1
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 PMCID: PMC11863469 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Kim S, Jung BK, Kim J, Jeon JH, Kim M, Jang SH, Kim CS, Jang H. Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma. Oncol Lett 2025; 29:6. [PMID: 39492938 PMCID: PMC11526322 DOI: 10.3892/ol.2024.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal types of human brain cancer and is characterized by rapid growth, an aggressive nature and a poor prognosis. GBM is highly heterogeneous, and often involves several genetic mutations and abnormalities. Genetic disorders or low expression of phosphatase and tensin homolog (PTEN) are associated with GBM occurrence, progression and poor prognosis of patients with GBM. However, effective delivery of PTEN for expression in GBM cells within the brain remains challenging. The aim of the present study was to develop a therapeutic strategy to restore PTEN expression in GBM cells by utilizing a recombinant Newcastle disease virus (rNDV) vector expressing the human PTEN gene (rNDV-PTEN). Methods included infection of U87-MG cells with rNDV-PTEN, followed by assessments of PTEN expression, and cell proliferation, migration and apoptosis. Additionally, an orthotopic GBM mouse model was used to evaluate the in vivo efficacy of rNDV-PTEN. Infection with recombinant rNDV-PTEN treatment increased PTEN protein expression in the cytoplasm of the U87-MG cells, reduced cell proliferation and migration, and induced apoptosis by inhibiting the AKT/mTOR signaling pathway. In the orthotopic GBM mouse model, rNDV-PTEN significantly reduced tumor size and improved survival rates. Magnetic resonance imaging and in vivo imaging analyses confirmed the targeted delivery and efficacy of rNDV-PTEN. These findings highlight the usefulness of rNDV-PTEN as a promising therapeutic agent for GBM, representing a potential advancement in treatment, especially for patients with PTEN deficiency.
Collapse
Affiliation(s)
- Seonhee Kim
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Bo-Kyoung Jung
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Jinju Kim
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Joo Hee Jeon
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Minsoo Kim
- Department of Physiology and Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Sung Hoon Jang
- Graduate School of Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Hyun Jang
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| |
Collapse
|
3
|
Pridham KJ, Hutchings KR, Beck P, Liu M, Xu E, Saechin E, Bui V, Patel C, Solis J, Huang L, Tegge A, Kelly DF, Sheng Z. Selective regulation of chemosensitivity in glioblastoma by phosphatidylinositol 3-kinase beta. iScience 2024; 27:109921. [PMID: 38812542 PMCID: PMC11133927 DOI: 10.1016/j.isci.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Resistance to chemotherapies such as temozolomide is a major hurdle to effectively treat therapy-resistant glioblastoma. This challenge arises from the activation of phosphatidylinositol 3-kinase (PI3K), which makes it an appealing therapeutic target. However, non-selectively blocking PI3K kinases PI3Kα/β/δ/γ has yielded undesired clinical outcomes. It is, therefore, imperative to investigate individual kinases in glioblastoma's chemosensitivity. Here, we report that PI3K kinases were unequally expressed in glioblastoma, with levels of PI3Kβ being the highest. Patients deficient of O6-methylguanine-DNA-methyltransferase (MGMT) and expressing elevated levels of PI3Kβ, defined as MGMT-deficient/PI3Kβ-high, were less responsive to temozolomide and experienced poor prognosis. Consistently, MGMT-deficient/PI3Kβ-high glioblastoma cells were resistant to temozolomide. Perturbation of PI3Kβ, but not other kinases, sensitized MGMT-deficient/PI3Kβ-high glioblastoma cells or tumors to temozolomide. Moreover, PI3Kβ-selective inhibitors and temozolomide synergistically mitigated the growth of glioblastoma stem cells. Our results have demonstrated an essential role of PI3Kβ in chemoresistance, making PI3Kβ-selective blockade an effective chemosensitizer for glioblastoma.
Collapse
Affiliation(s)
- Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Kasen R. Hutchings
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Patrick Beck
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Min Liu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Eileen Xu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Erin Saechin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Vincent Bui
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Chinkal Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Jamie Solis
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Leah Huang
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Allison Tegge
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Faculty of Health Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
5
|
Shao W, Azam Z, Guo J, To SST. Oncogenic potential of PIK3CD in glioblastoma is exerted through cytoskeletal proteins PAK3 and PLEK2. J Transl Med 2022; 102:1314-1322. [PMID: 35851857 DOI: 10.1038/s41374-022-00821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
The Class IA phosphoinositide-3-kinase catalytic isoforms p110α, p110β, and p110δ have been implicated to play vital but overlapping roles in various cancers, including glioblastoma (GBM). We have previously shown that PIK3CD, encoding p110δ, is highly expressed in multiple glioma cell lines and involved in glioma cell migration and invasion. Based on the RNA sequencing data from The Cancer Genome Atlas (TCGA) database, we found the level of PIK3CD expression is significantly higher in GBM than WHO grade II and III gliomas and is closely related to poor survival. To further dissect the oncogenic roles of PIK3CD in glioma progression, we employed CRISPR/Cas9 to completely abrogate its expression in the GBM cell line U87-MG and have successfully isolated two knockout clones with different gene modifications. As expected, the knockout clones exhibited significantly lower migration and invasion capabilities when compared with their parental cells. Interestingly, knockout of PIK3CD also dramatically reduced the colony formation ability of the knockout cells. Further study revealed that PIK3CD deficiency could negate tumorigenesis in nude mice. To determine the downstream effect of PIK3CD depletion, we performed RT2 profiler PCR array of selected gene sets and found that knockout of PIK3CD impaired the activity of p-21 activated kinase 3 (PAK3) and pleckstrin 2 (PLEK2), molecules involved in cancer cell migration and proliferation. This explains why the glioma cells without the PIK3CD expression exhibited weaker oncogenic features. Further, RNAseq analysis of parent and knockout clones revealed that this interaction might happen through axonogenesis signaling pathway. Taken together, we demonstrated that PIK3CD could be a potential prognostic factor and therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Zulfikar Azam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Jintao Guo
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102, China
| | - Shing Shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China.
| |
Collapse
|
6
|
The In Vitro Effect of Psoralen on Glioma Based on Network Pharmacology and Potential Target Research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1952891. [PMID: 36065261 PMCID: PMC9440786 DOI: 10.1155/2022/1952891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Glioma is an aggressive tumor, currently there is no satisfactory management available. Psoralen, as a natural product, has been found to have an effect of treating cancer in recent years, but its effect on glioma has not been explored. In this study, we investigated the in vitro inhibition effect and potential targets of psoralen on glioma through network pharmacology and in vitro glioma treatment experiments. First, we used network pharmacology to preliminarily predict the 21 core genes of psoralen in the treatment of glioma, including PIK3CA, PIK3CB, PIK3CG, and JAK2. The CCK-8 method was used to detect the effect of psoralen on the proliferation of glioma U87 and U251 cells, and the results showed that psoralen could significantly inhibit the proliferation of U87 and U251 cells. The flow cytometry was used to detect the apoptosis and cell cycle changes, and it was found that psoralen could significantly promote the early apoptosis of U87 and U251 cells and had a significant cycle arrest effect on the two cells. The cell scratch test showed that psoralen could significantly inhibit the migration of U87 and U251 cells. The relative expression levels of PIK3CA, PIK3CB, PIK3CG, and JAK2 were analyzed by Real-time Quantitative polymerase chain reaction (QT-PCR), and the results showed that psoralen could inhibit the gene expression of PIK3CA, PIK3CB, PIK3CG, and JAK2. Later, Western blotting (WB) experiments showed that psoralen could inhibit the protein expressions of PI3K and JAK2. This study has preliminarily explored and verified the antiglioma effect of psoralen in the form of inhibiting cell proliferation and migration, promoting cell apoptosis and organizing cell cycle in vitro. And may play a role by inhibiting the expression of PIK3CA, PIK3CB, PIK3CG, JAK2 gene and PI3K, JAK2 protein, psoralen has become a potential antiglioma drug.
Collapse
|
7
|
Hu X, Lei X, Guo J, Fu W, Sun W, Lu Q, Su W, Xu Q, Tu K. The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Front Oncol 2022; 12:927640. [PMID: 35936737 PMCID: PMC9354683 DOI: 10.3389/fonc.2022.927640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant cancers, ranking the seventh highest causes of cancer-related deaths globally. Recently, RNA N6-methyladenosine (m6A) is emerging as one of the most abundant RNA modifications in eukaryote cells, involved in multiple RNA processes including RNA translocation, alternative splicing, maturation, stability, and degradation. As reported, m6A was dynamically and reversibly regulated by its “writers”, “erasers”, and “readers”, Increasing evidence has revealed the vital role of m6A modification in the development of multiple types of cancers including PC. Currently, aberrant m6A modification level has been found in both PC tissues and cell lines. Moreover, abnormal expressions of m6A regulators and m6A-modified genes have been reported to contribute to the malignant development of PC. Here in this review, we will focus on the function and molecular mechanism of m6A-modulated RNAs including coding RNAs as well as non-coding RNAs. Then the m6A regulators will be summarized to reveal their potential applications in the clinical diagnosis, prognosis, and therapeutics of PC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangxiang Lei
- Institute of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| |
Collapse
|
8
|
Thaiparambil J, Dong J, Grimm SL, Perera D, Ambati CSR, Putluri V, Robertson MJ, Patel TD, Mistretta B, Gunaratne PH, Kim MP, Yustein JT, Putluri N, Coarfa C, El‐Zein R. Integrative metabolomics and transcriptomics analysis reveals novel therapeutic vulnerabilities in lung cancer. Cancer Med 2022; 12:584-596. [PMID: 35676822 PMCID: PMC9844651 DOI: 10.1002/cam4.4933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) comprises the majority (~85%) of all lung tumors, with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being the most frequently diagnosed histological subtypes. Multi-modal omics profiling has been carried out in NSCLC, but no studies have yet reported a unique metabolite-related gene signature and altered metabolic pathways associated with LUAD and LUSC. METHODS We integrated transcriptomics and metabolomics to analyze 30 human lung tumors and adjacent noncancerous tissues. Differential co-expression was used to identify modules of metabolites that were altered between normal and tumor. RESULTS We identified unique metabolite-related gene signatures specific for LUAD and LUSC and key pathways aberrantly regulated at both transcriptional and metabolic levels. Differential co-expression analysis revealed that loss of coherence between metabolites in tumors is a major characteristic in both LUAD and LUSC. We identified one metabolic onco-module gained in LUAD, characterized by nine metabolites and 57 metabolic genes. Multi-omics integrative analysis revealed a 28 metabolic gene signature associated with poor survival in LUAD, with six metabolite-related genes as individual prognostic markers. CONCLUSIONS We demonstrated the clinical utility of this integrated metabolic gene signature in LUAD by using it to guide repurposing of AZD-6482, a PI3Kβ inhibitor which significantly inhibited three genes from the 28-gene signature. Overall, we have integrated metabolomics and transcriptomics analyses to show that LUAD and LUSC have distinct profiles, inferred gene signatures with prognostic value for patient survival, and identified therapeutic targets and repurposed drugs for potential use in NSCLC treatment.
Collapse
Affiliation(s)
| | - Jianrong Dong
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA
| | - Sandra L. Grimm
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Dimuthu Perera
- Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | | | - Vasanta Putluri
- Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Matthew J. Robertson
- Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Tajhal D. Patel
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma CenterBaylor College of MedicineHoustonTexasUSA
| | - Brandon Mistretta
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Preethi H. Gunaratne
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Min P. Kim
- Houston Methodist Cancer CenterHoustonTexasUSA,Division of Thoracic Surgery, Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
| | - Jason T. Yustein
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma CenterBaylor College of MedicineHoustonTexasUSA,Integrative Molecular and Biological Sciences ProgramBaylor College of MedicineHoustonTexasUSA
| | - Nagireddy Putluri
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Cristian Coarfa
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
9
|
Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, Khalikova L, Kuznetsova N, Kit O, Kharin L. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol 2022; 60:69. [PMID: 35445737 PMCID: PMC9084550 DOI: 10.3892/ijo.2022.5359] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor and is associated with a poor clinical prognosis. Despite the progress in the understanding of the molecular and genetic changes that promote tumorigenesis, effective treatment options are limited. The present review intended to identify and summarize major signaling pathways and genetic abnormalities involved in the pathogenesis of GBM, as well as therapies that target these pathways. Glioblastoma remains a difficult to treat tumor; however, in the last two decades, significant improvements in the understanding of GBM biology have enabled advances in available therapeutics. Significant genomic events and signaling pathway disruptions (NF‑κB, Wnt, PI3K/AKT/mTOR) involved in the formation of GBM were discussed. Current therapeutic options may only marginally prolong survival and the current standard of therapy cures only a small fraction of patients. As a result, there is an unmet requirement for further study into the processes of glioblastoma pathogenesis and the discovery of novel therapeutic targets in novel signaling pathways implicated in the evolution of glioblastoma.
Collapse
Affiliation(s)
- Marsel Khabibov
- Department of Oncology, I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Airat Garifullin
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Yanis Boumber
- Division of Hematology/Oncology at The Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Karam Khaddour
- Department of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Manuel Fernandez
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Firat Khamitov
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Larisa Khalikova
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Natalia Kuznetsova
- Department of Neuro-Oncology, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Oleg Kit
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Leonid Kharin
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
10
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
11
|
Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:20538-20548. [PMID: 32788364 DOI: 10.1073/pnas.2002964117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.
Collapse
|
12
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
13
|
Yang K, Tang XJ, Xu FF, Liu JH, Tan YQ, Gao L, Sun Q, Ding X, Liu BH, Chen QX. PI3K/mTORC1/2 inhibitor PQR309 inhibits proliferation and induces apoptosis in human glioblastoma cells. Oncol Rep 2020; 43:773-782. [PMID: 32020210 PMCID: PMC7040887 DOI: 10.3892/or.2020.7472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of primary central nervous system tumor in adults, which has high mortality and morbidity rates, and short survival time, namely <15 months after the diagnosis and application of standard therapy, which includes surgery, radiation therapy and chemotherapy; thus, novel therapeutic strategies are imperative. The activation of the PI3K/AKT signaling pathway plays an important role in GBM. In the present study, U87 and U251 GBM cells were treated with the PI3K/mTORC1/2 inhibitor PQR309, and its effect on glioma cells was investigated. Cell Counting Kit-8 assay, 5-ethynyl-2′-deoxyuridine and colony formation assays revealed dose- and time-dependent cytotoxicity in glioma cells that were treated with PQR309. Flow cytometry and western blotting revealed that PQR309 can significantly induce tumor cell apoptosis and arrest the cell cycle in the G1 phase. Furthermore, the expression levels of AKT, phosphorylated (p)-AKT, Bcl-2, Bcl-xL, Bad, Bax, cyclin D1, cleaved caspase-3, MMP-9 and MMP-2 were altered. In addition, the migration and invasion of glioma cells, as detected by wound healing, migration and Transwell invasion assays, exhibited a marked suppression after treating the cells with PQR309. These results indicated that PQR309 exerts an antitumor effect by inhibiting proliferation, inducing apoptosis, inducing G1 cell cycle arrest, and inhibiting invasion and migration in human glioma cells. The present study provides evidence supportive of further development of PQR309 for adjuvant therapy of GBM.
Collapse
Affiliation(s)
- Kun Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiang-Jun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Feng-Fei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yin-Qiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiang Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
14
|
Daniel PM, Filiz G, Brown DV, Christie M, Waring PM, Zhang Y, Haynes JM, Pouton C, Flanagan D, Vincan E, Johns TG, Montgomery K, Phillips WA, Mantamadiotis T. PI3K activation in neural stem cells drives tumorigenesis which can be ameliorated by targeting the cAMP response element binding protein. Neuro Oncol 2019; 20:1344-1355. [PMID: 29718345 DOI: 10.1093/neuonc/noy068] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling is common in cancers, but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells (NSPCs), where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. Methods To investigate the role of the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, phosphatase and tensin homolog (PTEN), to NSPCs. Results Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features, but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased Wnt signaling, while loss of cAMP response element binding protein (CREB) in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. Conclusion Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.
Collapse
Affiliation(s)
- Paul M Daniel
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gulay Filiz
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel V Brown
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Christie
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul M Waring
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yi Zhang
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - John M Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dustin Flanagan
- Molecular Oncology Laboratory, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, The University of Melbourne, Parkville, Victoria, Australia.,Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Melbourne, Victoria, Australia.,School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Terrance G Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Subiaco, Western Australia, Australia
| | - Karen Montgomery
- Cancer Biology and Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Wayne A Phillips
- Cancer Biology and Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Theo Mantamadiotis
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Surgery (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Bresnick AR, Backer JM. PI3Kβ-A Versatile Transducer for GPCR, RTK, and Small GTPase Signaling. Endocrinology 2019; 160:536-555. [PMID: 30601996 PMCID: PMC6375709 DOI: 10.1210/en.2018-00843] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family includes eight distinct catalytic subunits and seven regulatory subunits. Only two PI3Ks are directly regulated downstream from G protein-coupled receptors (GPCRs): the class I enzymes PI3Kβ and PI3Kγ. Both enzymes produce phosphatidylinositol 3,4,5-trisposphate in vivo and are regulated by both heterotrimeric G proteins and small GTPases from the Ras or Rho families. However, PI3Kβ is also regulated by direct interactions with receptor tyrosine kinases (RTKs) and their tyrosine phosphorylated substrates, and similar to the class II and III PI3Ks, it binds activated Rab5. The unusually complex regulation of PI3Kβ by small and trimeric G proteins and RTKs leads to a rich landscape of signaling responses at the cellular and organismic levels. This review focuses first on the regulation of PI3Kβ activity in vitro and in cells, and then summarizes the biology of PI3Kβ signaling in distinct tissues and in human disease.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Pridham KJ, Le L, Guo S, Varghese RT, Algino S, Liang Y, Fajardin R, Rodgers CM, Simonds GR, Kelly DF, Sheng Z. PIK3CB/p110β is a selective survival factor for glioblastoma. Neuro Oncol 2019; 20:494-505. [PMID: 29016844 DOI: 10.1093/neuonc/nox181] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma (GBM) is difficult to treat. Phosphoinositide 3-kinase (PI3K) is an attractive therapeutic target for GBM; however, targeting this pathway to effectively treat GBM is not successful because the roles of PI3K isoforms remain to be defined. The aim of this study is to determine whether PIK3CB/p110β, but not other PI3K isoforms, is a biomarker for GBM recurrence and important for cell survival. Methods Gene expression and clinical relevance of PI3K genes in GBM patients were analyzed using online databases. Expression/activity of PI3K isoforms was determined using immunoblotting. PI3K genes were inhibited using short hairpin RNAs or isoform-selective inhibitors. Cell viability/growth was assessed by the MTS assay and trypan blue exclusion assay. Apoptosis was monitored using the caspase activity assay. Mouse GBM xenograft models were used to gauge drug efficacy. Results PIK3CB/p110β was the only PI3K catalytic isoform that significantly correlated with high incidence rate, risk, and poor survival of recurrent GBM. PIK3CA/p110α, PIK3CB/p110β, and PIK3CD/p110δ were differentially expressed in GBM cell lines and primary tumor cells derived from patient specimens, whereas PIK3CG/p110γ was barely detected. PIK3CB/p110β protein levels presented a stronger association with the activities of PI3K signaling than other PI3K isoforms. Blocking p110β deactivated PI3K signaling, whereas inhibition of other PI3K isoforms had no effect. Specific inhibitors of PIK3CB/p110β, but not other PI3K isoforms, remarkably suppressed viability and growth of GBM cells and xenograft tumors in mice, with minimal cytotoxic effects on astrocytes. Conclusions PIK3CB/p110β is a biomarker for GBM recurrence and selectively important for GBM cell survival.
Collapse
Affiliation(s)
- Kevin J Pridham
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Lamvy Le
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, Virginia
| | - Sujuan Guo
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia
| | - Robin T Varghese
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia
| | - Sarah Algino
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia
| | - Yanping Liang
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia
| | - Renee Fajardin
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia
| | - Cara M Rodgers
- Department of Neurosurgery, Carilion Clinic, Roanoke, Virginia
| | - Gary R Simonds
- Department of Neurosurgery, Carilion Clinic, Roanoke, Virginia
| | - Deborah F Kelly
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, Virginia.,Faculty of Health Science, Virginia Tech, Blacksburg, Virginia.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, Virginia.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia.,Faculty of Health Science, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
17
|
Xu PF, Yang JA, Liu JH, Yang X, Liao JM, Yuan FE, Liu BH, Chen QX. PI3Kβ inhibitor AZD6482 exerts antiproliferative activity and induces apoptosis in human glioblastoma cells. Oncol Rep 2018; 41:125-132. [PMID: 30542720 PMCID: PMC6278584 DOI: 10.3892/or.2018.6845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common type of primary brain tumour in adults, and its pathogenesis is particularly complicated. Among the many possible mechanisms underlying its pathogenesis, hyperactivation of the PI3K/Akt pathway is essential to the occurrence and development of glioma through the loss of PTEN or somatic activating mutations in PIK3CA. In the present study, we investigated the effect of the PI3Kβ inhibitor AZD6482 on glioma cells. The CCK-8 assay showed dose-dependent cytotoxicity in glioma cell lines treated with AZD6482. Additionally, AZD6482 treatment was found to significantly induce apoptosis and cell cycle arrest as detected using flow cytometry. Moreover, as shown using western blot analysis, the levels of p-AKT, p-GSK-3β, Bcl-2, and cyclin D1 were decreased after AZD6482 treatment. In addition, we found that AZD6482 inhibited the migration and invasion of glioma cells as detected by wound healing and Transwell invasion assays. Taken together, our findings indicate that AZD6482 exerts an antitumour effect by inhibiting proliferation and inducing apoptosis in human glioma cells. AZD6482 may be applied as an adjuvant therapy to improve the therapeutic efficacy of glioblastoma treatment.
Collapse
Affiliation(s)
- Peng-Fei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ji-An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan-En Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
18
|
Malaney P, Palumbo E, Semidey-Hurtado J, Hardee J, Stanford K, Kathiriya JJ, Patel D, Tian Z, Allen-Gipson D, Davé V. PTEN Physically Interacts with and Regulates E2F1-mediated Transcription in Lung Cancer. Cell Cycle 2018; 17:947-962. [PMID: 29108454 PMCID: PMC6103743 DOI: 10.1080/15384101.2017.1388970] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
PTEN phosphorylation at its C-terminal (C-tail) serine/threonine cluster negatively regulates its tumor suppressor function. However, the consequence of such inhibition and its downstream effects in driving lung cancer remain unexplored. Herein, we ascertain the molecular mechanisms by which phosphorylation compromises PTEN function, contributing to lung cancer. Replacement of the serine/threonine residues with alanine generated PTEN-4A, a phosphorylation-deficient PTEN mutant, which suppressed lung cancer cell proliferation and migration. PTEN-4A preferentially localized to the nucleus where it suppressed E2F1-mediated transcription of cell cycle genes. PTEN-4A physically interacted with the transcription factor E2F1 and associated with chromatin at gene promoters with E2F1 DNA-binding sites, a likely mechanism for its transcriptional suppression function. Deletion analysis revealed that the C2 domain of PTEN was indispensable for suppression of E2F1-mediated transcription. Further, we uncovered cancer-associated C2 domain mutant proteins that had lost their ability to suppress E2F1-mediated transcription, supporting the concept that these mutations are oncogenic in patients. Consistent with these findings, we observed increased PTEN phosphorylation and reduced nuclear PTEN levels in lung cancer patient samples establishing phosphorylation as a bona fide inactivation mechanism for PTEN in lung cancer. Thus, use of small molecule inhibitors that hinder PTEN phosphorylation is a plausible approach to activate PTEN function in the treatment of lung cancer. Abbreviations AKT V-Akt Murine Thymoma Viral Oncogene CA Cancer adjacent CDK1 Cyclin dependent kinase 1 CENPC-C Centromere Protein C ChIP Chromatin Immunoprecipitation co-IP Co-immunoprecipitation COSMIC Catalog of Somatic Mutations In Cancer CREB cAMP Responsive Element Binding Protein C-tail Carboxy terminal tail E2F1 E2F Transcription Factor 1 ECIS Electric Cell-substrate Impedance Sensing EGFR Epidermal Growth Factor Receptor GSI Gamma Secretase Inhibitor HDAC1 Histone Deacetylase 1 HP1 Heterochromatin protein 1 KAP1/TRIM28 KRAB-Associated Protein 1/Tripartite Motif Containing 28 MAF1 Repressor of RNA polymerase III transcription MAF1 homolog MCM2 Minichromosome Maintenance Complex Component 2 miRNA micro RNA MTF1 Metal-Regulatory Transcription Factor 1 PARP Poly(ADP-Ribose) Polymerase PD-1 Programmed Cell Death 1 PD-L1 Programmed Cell Death 1 Ligand 1 PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase PLK Polo-like Kinase pPTEN Phosphorylated PTEN PTEN Phosphatase and Tensin Homolog deleted on chromosome ten PTM Post Translational Modification Rad51 RAD51 Recombinase Rad52 RAD52 Recombinase RPA1 Replication protein A SILAC Stable Isotope Labeling with Amino Acids in Cell Culture SRF Serum Response Factor TKI Tyrosine Kinase inhbitors TMA Tissue Microarray TOP2A DNA Topoisomerase 2A.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | - Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | | | - Jamaal Hardee
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | | | | | - Deepal Patel
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | - Zhi Tian
- College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Diane Allen-Gipson
- College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine
- Lung Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| |
Collapse
|
19
|
Pridham KJ, Varghese RT, Sheng Z. The Role of Class IA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunits in Glioblastoma. Front Oncol 2017; 7:312. [PMID: 29326882 PMCID: PMC5736525 DOI: 10.3389/fonc.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) plays a critical role in the pathogenesis of cancer including glioblastoma, the most common and aggressive form of brain cancer. Targeting the PI3K pathway to treat glioblastoma has been tested in the clinic with modest effect. In light of the recent finding that PI3K catalytic subunits (PIK3CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, and PIK3CG/p110γ) are not functionally redundant, it is imperative to determine whether these subunits play divergent roles in glioblastoma and whether selectively targeting PI3K catalytic subunits represents a novel and effective strategy to tackle PI3K signaling. This article summarizes recent advances in understanding the role of PI3K catalytic subunits in glioblastoma and discusses the possibility of selective blockade of one PI3K catalytic subunit as a treatment option for glioblastoma.
Collapse
Affiliation(s)
- Kevin J Pridham
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
20
|
Smyth LM, Monson KR, Jhaveri K, Drilon A, Li BT, Abida W, Iyer G, Gerecitano JF, Gounder M, Harding JJ, Voss MH, Makker V, Ho AL, Razavi P, Iasonos A, Bialer P, Lacouture ME, Teitcher JB, Erinjeri JP, Katabi N, Fury MG, Hyman DM. A phase 1b dose expansion study of the pan-class I PI3K inhibitor buparlisib (BKM120) plus carboplatin and paclitaxel in PTEN deficient tumors and with dose intensified carboplatin and paclitaxel. Invest New Drugs 2017; 35:742-750. [PMID: 28281183 PMCID: PMC5591764 DOI: 10.1007/s10637-017-0445-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022]
Abstract
Purpose We previously reported the phase I dose escalation study of buparlisib, a pan-class 1A PI3K inhibitor, combined with platinum/taxane-based chemotherapy in patients with advanced solid tumors. The combination was well tolerated and promising preliminary efficacy was observed in PTEN deficient tumors. This phase I dose expansion study now evaluates buparlisib plus high dose carboplatin and paclitaxel in unselected patients with advanced solid tumors and buparlisib plus standard dose carboplatin and paclitaxel in patients with PTEN deficient tumors (ClinicalTrials.gov, NCT01297452). Methods There were two expansion cohorts: Cohort A received continuous buparlisib (100 mg/daily) orally plus high dose carboplatin AUC 6 and paclitaxel 200 mg/m2; Cohort B treated patients with PTEN deficient tumors only and they received the recommended phase II dose (RP2D) of continuous buparlisib (100 mg/daily) orally plus standard dose carboplatin AUC 5 and paclitaxel 175 mg/m2. Both cohorts received chemotherapy intravenously on day 1 of the 21-day cycle with pegfilgrastim support. Primary endpoint in Cohort A was to evaluate the safety and tolerability of chemotherapy dose intensification with buparlisib and in Cohort B was to describe preliminary efficacy of the combination among patients with tumors harboring a PTEN mutation or homozygous deletion. Results 14 subjects were enrolled, 7 in Cohort A and 7 in Cohort B. Dose reductions were required in 5 (71%) and 3 (43%) patients, in cohort A and B respectively. Grade 3 adverse events in Cohort A included lymphopenia (n = 5 [71%]), hyperglycemia (n = 2, [29%]), diarrhea (n = 2, [29%]) and rash (n = 2, [29%]) and in cohort B included lymphopenia (n = 5 [71%]), hyperglycemia (n = 4 [57%]) and neutropenia (n = 2 [29%]. The mean number of cycles on protocol was 6. The overall objective response rate was 14% (2 /14). No objective responses were observed in the PTEN deficient cohort. Four out of 6 patients with stable disease (SD) had SD or better for ≥6 cycles, 2 of which had PTEN deficient tumors. Conclusion The addition of buparlisib to high dose carboplatin and paclitaxel was not tolerable. The combination did not reveal significant clinical activity amongst a small and heterogenous group of PTEN deficient tumors.
Collapse
Affiliation(s)
- Lillian M Smyth
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA.
| | - Kelsey R Monson
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Komal Jhaveri
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Alexander Drilon
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Bob T Li
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Wassim Abida
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Gopa Iyer
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - John F Gerecitano
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Mrinal Gounder
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - James J Harding
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Martin H Voss
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Vicky Makker
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Alan L Ho
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Philip Bialer
- Department of Psychiatry, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Mario E Lacouture
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Jerrold B Teitcher
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Joseph P Erinjeri
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Matthew G Fury
- Oncology Clinical Sciences, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - David M Hyman
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY, USA
| |
Collapse
|
21
|
Yang X, Yang JA, Liu BH, Liao JM, Yuan FE, Tan YQ, Chen QX. TGX-221 inhibits proliferation and induces apoptosis in human glioblastoma cells. Oncol Rep 2017; 38:2836-2842. [PMID: 29048665 PMCID: PMC5780035 DOI: 10.3892/or.2017.5991] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma is the most common type of primary brain tumor in adults, with high mortality and morbidity rates. More effective therapeutic strategies are imperative. Previous studies have shown that the known p110-β-selective inhibitor TGX-221 blocks the activation of PKB/Akt in PTEN-deficient cells. We treated U87 and U251 glioblastoma cells with TGX-221 to determine the effect of TGX-221. We performed a Cell Counting Kit-8 (CCK-8) test, EDU staining and cell cycle distribution analysis and found that TGX-221 inhibited glioblastoma cell proliferation. Next, the effect of TGX-221 on cell apoptosis was investigated using flow cytometry. These results demonstrated that TGX-221 induced apoptosis in glioblastoma cells. Moreover, migration and invasion assays revealed that TGX-221 inhibited human glioblastoma cell migration and invasion. Collectively, our study revealed that TGX-221 could inhibit proliferation and induce apoptosis in glioblastoma cells.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Ji-An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Fan-En Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Yin-Qiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
Voigt A, Nowick K, Almaas E. A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma. PLoS Comput Biol 2017; 13:e1005739. [PMID: 28957313 PMCID: PMC5634634 DOI: 10.1371/journal.pcbi.1005739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 10/10/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Differential co-expression network analyses have recently become an important step in the investigation of cellular differentiation and dysfunctional gene-regulation in cell and tissue disease-states. The resulting networks have been analyzed to identify and understand pathways associated with disorders, or to infer molecular interactions. However, existing methods for differential co-expression network analysis are unable to distinguish between various forms of differential co-expression. To close this gap, here we define the three different kinds (conserved, specific, and differentiated) of differential co-expression and present a systematic framework, CSD, for differential co-expression network analysis that incorporates these interactions on an equal footing. In addition, our method includes a subsampling strategy to estimate the variance of co-expressions. Our framework is applicable to a wide variety of cases, such as the study of differential co-expression networks between healthy and disease states, before and after treatments, or between species. Applying the CSD approach to a published gene-expression data set of cerebral cortex and basal ganglia samples from healthy individuals, we find that the resulting CSD network is enriched in genes associated with cognitive function, signaling pathways involving compounds with well-known roles in the central nervous system, as well as certain neurological diseases. From the CSD analysis, we identify a set of prominent hubs of differential co-expression, whose neighborhood contains a substantial number of genes associated with glioblastoma. The resulting gene-sets identified by our CSD analysis also contain many genes that so far have not been recognized as having a role in glioblastoma, but are good candidates for further studies. CSD may thus aid in hypothesis-generation for functional disease-associations.
Collapse
Affiliation(s)
- André Voigt
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Human Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Eivind Almaas
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
23
|
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To SST, Li WP. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer 2017; 16:100. [PMID: 28592260 PMCID: PMC5463420 DOI: 10.1186/s12943-017-0670-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary tumor in the central nervous system. One of the most widely used chemotherapeutic drugs for GBM is temozolomide, which is a DNA-alkylating agent and its efficacy is dependent on MGMT methylation status. Little progress in improving the prognosis of GBM patients has been made in the past ten years, urging the development of more effective molecular targeted therapies. Hyper-activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently found in a variety of cancers including GBM, and it plays a central role in the regulation of tumor cell survival, growth, motility, angiogenesis and metabolism. Numerous PI3K inhibitors including pan-PI3K, isoform-selective and dual PI3K/mammalian target of rapamycin (mTOR) inhibitors have exhibited favorable preclinical results and entered clinical trials in a range of hematologic malignancies and solid tumors. Furthermore, combination of inhibitors targeting PI3K and other related pathways may exert synergism on suppressing tumor growth and improving patients' prognosis. Currently, only a handful of PI3K inhibitors are in phase I/II clinical trials for GBM treatment. In this review, we focus on the importance of PI3K/Akt pathway in GBM, and summarize the current development of PI3K inhibitors alone or in combination with other inhibitors for GBM treatment from preclinical to clinical studies.
Collapse
Affiliation(s)
- Hua-fu Zhao
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chang-peng Wu
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- College of Clinical Medicine, Anhui Medical University, Hefei, 230032 China
| | - Zhong-ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Shing-shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei-ping Li
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
| |
Collapse
|
24
|
Zhao HF, Wang J, Jiang HR, Chen ZP, To SST. PI3K p110β isoform synergizes with JNK in the regulation of glioblastoma cell proliferation and migration through Akt and FAK inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:78. [PMID: 27176481 PMCID: PMC4866398 DOI: 10.1186/s13046-016-0356-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glioblastoma multiforme is the most aggressive malignant primary brain tumor, characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Both PI3K/Akt and JNK pathways are essential to glioblastoma cell survival, migration and invasion. Due to their hyperactivation in glioblastoma cells, PI3K and JNK are promising targets for glioblastoma treatment. METHODS To investigate the combination effects of class IA PI3K catalytic isoforms (p110α, p110β and p110δ) and JNK inhibition on tumor cell growth and motility, glioblastoma cells and xenografts in nude mice were treated with isoform-selective PI3K inhibitors in combination with JNK inhibitor. RESULTS We showed that combined inhibition of these PI3K isoforms and JNK exerted divergent effects on the proliferation, migration and invasion of glioblastoma cells in vitro. Pharmacological inhibition of p110β or p110δ, but not p110α, displayed synergistic inhibitory effect with JNK inhibition on glioblastoma cell proliferation and migration through decreasing phosphorylation of Akt, FAK and zyxin, leading to blockade of lamellipodia and membrane ruffles formation. No synergistic effect on invasion was observed in all the combination treatment. In vivo, combination of p110β and JNK inhibitors significantly reduced xenograft tumor growth compared with single inhibitor alone. CONCLUSION Concurrent inhibition of p110β and JNK exhibited synergistic effects on suppressing glioblastoma cell proliferation and migration in vitro and xenograft tumor growth in vivo. Our data suggest that combined inhibition of PI3K p110β isoform and JNK may serve as a potent and promising therapeutic approach for glioblastoma multiforme.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Neurosurgery and Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Jing Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hao-Ran Jiang
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, 516003, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Shing-Shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
25
|
Tianqin G, Chunlei C, Jingjing W. Synergistic Anti-glioma Effects in Vitro and in Vivo of Enediyne Antibiotic Neocarzinostatin and Paclitaxel via Enhanced Growth Delay and Apoptosis-Induction. Biol Pharm Bull 2016; 39:1623-1630. [DOI: 10.1248/bpb.b16-00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Wang LD, Wu SH, Li YY, Gao XQ, He S, Wen FF. Expression of EGFR, PIK3CA and PIK3CB in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:4200-4207. [DOI: 10.11569/wcjd.v23.i26.4200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the expression of epidermal growth factor receptor (EGFR), PIK3CA and PIK3CB in colorectal cancer (CRC), to analyze the correlation between EGFR, PIK3CA and PIK3CB expression, and to discuss their role in the occurrence, development and targeted therapy of CRC.
METHODS: Immunohistochemistry was employed to detect the expression of EGFR, PIK3CA and PIK3CB in 120 CRC and 30 normal mucosa tissue sample (from the margin of the lesion > 5 cm), and the correlation between EGFR, PIK3CA and PIK3CB expression as well their relationship with clinicopathological factors were analyzed.
RESULTS: The positive expression rates of EGFR, PIK3CA and PIK3CB in CRC were 48%, 55.7% and 75.9%, respectively, which were significantly higher than those in tumor adjacent tissues (P < 0.05). In EGFR positive CRC tissues, 68.9% were PIK3CA positive and 72.4% was PIK3CB positive, while in EGFR negative CRC tissues, 43.5% were PIK3CA positive and 21.0% were PIK3CB positive. EGFR receptor expression was significantly different from the expression of PIK3CA and PIK3CB (P < 0.05). The expression of EGFR, PIK3CA and PIK3CB was positively correlated with tumor differentiation and lymph node metastasis in CRC (P < 0.05). Kaplan-Meier analysis revealed that the 5-year survival rate was significantly correlated with lymph node metastasis, EGFR, PIK3CA and PIK3CB expression. Multivariate analysis revealed that lymph node metastasis, EGFR, PIK3CA and PIK3CB expression could serve as independent predictive factors for overall survival.
CONCLUSION: EGFR, PIK3CA and PIK3CB are highly expressed in CRC, and their expression is closely correlated with tumor differentiation and lymph node metastasis. The high expression of PIK3CA and PIK3CB is not only correlated with the activation of EGFR, but also correlated with mutation by itself. The mutation of PIK3CA and PIK3CB genes in colorectal cancer may be a factor to influence therapies targeting EGFR in CRC.
Collapse
|
27
|
Cowley D, Pandya K, Khan I, Kerwin J, Owen K, Griner E. Registered report: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. eLife 2015; 4. [PMID: 26335297 PMCID: PMC4558562 DOI: 10.7554/elife.08245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/08/2015] [Indexed: 01/04/2023] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from ‘A coding-independent function of gene and pseudogene mRNAs regulates tumour biology’ by Poliseno et al. (2010), published in Nature in 2010. The key experiments to be replicated are reported in Figures 1D, 2F-H, and 4A. In these experiments, Poliseno and colleagues report microRNAs miR-19b and miR-20a transcriptionally suppress both PTEN and PTENP1 in prostate cancer cells (Figure 1D; Poliseno et al., 2010). Decreased expression of PTEN and/or PTENP1 resulted in downregulated PTEN protein levels (Figure 2H), downregulation of both mRNAs (Figure 2G), and increased tumor cell proliferation (Figure 2F; Poliseno et al., 2010). Furthermore, overexpression of the PTEN 3′ UTR enhanced PTENP1 mRNA abundance limiting tumor cell proliferation, providing additional evidence for the co-regulation of PTEN and PTENP1 (Figure 4A; Poliseno et al., 2010). The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife. DOI:http://dx.doi.org/10.7554/eLife.08245.001
Collapse
Affiliation(s)
- Dale Cowley
- TransViragen Inc, Chapel Hill, North Carolina
| | | | - Israr Khan
- Alamo Laboratories Inc, San Antonio, Texas
| | - John Kerwin
- Biotechnology Research and Education Program, University of Maryland, College Park, Maryland
| | - Kate Owen
- University of Virginia, Charlottesville, Virginia
| | - Erin Griner
- University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
28
|
Hopkins BD, Parsons RE. Molecular pathways: intercellular PTEN and the potential of PTEN restoration therapy. Clin Cancer Res 2015; 20:5379-83. [PMID: 25361917 DOI: 10.1158/1078-0432.ccr-13-2661] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphatase and Tensin homolog deleted on chromosome Ten (PTEN) acts as a tumor suppressor through both PI3K-dependent and -independent mechanisms. Reduced PTEN activity has been shown to affect not only tumor cell proliferation and survival but also the microenvironmental context in which nascent tumors develop. As a result of the multifaceted tumor-suppressive roles of PTEN, tumors evolve by selecting for clones in which PTEN activity is lost. PTEN activity within tumors can be modulated in numerous ways, including direct mutation, epigenetic regulation, and amplification or mutation of other proteins that can regulate or degrade PTEN. These events functionally prevent PTEN protein from acting within tumor cells. Paracrine roles for PTEN gene products (exosomal PTEN and PTEN-L) have recently been identified, through which PTEN gene products produced in one cell are able to enter recipient cells and contribute to PTEN functions. In preclinical models purified PTEN-L protein was able to enter tumor xenografts and downregulate PI3K signaling as well as cause tumor cell death. Here, we review the role of PTEN as a multifaceted tumor suppressor and reflect upon the potential for PTEN restoration therapy.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
29
|
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) include members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3-hydroxyl group of phosphatidylinositols and phosphoinositides. The resultant activation of many intracellular signalling pathways regulates various biological functions such as cell metabolism, survival, growth, proliferation, polarity, and apoptosis. PI3Ks are classified into three types: class I, II, and III. Of them, class I PI3K is most widely studied and plays an important role in the development and progression of tumours. In this review, we describe PI3K family members and their functions, especially the subunits of class I PI3K, their alterations in cancers, as well as PI3K inhibitors and their clinical trial status in cancer-targeted therapy.
Collapse
Affiliation(s)
- Wenli Cui
- 1Department of Pathology, Fudan University Shanghai Cancer Center 2Department of Oncology, Shanghai Medical College, Fudan University 3Institute of Pathology, Fudan University, Shanghai 4Department of Pathology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, PR China
| | | | | |
Collapse
|
30
|
Atif F, Yousuf S, Stein DG. Anti-tumor effects of progesterone in human glioblastoma multiforme: role of PI3K/Akt/mTOR signaling. J Steroid Biochem Mol Biol 2015; 146:62-73. [PMID: 24787660 DOI: 10.1016/j.jsbmb.2014.04.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 01/24/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor with a mean patient survival of 13-15 months despite surgical resection, radiation therapy and standard-of-care chemotherapy. We investigated the chemotherapeutic effects of the hormone progesterone (P4) on the growth of human GBM in four genetically different cell lines (U87MG, U87dEGFR, U118MG, LN-229) in vitro and in a U87MG subcutaneous xenograft mouse model. At high concentrations (20, 40, and 80 μM), P4 significantly (P<0.05) decreased tumor cell viability in all cell lines except LN-229. This effect was not blocked by the P4 receptor antagonist RU468. Conversely, at low physiological concentrations (0.1, 1, and 5 μM) P4 showed a proliferative effect in all cell lines which was blocked by RU486. In nude mice, P4 (100 and 200 mg/kg) inhibited tumor growth significantly (P<0.05) over 5 weeks of treatment and extended survival time of tumor-bearing mice by 60% without signs of systemic toxicity. P4 suppressed tumor vascularization as indicated by the expression of CD31, vascular endothelial growth factor and matrix metalloproteinase-9. Apoptosis in tumor tissue was detected by the expression of cleaved caspase-3, BCl-2, BAD and p53 proteins and confirmed by TUNEL assay. P4 treatment also suppressed PI3K/Akt/mTOR signaling, which regulates tumor growth, as demonstrated by the suppression of proliferating cell nuclear antigen. Our data can be interpreted to suggest that P4 suppresses the growth of human GBM cells both in vitro and in vivo and enhances survival time in mice without any demonstrable side effects. This article is part of a Special Issue entitled 'Sex steroids and brain disorders'.
Collapse
Affiliation(s)
- Fahim Atif
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA.
| | - Seema Yousuf
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Waugh MG. Chromosomal Instability and Phosphoinositide Pathway Gene Signatures in Glioblastoma Multiforme. Mol Neurobiol 2014; 53:621-630. [PMID: 25502460 PMCID: PMC4703635 DOI: 10.1007/s12035-014-9034-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/30/2014] [Indexed: 12/29/2022]
Abstract
Structural rearrangements of chromosome 10 are frequently observed in glioblastoma multiforme and over 80 % of tumour samples archived in the catalogue of somatic mutations in cancer database had gene copy number loss for PI4K2A which encodes phosphatidylinositol 4-kinase type IIalpha. PI4K2A loss of heterozygosity mirrored that of PTEN, another enzyme that regulates phosphoinositide levels and also PIK3AP1, MINPP1, INPP5A and INPP5F. These results indicated a reduction in copy number for a set of phosphoinositide signalling genes that co-localise to chromosome 10q. This analysis was extended to a panel of phosphoinositide pathway genes on other chromosomes and revealed a number of previously unreported associations with glioblastoma multiforme. Of particular note were highly penetrant copy number losses for a group of X-linked phosphoinositide phosphatase genes OCRL, MTM1 and MTMR8; copy number amplifications for the chromosome 19 genes PIP5K1C, AKT2 and PIK3R2, and also for the phospholipase C genes PLCB1, PLCB4 and PLCG1 on chromosome 20. These mutations are likely to affect signalling and trafficking functions dependent on the PI(4,5)P2, PI(3,4,5)P3 and PI(3,5)P2 lipids as well as the inositol phosphates IP3, IP5 and IP6. Analysis of flanking genes with functionally unrelated products indicated that chromosomal instability as opposed to a phosphoinositide-specific process underlay this pattern of copy number variation. This in silico study suggests that in glioblastoma multiforme, karyotypic changes have the potential to cause multiple abnormalities in sets of genes involved in phosphoinositide metabolism and this may be important for understanding drug resistance and phosphoinositide pathway redundancy in the advanced disease state.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
32
|
Dean SJ, Holden KR, Dwivedi A, Dupont BR, Lyons MJ. Acquired microcephaly in blepharophimosis-ptosis-epicanthus inversus syndrome because of an interstitial 3q22.3q23 deletion. Pediatr Neurol 2014; 50:636-9. [PMID: 24725350 DOI: 10.1016/j.pediatrneurol.2014.01.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/10/2014] [Accepted: 01/18/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Blepharophimosis-ptosis-epicanthus inversus syndrome is an autosomal dominant condition because of mutations or deletions of the FOXL2 gene. Microcephaly is not associated with FOXL2 mutations but has been reported in individuals with chromosome 3q deletions, which include the FOXL2 gene and other contiguous genes. The ATR gene has been reported as a candidate gene for microcephaly in individuals with contiguous deletion of chromosome 3q involving the FOXL2 gene. PATIENT We describe a girl with blepharophimosis-ptosis-epicanthus inversus syndrome along with acquired microcephaly and intellectual disability. RESULTS Our patient had a deletion of chromosome 3q22.2q23, which does not include the ATR gene but does include the PIK3CB gene as a candidate gene for microcephaly. CONCLUSION We propose that the PIK3CB gene included in our patient's chromosome 3q deletion may be the gene responsible for microcephaly and other patients with blepharophimosis-ptosis-epicanthus inversus syndrome because of a chromosome 3q deletion.
Collapse
Affiliation(s)
- Sarah J Dean
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Kenton R Holden
- Neurosciences (Neurology) and Pediatrics, Medical University of South Carolina, Charleston, South Carolina; Greenwood Genetic Center, Greenwood, South Carolina
| | - Alka Dwivedi
- Greenwood Genetic Center, Greenwood, South Carolina
| | | | | |
Collapse
|
33
|
Li XQ, Ouyang ZG, Zhang SH, Liu H, Shang Y, Li Y, Zhen YS. Synergy of enediyne antibiotic lidamycin and temozolomide in suppressing glioma growth with potentiated apoptosis induction. J Neurooncol 2014; 119:91-100. [PMID: 24842385 DOI: 10.1007/s11060-014-1477-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
The present work evaluated the synergistic efficacy of an enediyne antibiotic lidamycin (LDM) plus temozolomide (TMZ) against glioma in vitro and in vivo. LDM plus TMZ inhibited the proliferations of rat glioma C6 cells and human glioma U87 cells more efficiently than the single usage of LDM or TMZ. In addition, LDM also potentiated the apoptosis inductions by TMZ in rat C6 cells and human U87 cells. Meanwhile, the results of TdT-mediated dUTP Nick End Labeling assay for subcutaneous U87 tumor sections indicated an enhanced apoptosis induction in vivo by LDM plus TMZ, which confirmed the high potency of the combination for glioma therapy. As determined by Western blot, apoptosis signal pathways in C6 cells and U87 cells were markedly affected by the synergistic alteration of P53, bax, procaspase 3, and bcd-2 expression. In both subcutaneous U87 xenograft and C6 intracerebral orthotopic implant model, TMZ-induced glioma growth suppression was dramatically potentiated by LDM. As shown, the combination therapy efficiently reduced the tumor volumes and tumor weights of the human glioma U87 xenograft. Kaplan-Meier assay revealed that LDM plus TMZ dramatically prolonged the life span of C6 intracerebral tumor-bearing rats with decreased tumor size. This study indicates that the combination of LDM with TMZ might be a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Xing-Qi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Dillon LM, Miller TW. Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets 2014; 15:65-79. [PMID: 24387334 PMCID: PMC4310752 DOI: 10.2174/1389450114666140106100909] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/30/2013] [Accepted: 11/02/2013] [Indexed: 02/08/2023]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is one of the most frequently disrupted tumor suppressors in cancer. The lipid phosphatase activity of PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway to repress tumor cell growth and survival. In the nucleus, PTEN promotes chromosome stability and DNA repair. Consequently, loss of PTEN function increases genomic instability. PTEN deficiency is caused by inherited germline mutations, somatic mutations, epigenetic and transcriptional silencing, post-translational modifications, and protein-protein interactions. Given the high frequency of PTEN deficiency across cancer subtypes, therapeutic approaches that exploit PTEN loss-of-function could provide effective treatment strategies. Herein, we discuss therapeutic strategies aimed at cancers with loss of PTEN function, and the challenges involved in treating patients afflicted with such cancers. We review preclinical and clinical findings, and highlight novel strategies under development to target PTENdeficient cancers.
Collapse
Affiliation(s)
| | - Todd W Miller
- Dartmouth-Hitchcock Medical Center, One Medical Center Dr. HB-7936, Lebanon, NH 03756, USA.
| |
Collapse
|
35
|
Current World Literature. Curr Opin Oncol 2013; 25:99-104. [DOI: 10.1097/cco.0b013e32835c1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Luo GX, Cai J, Lin JZ, Luo WS, Luo HS, Jiang YY, Zhang Y. Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells. Asian Pac J Cancer Prev 2012; 13:6211-6. [DOI: 10.7314/apjcp.2012.13.12.6211] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Abstract
Although it has been known for some time that PTEN-null tumors require expression of the p110β isoform of phosphoinositide 3-kinase for growth, the corollary demonstration that small-molecule inhibitors of p110β are effective drugs for such tumors has not been shown. This has now been rectified by the demonstration that the TGX221 analogue KIN-193 is effective in mouse xenografts of HCC70 and PC3 human tumor cell lines.
Collapse
Affiliation(s)
- Peter R Shepherd
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
38
|
A drug targeting only p110α can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types. Biochem J 2011; 438:53-62. [PMID: 21668414 PMCID: PMC3174055 DOI: 10.1042/bj20110502] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic alterations in PI3K (phosphoinositide 3-kinase) signalling are common in cancer and include deletions in PTEN (phosphatase and tensin homologue deleted on chromosome 10), amplifications of PIK3CA and mutations in two distinct regions of the PIK3CA gene. This suggests drugs targeting PI3K, and p110α in particular, might be useful in treating cancers. Broad-spectrum inhibition of PI3K is effective in preventing growth factor signalling and tumour growth, but suitable inhibitors of p110α have not been available to study the effects of inhibiting this isoform alone. In the present study we characterize a novel small molecule, A66, showing the S-enantiomer to be a highly specific and selective p110α inhibitor. Using molecular modelling and biochemical studies, we explain the basis of this selectivity. Using a panel of isoform-selective inhibitors, we show that insulin signalling to Akt/PKB (protein kinase B) is attenuated by the additive effects of inhibiting p110α/p110β/p110δ in all cell lines tested. However, inhibition of p110α alone was sufficient to block insulin signalling to Akt/PKB in certain cell lines. The responsive cell lines all harboured H1047R mutations in PIK3CA and have high levels of p110α and class-Ia PI3K activity. This may explain the increased sensitivity of these cells to p110α inhibitors. We assessed the activation of Akt/PKB and tumour growth in xenograft models and found that tumours derived from two of the responsive cell lines were also responsive to A66 in vivo. These results show that inhibition of p110α alone has the potential to block growth factor signalling and reduce growth in a subset of tumours.
Collapse
|
39
|
Scholl SME, Kenter G, Kurzeder C, Beuzeboc P. Pathway profiling and rational trial design for studies in advanced stage cervical carcinoma: a review and a perspective. ISRN ONCOLOGY 2011; 2011:403098. [PMID: 22091418 PMCID: PMC3195803 DOI: 10.5402/2011/403098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/30/2011] [Indexed: 12/21/2022]
Abstract
Multiple genetic abnormalities will have occurred in advanced cervical cancer and multiple targeting is likely to be needed to control tumor growth. To date, dominant therapeutic targets under scrutiny for cervical cancer treatment have been EGFR pathway and angiogenesis inhibition as well as anti-HPV vaccines. The potentially most effective targets to be blocked may be downstream from the membrane receptor or at the level of the nucleus. Alterations of the pathways involved in DNA repair and in checkpoint activations, as well as the specific site of HPV genome integration, appear worth assessing. For genetic mutational analysis, complete exon sequencing may become the norm in the future but at this stage frequent mutations (that matter) can be verified by PCR analysis. A precise documentation of relevant alterations of a large spectrum of protein biomarkers can be carried out by reverse phase protein array (RPPA) or by multiplex analysis. Clinical decision-making on the drug(s) of choice as a function of the biological alteration will need input from bio-informatics platforms as well as novel statistical designs. Endpoints are yet to be defined such as the loss (or reappearance) of a predictive biomarker. Single or dual targeting needs to be explored first in relevant preclinical animal and in xenograft models prior to clinical deployment.
Collapse
Affiliation(s)
- Susy M E Scholl
- Département d'Oncologie, Institut Curie, 75005 Paris, France
| | | | | | | |
Collapse
|