in GBM in response to therapy. Using the TCGA dataset of 524 unique samples, we identify BIRC3 is the only IAP whose differential expression is associated with long-term survival in GBM patients. Using patient tissue samples we further show that BIRC3 expression increases with recurrence. When extrapolated to a preclinical model of a human GBM cell line, we find an increase in BIRC3 expression in response to irradiation (RT) and temozolomide (TMZ) treatment. More importantly, we mechanistically implicate STAT3 and PI3K signaling pathways as drivers of RT-induced up-regulation of BIRC3 expression. Lastly, we demonstrate that both in-vivo and in-vitro BIRC3 up-regulation results in apoptosis evasion and therapeutic resistance in GBM. Collectively, our study identifies a novel translational and targetable role for BIRC3 expression as a predictor of aggressiveness and therapeutic resistance to TMZ and RT mediated by STAT3 and PI3K signaling in GBM.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Anders Berglund
- Department of Medical Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Rajappa S Kenchappa
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Peter A Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Cutaneous Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Arnold B Etame
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
24
|
Abstract
The nuclear factor kappa B (NF-κB) signalling pathway exhibits both tumour-promoting and tumour-suppressing functions in different tissues and models of carcinogenesis. In particular in epidermal keratinocytes, NF-κB signalling was reported to exert primarily growth inhibitory and tumour-suppressing functions. Here, we show that mice with keratinocyte-restricted p65/RelA deficiency were resistant to 7, 12-dimethylbenz(a)anthracene (DMBA)-/12-O-tetra decanoylphorbol-13 acetate (TPA)-induced skin carcinogenesis. p65 deficiency sensitized epidermal keratinocytes to DNA damage-induced death in vivo and in vitro, suggesting that inhibition of p65-dependent prosurvival functions prevented tumour initiation by facilitating the elimination of cells carrying damaged DNA. In addition, lack of p65 strongly inhibited TPA-induced epidermal hyperplasia and skin inflammation by suppressing the expression of proinflammatory cytokines and chemokines by epidermal keratinocytes. Therefore, p65-dependent NF-κB signalling in keratinocytes promotes DMBA-/TPA-induced skin carcinogenesis by protecting keratinocytes from DNA damage-induced death and facilitating the establishment of a tumour-nurturing proinflammatory microenvironment.
Collapse
Affiliation(s)
- Chun Kim
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Lappas M. Cellular Inhibitors of Apoptosis Proteins cIAP1 and cIAP2 are Increased after Labour in Foetal Membranes and Myometrium and are Essential for TNF-α-Induced Expression of Pro-Labour Mediators. Am J Reprod Immunol 2014; 73:313-29. [DOI: 10.1111/aji.12295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Martha Lappas
- Mercy Perinatal Research Centre; Mercy Hospital for Women; Heidelberg VIC Australia
- Obstetrics, Nutrition and Endocrinology Group; Department of Obstetrics and Gynaecology; University of Melbourne; Melbourne VIC Australia
| |
Collapse
|
26
|
Enwere EK, Lacasse EC, Adam NJ, Korneluk RG. Role of the TWEAK-Fn14-cIAP1-NF-κB Signaling Axis in the Regulation of Myogenesis and Muscle Homeostasis. Front Immunol 2014; 5:34. [PMID: 24550918 PMCID: PMC3913901 DOI: 10.3389/fimmu.2014.00034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 12/16/2022] Open
Abstract
Mammalian skeletal muscle maintains a robust regenerative capacity throughout life, largely due to the presence of a stem cell population known as “satellite cells” in the muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon injury to become myoblasts, which proliferate extensively and eventually differentiate and fuse to form new multinucleated muscle fibers. Recent findings have identified some of the factors, including the cytokine TNFα-like weak inducer of apoptosis (TWEAK), which govern these cells’ decisions to proliferate, differentiate, or fuse. In this review, we will address the functions of TWEAK, its receptor Fn14, and the associated signal transduction molecule, the cellular inhibitor of apoptosis 1 (cIAP1), in the regulation of myogenesis. TWEAK signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast proliferation and inhibits myogenesis. In addition, TWEAK activates the non-canonical NF-κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both pathways are regulated by cIAP1, which is an essential component of downstream signaling mediated by TWEAK and similar cytokines. This review will focus on the seemingly contradictory roles played by TWEAK during muscle regeneration, by highlighting the interplay between the two NF-κB pathways under physiological and pathological conditions. We will also discuss how myogenesis is negatively affected by chronic conditions, which affect homeostasis of the skeletal muscle environment.
Collapse
Affiliation(s)
- Emeka K Enwere
- Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB , Canada
| | - Eric C Lacasse
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada
| | - Nadine J Adam
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Robert G Korneluk
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
27
|
Zhao J, Ling X, Cao S, Liu X, Wan S, Jiang T, Li F. Antitumor activity of FL118, a survivin, Mcl-1, XIAP, and cIAP2 selective inhibitor, is highly dependent on its primary structure and steric configuration. Mol Pharm 2014; 11:457-67. [PMID: 24329001 DOI: 10.1021/mp4004282] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported the identification and characterization of a novel small chemical molecule designated FL118. FL118 selectively inhibits multiple cancer survival and proliferation-associated antiapoptotic proteins (survivin, Mcl-1, XIAP, cIAP2) and eliminates small and large human tumor xenografts in animal models (Ling et al., PLoS One 2012, 7, e45571). Here, we report a follow-up study on the structure-activity relationship (SAR) of the hydroxyl group in the lactone ring of FL118. We found that the superior antitumor efficacy of FL118 heavily depends on its steric configuration through comparing the antitumor activity of FL118 with FL113 (the racemic mixture of FL118). Consistently, FL118 proved much more effective in inhibiting the expression of survivin, Mcl-1, and cIAP2, both in vitro and in vivo, compared to FL113. Additionally, Tet-on controlled induction of survivin or forced expression of Mcl-1 protects cancer cells from FL118-mediated growth inhibition and cell death. To further explore the SAR, we synthesized seven position 20-esterifiable FL118 and FL113 derivatives. Studies on these seven new compounds revealed that keeping a free hydroxyl group of FL118 is also important for high antitumor efficacy. Together, these studies confirm the superior anticancer activity of FL118 and narrow the window for further SAR studies to generate novel analogues based on FL118 core structure on its other potential chemical positions.
Collapse
Affiliation(s)
- Jiuyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao, Shandong 266003 China
| | | | | | | | | | | | | |
Collapse
|
28
|
Saponin 1 induces apoptosis and suppresses NF-κB-mediated survival signaling in glioblastoma multiforme (GBM). PLoS One 2013; 8:e81258. [PMID: 24278406 PMCID: PMC3836797 DOI: 10.1371/journal.pone.0081258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/10/2013] [Indexed: 01/08/2023] Open
Abstract
Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.
Collapse
|
29
|
NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS One 2013; 8:e78728. [PMID: 24244348 PMCID: PMC3823708 DOI: 10.1371/journal.pone.0078728] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/16/2013] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness.
Collapse
|
30
|
Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M, Benveniste EN. Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res 2013; 19:6484-94. [PMID: 24036851 DOI: 10.1158/1078-0432.ccr-13-0265] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Gliomas are the most frequently occurring primary malignancies in the brain, and glioblastoma is the most aggressive of these tumors. Protein kinase CK2 is composed of two catalytic subunits (α and/or α') and two β regulatory subunits. CK2 suppresses apoptosis, promotes neoangiogenesis, and enhances activation of the JAK/STAT, NF-κB, PI3K/AKT, Hsp90, Wnt, and Hedgehog pathways. Aberrant activation of the NF-κB, PI3K/AKT, and JAK/STAT-3 pathways is implicated in glioblastoma progression. As CK2 is involved in their activation, the expression and function of CK2 in glioblastoma was evaluated. EXPERIMENTAL DESIGN AND RESULTS Analysis of 537 glioblastomas from The Cancer Genome Atlas Project demonstrates the CSNK2A1 gene, encoding CK2α, has gene dosage gains in glioblastoma (33.7%), and is significantly associated with the classical glioblastoma subtype. Inhibition of CK2 activity by CX-4945, a selective CK2 inhibitor, or CK2 knockdown by siRNA suppresses activation of the JAK/STAT, NF-κB, and AKT pathways and downstream gene expression in human glioblastoma xenografts. On a functional level, CX-4945 treatment decreases the adhesion and migration of glioblastoma cells, in part through inhibition of integrin β1 and α4 expression. In vivo, CX-4945 inhibits activation of STAT-3, NF-κB p65, and AKT, and promotes survival of mice with intracranial human glioblastoma xenografts. CONCLUSIONS CK2 inhibitors may be considered for treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Ying Zheng
- Authors' Affiliations: Departments of Cell, Developmental and Integrative Biology, Pathology, and Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama; and Cylene Pharmaceuticals, San Diego, California
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Philip L, Shivakumar K. cIAP-2 protects cardiac fibroblasts from oxidative damage: an obligate regulatory role for ERK1/2 MAPK and NF-κB. J Mol Cell Cardiol 2013; 62:217-26. [PMID: 23837962 DOI: 10.1016/j.yjmcc.2013.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/31/2013] [Accepted: 06/25/2013] [Indexed: 12/26/2022]
Abstract
Cardiac fibroblasts are resistant to several pro-apoptotic factors that prevail in the diseased myocardium. Resistance to death signals may, in the short-term, enable these cells to play a central role in tissue repair following myocyte loss but, in the long-term, facilitate their persistence in the infarct scar, resulting in disproportionate stromal growth and pump dysfunction. Surprisingly, the molecular basis of apoptosis resistance in cardiac fibroblasts remains unclear. We explored the recruitment of anti-apoptotic mechanisms in cardiac fibroblasts subjected to oxidative stress, a major component of ischemia-reperfusion injury and heart failure. Cardiac fibroblasts exposed to H2O2 expressed enhanced levels of anti-apoptotic cIAP-2 mRNA and protein, revealed by real time PCR and western blot analysis, respectively. Pulmonary fibroblasts did not express cIAP-2 and were more susceptible than cardiac fibroblasts to H2O2. cIAP-2 knockdown by RNA interference promoted apoptosis in H2O2-treated cardiac fibroblasts. Electrophoretic mobility shift assay showed NF-κB activation in cells under oxidative stress. NF-κB inhibition in H2O2-treated cells resulted in significant attenuation of cIAP-2 mRNA and protein expression and apoptosis, indicating involvement of NF-κB in cell survival via regulation of cIAP-2. Further, pCMV promoter-driven constitutive expression of cIAP-2 reduced viability loss in NF-κB-inhibited cardiac fibroblasts exposed to oxidative stress. H2O2 also caused ERK1/2 activation, which, upon inhibition, prevented IκBα degradation and nuclear translocation of NF-κB. Moreover, ERK1/2 inhibition attenuated H2O2-induced cIAP-2 expression and compromised viability in H2O2-treated cardiac fibroblasts. We propose for the first time that ERK1/2-dependent activation of NF-κB and consequent induction of cIAP-2 protects cardiac fibroblasts from oxidative damage.
Collapse
Affiliation(s)
- Linda Philip
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, India.
| | | |
Collapse
|
32
|
McFarland BC, Gray GK, Nozell SE, Hong SW, Benveniste EN. Activation of the NF-κB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells. Mol Cancer Res 2013; 11:494-505. [PMID: 23386688 DOI: 10.1158/1541-7786.mcr-12-0528] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma tumors are characterized by their invasiveness and resistance to therapies. The transcription factor signal transducer and activator of transcription 3 (STAT3) was recently identified as a master transcriptional regulator in the mesenchymal subtype of glioblastoma (GBM), which has generated an increased interest in targeting STAT3. We have evaluated more closely the mechanism of action of one particular STAT3 inhibitor, JSI-124 (cucurbitacin I). In this study, we confirmed that JSI-124 inhibits both constitutive and stimulus-induced Janus kinase 2 (JAK2) and STAT3 phosphorylation, and decreases cell proliferation while inducing apoptosis in cultured GBM cells. However, we discovered that before the inhibition of STAT3, JSI-124 activates the nuclear factor-κB (NF-κB) pathway, via NF-κB p65 phosphorylation and nuclear translocation. In addition, JSI-124 treatment induces the expression of IL-6, IL-8, and suppressor of cytokine signaling (SOCS3) mRNA, which leads to a corresponding increase in IL-6, IL-8, and SOCS3 protein expression. Moreover, the NF-κB-driven SOCS3 expression acts as a negative regulator of STAT3, abrogating any subsequent STAT3 activation and provides a mechanism of STAT3 inhibition after JSI-124 treatment. Chromatin immunoprecipitation analysis confirms that NF-κB p65 in addition to other activating cofactors are found at the promoters of IL-6, IL-8, and SOCS3 after JSI-124 treatment. Using pharmacological inhibition of NF-κB and inducible knockdown of NF-κB p65, we found that JSI-124-induced expression of IL-6, IL-8, and SOCS3 was significantly inhibited, showing an NF-κB-dependent mechanism. Our data indicate that although JSI-124 may show potential antitumor effects through inhibition of STAT3, other off-target proinflammatory pathways are activated, emphasizing that more careful and thorough preclinical investigations must be implemented to prevent potential harmful effects.
Collapse
Affiliation(s)
- Braden C McFarland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
33
|
Meares GP, Qin H, Liu Y, Holdbrooks AT, Benveniste EN. AMP-activated protein kinase restricts IFN-γ signaling. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23180823 DOI: 10.4049/jimmunol.1202390] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation in the CNS contributes to neurologic disorders. Neuroinflammation involves the release of inflammatory molecules from glial cells, such as astrocytes and microglia, and can lead to neuronal damage if unabated. In multiple sclerosis, peripheral immune cells, including IFN-γ-producing Th1 cells, infiltrate the CNS and are important in shaping the inflammatory microenvironment, in part through cytokine-mediated interactions with glial cells. Recent evidence suggests that AMP-activated protein kinase (AMPK), a central regulator of energetic metabolism, can regulate inflammatory gene expression. In this study, we identified that IFN-γ induces biphasic AMPK signaling, suggestive of negative-feedback mechanisms. Activation of AMPK suppresses several IFN-γ-induced cytokines and chemokines in primary astrocytes and microglia. IFN-γ regulates gene expression through activation of STAT1, and deletion of AMPK results in a marked increase in basal expression of STAT1. Conversely, activation of AMPK blocks IFN-γ-induced STAT1 expression. Deletion of AMPK leads to increased basal and IFN-γ-induced expression of inflammatory molecules, including TNF-α, CXCL10, and CCL2. AMPK does not affect the phosphorylation of STAT1, but instead attenuates nuclear translocation of STAT1, DNA binding, and subsequent gene expression. In vivo, AMPK signaling during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, is downregulated in the brain at onset and peak of disease. Diminution of AMPK signaling in vivo correlates with increased expression of IFN-γ and CCL2 in the CNS. Overall, these findings provide the first link between AMPK and STAT1 and may provide important clues about how bioenergetics and inflammation are linked.
Collapse
Affiliation(s)
- Gordon P Meares
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
34
|
Iscru E, Ahmed T, Coremans V, Bozzi Y, Caleo M, Conway EM, D'Hooge R, Balschun D. Loss of survivin in neural precursor cells results in impaired long-term potentiation in the dentate gyrus and CA1-region. Neuroscience 2012; 231:413-9. [PMID: 23123921 DOI: 10.1016/j.neuroscience.2012.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022]
Abstract
In adult mammals, newborn neural precursor cells (NPCs) derived from either the subventricular zone (SVZ) or the subgranular zone (SGZ) migrate into the olfactory bulb and the dentate gyrus (DG), respectively, where some of them mature into excitatory and inhibitory neurons. There is increasing evidence that this neurogenesis process is important for some types of learning and synaptic plasticity and vice versa. Survivin, a member of the inhibitor-of-apoptosis protein (IAP) family, has been suggested to have a central role in the regulation of neurogenesis. The protein is abundantly expressed in nervous tissue during embryonic development while being restricted postnatally to proliferating and migrating NPCs in SVZ and SGZ. Here we examined adult Survivin(Camcre) mice with a conditional deletion of the survivin gene in embryonic neurogenic regions. Although the deletion of survivin had no effect on basic excitability in DG and CA1-region, there was a marked impairment of long-term potentiation (LTP) in these areas. Our data support a function of survivin in hippocampal synaptic plasticity and learning and underline the importance of adult brain neurogenesis for proper operation of the hippocampal tri-synaptic circuit and the physiological functions that depend on it.
Collapse
Affiliation(s)
- E Iscru
- KU Leuven, Laboratory of Biological Psychology, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Meares GP, Ma X, Qin H, Benveniste EN. Regulation of CCL20 expression in astrocytes by IL-6 and IL-17. Glia 2012; 60:771-81. [PMID: 22319003 DOI: 10.1002/glia.22307] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 01/13/2012] [Accepted: 01/21/2012] [Indexed: 12/22/2022]
Abstract
Astrocytes have an important role in the regulation of inflammation within the central nervous system (CNS). In neuroinflammatory conditions such as multiple sclerosis, numerous cytokines and chemokines are elevated including IL-6, IL-17, and CCL20. IL-17 enhances IL-6 signaling and subsequent IL-6 expression in astrocytes. CCL20 is a CC motif chemokine that functions as a chemoattractant to facilitate the recruitment of CCR6-expressing cells, including Th17 cells. In this study, we examined the role of IL-6 and IL-17 on CCL20 production in primary murine astrocytes. IL-6 in combination with the IL-6 soluble receptor (sIL-6R) stimulated CCL20 expression in part through STAT3 activation, whereas IL-17 alone had no effect. However, the combination of IL-6, sIL-6R, and IL-17 led to a robust increase in CCL20 production. IL-17 increased the activation-associated phosphorylation of NF-κB, and inhibition of the NF-κB pathway significantly inhibited the enhancement of CCL20 expression by IL-17. In addition, chromatin immunoprecipitation revealed that stimulation of primary astrocytes with IL-6 plus the sIL-6R induced STAT3 binding to the CCL20 promoter. Combined stimulation with IL-6, sIL-6R, and IL-17 increased the recruitment of phosphorylated NF-κB to the CCL20 promoter, increased binding of coactivators such as p300 and CBP, and enhanced H3 and H4 histone acetylation, consistent with a transcriptionally active gene. The astrocyte-produced CCL20 increased T cell migration as determined by transwell migration assay. Collectively, these results suggest that astrocytes, in response to IL-6, sIL-6R, and IL-17, may shift chemokine production to that favoring T cell recruitment to the CNS.
Collapse
Affiliation(s)
- Gordon P Meares
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
36
|
McFarland BC, Ma JY, Langford CP, Gillespie GY, Yu H, Zheng Y, Nozell SE, Huszar D, Benveniste EN. Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Mol Cancer Ther 2011; 10:2384-93. [PMID: 22027691 DOI: 10.1158/1535-7163.mct-11-0480] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway has been implicated in glioblastoma (GBM) progression. To develop a therapeutic strategy to inhibit STAT-3 signaling, we have evaluated the effects of AZD1480, a pharmacologic inhibitor of JAK1 and JAK2. In this study, the in vitro efficacy of AZD1480 was tested in human and murine glioma cell lines. AZD1480 treatment effectively blocks constitutive and stimulus-induced JAK1, JAK2, and STAT-3 phosphorylation in both human and murine glioma cells, and leads to a decrease in cell proliferation and induction of apoptosis. Furthermore, we used human xenograft GBM samples as models for the study of JAK/STAT-3 signaling in vivo, because human GBM samples propagated as xenografts in nude mice retain both the hallmark genetic alterations and the invasive phenotype seen in vivo. In these xenograft tumors, JAK2 and STAT-3 are constitutively active, but levels vary among tumors, which is consistent with the heterogeneity of GBMs. AZD1480 inhibits constitutive and stimulus-induced phosphorylation of JAK2 and STAT-3 in these GBM xenograft tumors in vitro, downstream gene expression, and inhibits cell proliferation. Furthermore, AZD1480 suppresses STAT-3 activation in the glioma-initiating cell population in GBM tumors. In vivo, AZD1480 inhibits the growth of subcutaneous tumors and increases survival of mice bearing intracranial GBM tumors by inhibiting STAT-3 activity, indicating that pharmacologic inhibition of the JAK/STAT-3 pathway by AZD1480 should be considered for study in the treatment of patients with GBM tumors.
Collapse
Affiliation(s)
- Braden C McFarland
- Department of Cell Biology, 1918 University Blvd., MCLM 313, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Identification of a novel pro-apoptotic role of NF-κB in the regulation of TRAIL- and CD95-mediated apoptosis of glioblastoma cells. Oncogene 2011; 31:1468-74. [PMID: 21822306 DOI: 10.1038/onc.2011.333] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We recently reported that nuclear factor-kappa B (NF-κB) promotes DNA damage-triggered apoptosis in glioblastoma, the most common brain tumor. In the present study, we investigated the role of NF-κB in death receptor-mediated apoptosis. Here, we identify a novel pro-apopotic function of NF-κB in TRAIL- and CD95-induced apoptosis. Inhibition of NF-κB by overexpression of the dominant-negative IκBα-superrepressor (IκBα-SR) significantly decreases tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)- or CD95-induced apoptosis. Vice versa, activation of NF-κB via overexpression of constitutively active IκB kinase complex (IKK)β (IKK-EE) significantly increases TRAIL-mediated apoptosis. Intriguingly, NF-κB inhibition reduces the recruitment of Fas-associated death domain and caspase-8 and formation of the death-inducing signaling complex (DISC) upon stimulation of TRAIL receptors or CD95. This results in reduced TRAIL-mediated activation of caspases, loss of mitochondrial potential and cytochrome c release in IκBα-SR-expressing cells. In comparison, NF-κB inhibition strongly enhances TNF-α-mediated apoptosis. Comparative studies revealed that TNF-α rapidly stimulates transcriptional activation and upregulation of anti-apoptotic proteins, whereas TRAIL causes apoptosis before transcriptional activation. Thus, this study demonstrates for the first time that NF-κB exerts a pro-apoptotic role in TRAIL- and CD95-induced apoptosis in glioblastoma cells by facilitating DISC formation.
Collapse
|