1
|
Ghosh N, Chatterjee D, Datta A. Tumor heterogeneity and resistance in glioblastoma: the role of stem cells. Apoptosis 2025:10.1007/s10495-025-02123-y. [PMID: 40375039 DOI: 10.1007/s10495-025-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant brain tumor, characterized by its heterogeneity and the presence of glioblastoma stem cells (GSCs). GSCs are a subpopulation of cells within the tumor that possess self-renewal and differentiation capabilities, contributing to tumor initiation, progression, and recurrence. This review explores the unique biological properties of GSCs, including their molecular markers, signalling pathways, and interactions with the tumor microenvironment. We discuss the mechanisms by which GSCs evade conventional therapies, such as enhanced DNA repair and metabolic plasticity, which complicate treatment outcomes. Furthermore, we highlight recent advancements in identifying novel biomarkers and therapeutic targets that may improve the efficacy of treatments aimed at GSCs. The potential of targeted therapies, including immunotherapy and combination strategies, is also examined to overcome the challenges posed by GSCs. Ultimately, a deeper understanding of GSC biology is essential for developing personalized treatment approaches that can enhance patient outcomes in glioblastoma.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Neuroscience Technology, School of Allied Health Sciences, Yenepoya, Mangalore, Karnataka, India
| | | | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, India.
| |
Collapse
|
2
|
Chagas PS, Veronez LC, de Sousa GR, Cruzeiro GAV, Corrêa CAP, Saggioro FP, de Paula Queiroz RG, Marie SKN, Brandalise SR, Cardinalli IA, Yunes JA, Júnior CGC, Machado HR, Santos MV, Scrideli CA, Tone LG, Valera ET. Musashi-1 regulates cell cycle and confers resistance to cisplatin treatment in Group 3/4 medulloblastomas cells. Hum Cell 2023; 36:2129-2139. [PMID: 37460706 DOI: 10.1007/s13577-023-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 10/20/2023]
Abstract
Groups (Grp) 3 and 4 are aggressive molecular subgroups of medulloblastoma (MB), with high rates of leptomeningeal dissemination. To date, there is still a paucity of biomarkers for these subtypes of MBs. In this study, we investigated the clinical significance and biological functions of Musashi-1 (MSI1) in Grp3 and Grp4-MBs. First, we assessed the expression profile of MSI1 in 59 primary MB samples (15-WNT, 18-SHH, 9-Grp3, and 17-Grp4 subgroups) by qRT-PCR. MSI1 mRNA expression levels were also validated in an additional public dataset of MBs (GSE85217). The ROC curve was used to validate the diagnostic standards of MSI1 expression. Next, the potential correlated cell-cycle genes were measured by RNA-Seq. Cell cycle, cell viability, and apoptosis were evaluated in a Grp3/Grp4 MB cell line after knockdown of MSI1 and cisplatin treatment. We identified an overexpression of MSI1 with a high accuracy to discriminate Grp3/Grp4-MBs from non-Grp3/Grp4-MBs. We identified that MSI1 knockdown not only triggered transcriptional changes in the cell-cycle pathway, but also affected G2/M phase in vitro, supporting the role of knockdown of MSI1 in cell-cycle arrest. Finally, MSI1 knockdown decreased cell viability and sensitized D283-Med cells to cisplatin treatment by enhancing cell apoptosis. Based on these findings, we suggest that MSI1 modulates cell-cycle progression and may play a role as biomarker for Grp3/Grp4-MBs. In addition, MSI1 knockdown combined with cisplatin may offer a potential strategy to be further explored in Grp3/Grp4-MBs.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil.
| | - Luciana Chain Veronez
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Graziella Ribeiro de Sousa
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
- Department of Pediatric Oncology, Harvard Medical School-Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, Ribeirão Preto Medical School, 3900 Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pathology, Rede D'Or São Luiz Hospital, Rua das Perobas, São Paulo, SP, 04321-120, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Cellular and Molecular Biology, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Volpon Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av., Ribeirão Preto, SP, 390014049-900, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Lachinani L, Forouzanfar M, Dormiani K, Soltani BM, Dolatshahi K, Hakimian SM, Dokanehiifard S, Nasr-Esfahani MH. The oncogene Musashi1 encodes novel miRNAs in breast cancer. Sci Rep 2023; 13:13710. [PMID: 37607966 PMCID: PMC10444885 DOI: 10.1038/s41598-023-40666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
RNA-binding protein Musashi1 (MSI1) shows an increased expression level in several cancers and has been introduced as a prognostic marker in some malignancies. It is expected that if any miRNA is encoded by this gene, it might have a role in cancer development or could be considered as a prognostic biomarker. Accordingly, in this study, we aimed to find novel miRNA(s) inside the intronic regions of the MSI1 gene. Here, we report two novel miRNAs within intron 4 of MSI1 gene, named MSM2 and MSM3, which were selected among several miRNA precursors predicted by bioinformatic studies. For experimental analysis, corresponding precursor miRNAs were transfected into HEK293T cells and exogenous expression of the mature miRNAs were detected. Two mature miRNAs, MSM3-3p and MSM3-5p were generated by MSM3 precursor and one, MSM2-5p was derived from MSM2. Besides, endogenous expression of MSM2-5p and MSM3-3p was detected in MCF-7 and SH-SY5Y cell lines. Expression of both mature miRNAs was also detected in clinical samples of breast cancer. Additionally, the interaction between the MSM3-3p and 3'UTR region of PDE11A was confirmed by dual luciferase assay. Overall, our data demonstrated that MSI1 gene encodes two novel miRNAs in breast cancer cells.
Collapse
Affiliation(s)
- Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kamran Dolatshahi
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sayyed Mohammadreza Hakimian
- Ordibehesht Breast Clinic, Isfahan, Iran
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadat Dokanehiifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Biomedical Research Building, Miami, FL, USA
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
4
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
5
|
Kameda-Smith MM, Zhu H, Luo EC, Suk Y, Xella A, Yee B, Chokshi C, Xing S, Tan F, Fox RG, Adile AA, Bakhshinyan D, Brown K, Gwynne WD, Subapanditha M, Miletic P, Picard D, Burns I, Moffat J, Paruch K, Fleming A, Hope K, Provias JP, Remke M, Lu Y, Reya T, Venugopal C, Reimand J, Wechsler-Reya RJ, Yeo GW, Singh SK. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat Commun 2022; 13:7506. [PMID: 36473869 PMCID: PMC9726987 DOI: 10.1038/s41467-022-35118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.
Collapse
Affiliation(s)
- Michelle M. Kameda-Smith
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Helen Zhu
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428University Health Network, Toronto, ON Canada ,grid.494618.6Vector Institute Toronto, Toronto, ON Canada
| | - En-Ching Luo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Yujin Suk
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Agata Xella
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Brian Yee
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Chirayu Chokshi
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Sansi Xing
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Frederick Tan
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Raymond G. Fox
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Ashley A. Adile
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - David Bakhshinyan
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Kevin Brown
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - William D. Gwynne
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Minomi Subapanditha
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada
| | - Petar Miletic
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Daniel Picard
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ian Burns
- grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jason Moffat
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kamil Paruch
- grid.10267.320000 0001 2194 0956Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ,grid.483343.bInternational Clinical Research Center, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Adam Fleming
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Pediatrics, Hematology and Oncology Division, Hamilton, Canada
| | - Kristin Hope
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - John P. Provias
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Neuropathology, Hamilton, Canada
| | - Marc Remke
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yu Lu
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Tannishtha Reya
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Chitra Venugopal
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Jüri Reimand
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J. Wechsler-Reya
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Gene W. Yeo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Sheila K. Singh
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227McMaster University, Department of Pediatrics, Hamilton, Canada
| |
Collapse
|
6
|
Zhou C, Chen Q, Chen Y, Qin CF. Oncolytic Zika Virus: New Option for Glioblastoma Treatment. DNA Cell Biol 2022. [DOI: 10.1089/dna.2022.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
7
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Polat B, Wohlleben G, Kosmala R, Lisowski D, Mantel F, Lewitzki V, Löhr M, Blum R, Herud P, Flentje M, Monoranu CM. Differences in stem cell marker and osteopontin expression in primary and recurrent glioblastoma. Cancer Cell Int 2022; 22:87. [PMID: 35183162 PMCID: PMC8858483 DOI: 10.1186/s12935-022-02510-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells. Methods Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan–Meier analysis, a possible association with overall survival by marker expression was investigated. Results Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08). Conclusions Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02510-4.
Collapse
|
9
|
Yang YP, Lee ACL, Lin LT, Chen YW, Huang PI, Ma HI, Chen YC, Lo WL, Lan YT, Fang WL, Wang CY, Liu YY, Hsu PK, Lin WC, Li CP, Chen MT, Chien CS, Wang ML. Strategic Decoy Peptides Interfere with MSI1/AGO2 Interaction to Elicit Tumor Suppression Effects. Cancers (Basel) 2022; 14:cancers14030505. [PMID: 35158774 PMCID: PMC8833744 DOI: 10.3390/cancers14030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Peptide drugs that can specifically target undesirable protein–protein interactions that lead to oncogenic developments have emerged as the next era of future medicine for cancers. To combat GBM tumor progression, our study offers an alternative therapeutic strategy via targeting the protein–protein interaction between MSI1 and AGO2 with synthetic peptides identified from the C-terminus of MSI1 in peptide arrays. Our present data revealed for the first time that peptidic disruption to the MSI1/AGO2 complex known for promoting cancer stemness and progression could lead to encouraging therapeutic efficacy at both in vitro and in vivo levels. The significantly suppressed tumor growth and prolonged survival rates in PDX tumor models by decoy peptides evidently provided a new rationale for stratifying patients with MSI1/AGO2-targeted therapeutics. Abstract Peptide drugs that target protein–protein interactions have attracted mounting research efforts towards clinical developments over the past decades. Increasing reports have indicated that expression of Musashi 1 (MSI1) is tightly correlated to high grade of cancers as well as enrichment of cancer stem cells. Treatment failure in malignant tumors glioblastoma multiform (GBM) had also been correlated to CSC-regulating properties of MSI1. It is thus imperative to develop new therapeutics that could effectively improve current regimens used in clinics. MSI1 and AGO2 are two emerging oncogenic molecules that both contribute to GBM tumorigenesis through mRNA regulation of targets involved in apoptosis and cell cycle. In this study, we designed peptide arrays covering the C-terminus of MSI1 and identified two peptides (Pep#11 and Pep#26) that could specifically interfere with the binding with AGO2. Our Biacore analyses ascertained binding between the identified peptides and AGO2. Recombinant reporter system Gaussian luciferase and fluorescent bioconjugate techniques were employed to determine biological functions and pharmacokinetic characteristics of these two peptides. Our data suggested that Pep#11 and Pep#26 could function as decoy peptides by mimicking the interaction function of MSI1 with its binding partner AGO2 in vitro and in vivo. Further experiments using GMB animal models corroborated the ability of Pep#11 and Pep#26 in disrupting MSI1/AGO2 interaction and consequently anti-tumorigenicity and prolonged survival rates. These striking therapeutic efficacies orchestrated by the synthetic peptides were attributed to the decoy function to C-terminal MSI1, especially in malignant brain tumors and glioblastoma.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Andy Chi-Lung Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Yi-Wei Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Pin-I Huang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan;
| | - Yi-Chen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
| | - Wen-Liang Lo
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Liang Fang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chien-Ying Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Physical Education and Health, University of Taipei, Taipei 111, Taiwan
| | - Yung-Yang Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Chest Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Po-Kuei Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Chung-Pin Li
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Teh Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Correspondence: (C.-S.C.); (M.-L.W.); Tel.: +886-2-5568-1156 (M.-L.W.); Fax: +886-2-2875-7435 (M.-L.W.)
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-S.C.); (M.-L.W.); Tel.: +886-2-5568-1156 (M.-L.W.); Fax: +886-2-2875-7435 (M.-L.W.)
| |
Collapse
|
10
|
Dual Knockdown of Musashi RNA-Binding Proteins MSI-1 and MSI-2 Attenuates Putative Cancer Stem Cell Characteristics and Therapy Resistance in Ovarian Cancer Cells. Int J Mol Sci 2021; 22:ijms222111502. [PMID: 34768932 PMCID: PMC8584030 DOI: 10.3390/ijms222111502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
In ovarian cancer, therapy resistance mechanisms complicate cancer cell eradication. Targeting Musashi RNA-binding proteins (MSI) may increase therapeutic efficacy. Database analyses were performed to identify gene expression associations between MSI proteins and key therapy resistance and cancer stem cell (CSC) genes. Then, ovarian cancer cells were subjected to siRNA-based dual knockdown of MSI-1 and MSI-2. CSC and cell cycle gene expression was investigated using quantitative polymerase chain reaction (qPCR), western blots, and flow cytometry. Metabolic activity and chemoresistance were assessed by MTT assay. Clonogenic assays were used to quantify cell survival post-irradiation. Database analyses demonstrated positive associations between MSI proteins and putative CSC markers NOTCH, MYC, and ALDH4A1 and negative associations with NOTCH inhibitor NUMB. MSI-2 expression was negatively associated with the apoptosis regulator p21. MSI-1 and MSI-2 were positively correlated, informing subsequent dual knockdown experiments. After MSI silencing, CSC genes were downregulated, while cell cycle progression was reduced. Metabolic activity was decreased in some cancer cells. Both chemo- and radioresistance were reduced after dual knockdown, suggesting therapeutic potential. Dual knockdown of MSI proteins is a promising venue to impede tumor growth and sensitize ovarian cancer cells to irradiation and chemotherapy.
Collapse
|
11
|
Prognostic role of Ki-67 in glioblastomas excluding contribution from non-neoplastic cells. Sci Rep 2021; 11:17918. [PMID: 34504133 PMCID: PMC8429554 DOI: 10.1038/s41598-021-95958-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Survival of glioblastoma patients varies and prognostic markers are important in the clinical setting. With digital pathology and improved immunohistochemical multiplexing becoming a part of daily diagnostics, we investigated the prognostic value of the Ki-67 labelling index (LI) in glioblastomas more precisely than previously by excluding proliferation in non-tumor cells from the analysis. We investigated the Ki-67 LI in a well-annotated population-based glioblastoma patient cohort (178 IDH-wildtype, 3 IDH-mutated). Ki-67 was identified in full tumor sections with automated digital image analysis and the contribution from non-tumor cells was excluded using quantitative double-immunohistochemistry. For comparison of the Ki-67 LI between WHO grades (II-IV), 9 IDH-mutated diffuse astrocytomas and 9 IDH-mutated anaplastic astrocytomas were stained. Median Ki-67 LI increased with increasing WHO grade (median 2.7%, 6.4% and 27.5%). There was no difference in median Ki-67 LI between IDH-mutated and IDH-wildtype glioblastomas (p = 0.9) and Ki-67 LI was not associated with survival in glioblastomas in neither univariate (p = 0.9) nor multivariate analysis including MGMT promoter methylation status and excluding IDH-mutated glioblastomas (p = 0.2). Ki-67 may be of value in the differential diagnostic setting, but it must not be over-interpreted in the clinico-pathological context.
Collapse
|
12
|
Liu X, Chen JY, Chien Y, Yang YP, Chen MT, Lin LT. Overview of the molecular mechanisms of migration and invasion in glioblastoma multiforme. J Chin Med Assoc 2021; 84:669-677. [PMID: 34029218 DOI: 10.1097/jcma.0000000000000552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is one of the most devastating cancers, with an approximate median survival of only 16 months. Although some new insights into the fantastic heterogeneity of this kind of brain tumor have been revealed in recent studies, all subclasses of GBM still demonstrate highly aggressive invasion properties to the surrounding parenchyma. This behavior has become the main obstruction to current curative therapies as invasive GBM cells migrate away from these foci after surgical therapies. Therefore, this review aimed to provide a relatively comprehensive study of GBM invasion mechanisms, which contains an intricate network of interactions and signaling pathways with the extracellular matrix (ECM). Among these related molecules, TGF-β, the ECM, Akt, and microRNAs are most significant in terms of cellular procedures related to GBM motility and invasion. Moreover, we also review data indicating that Musashi-1 (MSI1), a neural RNA-binding protein (RBP), regulates GBM motility and invasion, maintains stem cell populations in GBM, and promotes drug-resistant GBM phenotypes by stimulating necessary oncogenic signaling pathways through binding and regulating mRNA stability. Importantly, these necessary oncogenic signaling pathways have a close connection with TGF-β, ECM, and Akt. Thus, it appears promising to find MSI-specific inhibitors or RNA interference-based treatments to prevent the actions of these molecules despite using RBPs, which are known as hard therapeutic targets. In summary, this review aims to provide a better understanding of these signaling pathways to help in developing novel therapeutic approaches with better outcomes in preclinical studies.
Collapse
Affiliation(s)
- Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ju-Yu Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ming-Teh Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Education & Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Health Technology and Informatics, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Bley N, Hmedat A, Müller S, Rolnik R, Rausch A, Lederer M, Hüttelmaier S. Musashi-1-A Stemness RBP for Cancer Therapy? BIOLOGY 2021; 10:407. [PMID: 34062997 PMCID: PMC8148009 DOI: 10.3390/biology10050407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein Musashi-1 (MSI1) promotes stemness during development and cancer. By controlling target mRNA turnover and translation, MSI1 is implicated in the regulation of cancer hallmarks such as cell cycle or Notch signaling. Thereby, the protein enhanced cancer growth and therapy resistance to standard regimes. Due to its specific expression pattern and diverse functions, MSI1 represents an interesting target for cancer therapy in the future. In this review we summarize previous findings on MSI1's implications in developmental processes of other organisms. We revisit MSI1's expression in a set of solid cancers, describe mechanistic details and implications in MSI1 associated cancer hallmark pathways and highlight current research in drug development identifying the first MSI1-directed inhibitors with anti-tumor activity.
Collapse
Affiliation(s)
- Nadine Bley
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Ali Hmedat
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Simon Müller
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Robin Rolnik
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Alexander Rausch
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Marcell Lederer
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Stefan Hüttelmaier
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| |
Collapse
|
14
|
Petterson SA, Sørensen MD, Kristensen BW. Expression Profiling of Primary and Recurrent Glioblastomas Reveals a Reduced Level of Pentraxin 3 in Recurrent Glioblastomas. J Neuropathol Exp Neurol 2021; 79:975-985. [PMID: 32791527 DOI: 10.1093/jnen/nlaa088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBM) are highly infiltrative tumors and despite intensive treatment tumor recurrence is inevitable. The immune microenvironment in recurrent GBM is poorly characterized, but it is potentially influenced by therapeutic interventions with surgery, radiotherapy, and chemotherapy. The aim of this study was to obtain a deeper insight in the immune microenvironment in primary and recurrent GBM. Primary and recurrent glioblastoma samples from 18 patients were identified and expression profiling of 770 myeloid innate immune-related markers was performed. Leukemia inhibitory factor and pentraxin 3 were expressed at lower levels in recurrent tumors. Using in silico data and immunohistochemical staining, this was validated for pentraxin 3. Both high leukemia inhibitory factor and pentraxin 3 expression appeared to be associated with shorter survival in primary and recurrent GBM using in silico data. In primary GBM, gene set analysis also showed higher expression of genes involved in metabolism, extracellular matrix remodeling and complement activation, whereas genes involved in T cell activation and checkpoint signaling were expressed at higher levels in recurrent GBM. The reduced level of pentraxin 3 in recurrent glioblastomas and the gene set analysis results suggest an altered microenvironment in recurrent GBM that might be more active.
Collapse
Affiliation(s)
- Stine Asferg Petterson
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Liu X, Zhang Y, Zheng P, Cui N. Msi1 inhibits cervical cancer cell apoptosis by downregulating BAK through AKT signaling. J Cancer 2021; 12:2422-2429. [PMID: 33758618 PMCID: PMC7974892 DOI: 10.7150/jca.52950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Musashi-1 (Msi1) is an RNA binding protein that functions as a regulator in multiple carcinomas. Our previous study demonstrated that Msi1 could promote the proliferation of cervical cancer cells by targeting the cell cycle proteins P21, P27 and P53. However, the mechanisms by which Msi1 affects the survival of cervical cancer cells, such as apoptosis, are still unclear. In this study, we found that the expression of Msi1 inhibited cervical cancer cell apoptosis in vitro and in vivo. Furthermore, the expression of Msi1 downregulated the expression of PTEN, while AKT signaling was activated, which resulted in a reduction in the proapoptotic protein BAK. In addition, rescue the expression of BAK in Msi1 expressing cervical cancer cells induced the increase of apoptosis cells. These findings indicate that Msi1 regulates cervical cancer cell apoptosis by inhibiting PTEN and activating AKT signaling, which leads to the downregulation of BAK.
Collapse
Affiliation(s)
- Xian Liu
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| | - Yanru Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| | - PengSheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| |
Collapse
|
16
|
Yarmishyn AA, Yang YP, Lu KH, Chen YC, Chien Y, Chou SJ, Tsai PH, Ma HI, Chien CS, Chen MT, Wang ML. Musashi-1 promotes cancer stem cell properties of glioblastoma cells via upregulation of YTHDF1. Cancer Cell Int 2020; 20:597. [PMID: 33317545 PMCID: PMC7734781 DOI: 10.1186/s12935-020-01696-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Glioblastoma (GBM) is the most lethal brain tumor characterized by high morbidity and limited treatment options. Tumor malignancy is usually associated with the epigenetic marks, which coordinate gene expression to ascertain relevant phenotypes. One of such marks is m6A modification of RNA, whose functional effects are dependent on the YTH family m6A reader proteins. Methods and results In this study, we investigated the expression of five
YTH family proteins in different GBM microarray datasets from the Oncomine
database, and identified YTHDF1 as the most highly overexpressed member of this
family in GBM. By performing the knockdown of YTHDF1 in a GBM cell line, we
found that it positively regulates proliferation, chemoresistance and cancer
stem cell-like properties. Musashi-1 (MSI1) is a postranscriptional gene
expression regulator associated with high oncogenicity in GBM. By knocking down
and overexpressing MSI1, we found that it positively regulates YTHDF1
expression. The inhibitory effects
imposed on the processes of proliferation and migration by YTHDF1 knockdown
were shown to be partially rescued by concomitant overexpression of MSI1. MSI1
and YTHDF1 were shown to be positively correlated in clinical glioma samples,
and their concomitant upregulation was associated with decreased survival of
glioma patients. We identified the direct regulation of YTHDF1 by MSI1. Conclusions Given the fact that both proteins are master
regulators of gene expression, and both of them are unfavorable factors in GBM,
we suggest that in any future studies aimed to uncover the prognostic value and
therapy potential, these two proteins should be considered together.
Collapse
Affiliation(s)
- Aliaksandr A Yarmishyn
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, 112, Taipei, Taiwan
| | - Yi-Ping Yang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, 112, Taipei, Taiwan.,School of Pharmaceutical Sciences, National Yang-Ming University, 112, Taipei, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, 112, Taipei, Taiwan
| | - Yi-Chen Chen
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan
| | - Yueh Chien
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan
| | - Shih-Jie Chou
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan
| | - Ping-Hsing Tsai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, 114, Taipei, Taiwan
| | - Chian-Shiu Chien
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, 112, Taipei, Taiwan
| | - Ming-Teh Chen
- School of Medicine, National Yang-Ming University, 112, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, 112, Taipei, Taiwan.,Department of Neurosurgery, Taipei Veterans General Hospital, 112, Taipei, Taiwan
| | - Mong-Lien Wang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, 112, Taipei, Taiwan. .,School of Medicine, National Yang-Ming University, 112, Taipei, Taiwan. .,Institute of Food Safety and Health Risk Assessment, National Yang Ming University, 112, Taipei, Taiwan.
| |
Collapse
|
17
|
Dahlrot RH, Larsen P, Boldt HB, Kreutzfeldt MS, Hansen S, Hjelmborg JB, Kristensen BW. Posttreatment Effect of MGMT Methylation Level on Glioblastoma Survival. J Neuropathol Exp Neurol 2020; 78:633-640. [PMID: 31058280 DOI: 10.1093/jnen/nlz032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) removes temozolomide-induced alkylation, thereby preventing DNA damage and cytotoxicity. We investigated the prognostic effect of different MGMT methylation levels on overall and progression-free survival in 327 patients with primary glioblastoma undergoing standard treatment. We obtained MGMT methylation level in 4 CpG sites using pyrosequencing. The association between MGMT methylation level and survival was investigated using Cox proportional hazards model and an extension to detect time-varying effects. We found an association between MGMT methylation level and overall survival (OS) from around 9 months after the diagnosis, with no association between MGMT methylation level and OS before that. For patients surviving at least 9 months even small increases in MGMT methylation level are significantly beneficial (HR = 0.97, 95% CI [0.96, 0.98]). The predictive ability of MGMT methylation level on OS from 9 months after diagnosis has a Harrel's C of 66%. We conclude that the MGMT methylation level is strongly associated with survival only for patients surviving beyond 9 months with considerable effects for levels much lower than previously reported. Prognostic evaluation of cut-points of MGMT methylation levels and of CpG island site selection should take the time-varying effect on overall survival into account.
Collapse
Affiliation(s)
| | - Pia Larsen
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark
| | | | | | | | - Jacob B Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Paul MR, Huo Y, Liu A, Lesperance J, Garancher A, Wechsler-Reya RJ, Zage PE. Characterization of G-CSF receptor expression in medulloblastoma. Neurooncol Adv 2020; 2:vdaa062. [PMID: 32642714 PMCID: PMC7316203 DOI: 10.1093/noajnl/vdaa062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Identifying mechanisms of medulloblastoma recurrence is a key to improving patient survival, and targeting treatment-resistant subpopulations within tumors could reduce disease recurrence. Expression of the granulocyte colony-stimulating factor receptor (G-CSF-R, CD114) is a potential marker of cancer stem cells, and therefore we hypothesized that a subpopulation of medulloblastoma cells would also express CD114 and would demonstrate chemoresistance and responsiveness to G-CSF. Methods Prevalence of CD114-positive (CD114+) cells in medulloblastoma cell lines, patient-derived xenograft (PDX) tumors, and primary patient tumor samples were assessed by flow cytometry. Growth rates, chemoresistance, and responses to G-CSF of CD114+ and CD114-negative (CD114−) cells were characterized in vitro using continuous live cell imaging and flow cytometry. Gene expression profiles were compared between CD114+ and CD114− medulloblastoma cells using quantitative RT-PCR. Results CD114+ cells were identifiable in medulloblastoma cell lines, PDX tumors, and primary patient tumors and have slower growth rates than CD114− or mixed populations. G-CSF accelerates the growth of CD114+ cells, and CD114+ cells are more chemoresistant. The CD114+ population is enriched when G-CSF treatment follows chemotherapy. The CD114+ population also has higher expression of the CSF3R, NRP-1, TWIST1, and MYCN genes. Conclusions Our data demonstrate that a subpopulation of CD114+ medulloblastoma cells exists in cell lines and tumors, which may evade traditional chemotherapy and respond to exogenous G-CSF. These properties invite further investigation into the role of G-CSF in medulloblastoma therapy and methods to specifically target these cells.
Collapse
Affiliation(s)
- Megan Rose Paul
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Andrea Liu
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Jacqueline Lesperance
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Alexandra Garancher
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| |
Collapse
|
19
|
Pötschke R, Gielen G, Pietsch T, Kramm C, Klusmann JH, Hüttelmaier S, Kühnöl CD. Musashi1 enhances chemotherapy resistance of pediatric glioblastoma cells in vitro. Pediatr Res 2020; 87:669-676. [PMID: 31756732 DOI: 10.1038/s41390-019-0628-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive form of glioma in adults and children and is associated with very poor prognosis. Pediatric tumors are biologically distinct from adult GBM and differ in response to current GBM treatment protocols. Regarding pediatric GBM, new drug combinations and the molecular background of chemotherapy effects need to be investigated, in order to increase patient survival outcome. METHODS The expression of the RNA-binding protein Musashi1 (MSI1) in pediatric glioma samples of different WHO tumor grades was investigated on the protein (immunohistochemistry) and on the RNA level (publicly accessible RNA sequencing dataset). The impact of the chemotherapeutic temozolomide (TMZ) in combination with valproic acid (VPA) was tested in two pediatric glioblastoma-derived cell lines. The supportive effect of MSI1 expression against this treatment was investigated via transient knockdown and protein overexpression. RESULTS MSI1 expression correlates with pediatric high-grade glioma (HGG). The combination of TMZ with VPA significantly increases the impact of drug treatment on cell viability in vitro. MSI1 was found to promote drug resistance to the combined treatment with TMZ and VPA. CONCLUSION MSI1 expression is a potential marker for pediatric HGG and increases chemoresistance. Inhibition of MSI1 might lead to an improved patient outcome and therapy response.
Collapse
Affiliation(s)
- Rebecca Pötschke
- Molecular Cell Biology, Institute of Molecular Medicine, Martin-Luther-University, Halle (Saale), Germany.,Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany
| | - Gerrit Gielen
- Institute of Neuropathology, University Hospital, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital, Bonn, Germany
| | - Christof Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center, Göttingen, Germany
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Molecular Cell Biology, Institute of Molecular Medicine, Martin-Luther-University, Halle (Saale), Germany.
| | - Caspar D Kühnöl
- Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany.
| |
Collapse
|
20
|
Chen HY, Wang ML, Laurent B, Hsu CH, Chen MT, Lin LT, Shen J, Chang WC, Hsu J, Hung MC, Chen YW, Huang PI, Yang YP, Li CP, Ma HI, Chen CH, Lin WC, Chiou SH. Musashi-1 promotes stress-induced tumor progression through recruitment of AGO2. Theranostics 2020; 10:201-217. [PMID: 31903115 PMCID: PMC6929620 DOI: 10.7150/thno.35895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Carcinomatous progression and recurrence are the main therapeutic challenges frequently faced by patients with refractory tumors. However, the underlined molecular mechanism remains obscure. Methods: We found Musashi-1 (MSI1) transported into cytosol under stress condition by confocal microscopy and cell fractionation. Argonaute 2 (AGO2) was then identified as a cytosolic binding partner of MSI1 by Mass Spectrametry, immunoprecipitation, and recombinant protein pull-down assay. We used RNA-IP to determine the MSI1/AGO2 associated regions on downstream target mRNAs. Finally, we overexpressed C-terminus of MSI1 to disrupt endogenous MSI1/AGO2 interaction and confirm it effects on tmor progression. Results: Malignant tumors exhibit elevated level of cytosolic Musashi-1 (MSI1), which translocates into cytosol in response to stress and promote tumor progression. Cytosolic MSI1 forms a complex with AGO2 and stabilize or destabilize its target mRNAs by respectively binding to their 3´ untranslated region or coding domain sequence. Both MSI1 translocation and MSI1/AGO2 binding are essential for promoting tumor progression. Blocking MSI1 shuttling by either chemical inhibition or point mutation attenuates the growth of GBM-xenografts in mice. Importantly, overexpression of the C-terminus of MSI1 disrupts endogenous MSI1/AGO2 interaction and effectively reduces stress-induced tumor progression. Conclusion: Our findings highlight novel molecular functions of MSI1 during stress-induced carcinomatous recurrence, and suggest a new therapeutic strategy for refractory malignancies by targeting MSI1 translocation and its interaction with AGOs.
Collapse
|
21
|
Velasco MX, Kosti A, Guardia GDA, Santos MC, Tegge A, Qiao M, Correa BRS, Hernández G, Kokovay E, Galante PAF, Penalva LOF. Antagonism between the RNA-binding protein Musashi1 and miR-137 and its potential impact on neurogenesis and glioblastoma development. RNA (NEW YORK, N.Y.) 2019; 25:768-782. [PMID: 31004009 PMCID: PMC6573790 DOI: 10.1261/rna.069211.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in cooperative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between self-renewal and differentiation. Msi1 and miR-137 have opposite expression patterns and functions, and Msi1 is repressed by miR-137. Msi1 is a stem-cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the balance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute to neurodegenerative diseases and glioma development. Genomic analyses revealed that Msi1 and miR-137 share 141 target genes associated with differentiation, development, and morphogenesis. Initial results pointed out that these two regulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different outcomes (self-renewal, proliferation, tumorigenesis).
Collapse
Affiliation(s)
- Mitzli X Velasco
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Adam Kosti
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Gabriela D A Guardia
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Marcia C Santos
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Allison Tegge
- Department of Statistics, Virginia Tech, Blacksburg, Virginia 14080, USA
| | - Mei Qiao
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Bruna R S Correa
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Luiz O F Penalva
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
22
|
Velasco MX, Kosti A, Penalva LOF, Hernández G. The Diverse Roles of RNA-Binding Proteins in Glioma Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:29-39. [DOI: 10.1007/978-3-030-19966-1_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Beier CP, Rasmussen T, Dahlrot RH, Tenstad HB, Aarø JS, Sørensen MF, Heimisdóttir SB, Sørensen MD, Svenningsen P, Riemenschneider MJ, Beier D, Kristensen BW. Aberrant neuronal differentiation is common in glioma but is associated neither with epileptic seizures nor with better survival. Sci Rep 2018; 8:14965. [PMID: 30297697 PMCID: PMC6175915 DOI: 10.1038/s41598-018-33282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms of glioma-associated seizures (GAS) have yet to be fully elucidated. Proneural subtype, isocitrate dehydrogenase 1 (IDH1) mutations, and epileptic seizures are closely associated suggesting that aberrant neuronal differentiation contributes to glioma-associated seizures. In a population-based cohort (n = 236), lack of stem cell marker expression (nestin, musashi) was significantly associated with IDH1 mutations and GAS at diagnosis. In vitro data suggested an association of IDH1 mutations and a more differentiated phenotype. Out of eight glioma stem cell (GSC) lines, seven revealed positivity for the synaptic marker protein synaptophysin. Three had synapse-like structures identified by electron microscopy and were either vGlut1 (glutamatergic) or GAD67 (GABAergic) positive. In vivo, >10% synaptophysin-positive tumour cells were present in >90% of all gliomas. Synaptophysin expression was associated with proneural subtype and vGlut1 expression, suggesting that most synapse-like structures in glioma are glutamatergic. However, we found null associations between vGlut1 protein/mRNA expression and survival, GAS at onset, development of GAS after resection, and refractory GAS. Synapse-like structures were neither functional nor activated by spontaneous action potentials or cellular networks. Thus, aberrant neuronal differentiation including glutamatergic synapse-like structures is detectable in glioma but is associated neither with epileptic seizures nor with better survival.
Collapse
Affiliation(s)
- Christoph Patrick Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Tine Rasmussen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Helene Broch Tenstad
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Julie Slinning Aarø
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Mai Froberg Sørensen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Sólborg Berglind Heimisdóttir
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Dagmar Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Nielsen LAG, Bangsø JA, Lindahl KH, Dahlrot RH, Hjelmborg JVB, Hansen S, Kristensen BW. Evaluation of the proliferation marker Ki-67 in gliomas: Interobserver variability and digital quantification. Diagn Pathol 2018; 13:38. [PMID: 29885671 PMCID: PMC5994254 DOI: 10.1186/s13000-018-0711-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/13/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The Ki-67 Labelling Index (LI) is used as an ancillary tool in glioma diagnostics. Interobserver variability has been reported and no precise guidelines are available. Nor is it known whether novel digital approaches would be an advantage. Our aim was to evaluate the inter- and intraobserver variability of the Ki-67 LI between two pathologists and between pathologists and digital quantification both in whole tumour slides and in hot spots using narrow but diagnostically relevant intervals. METHODS In samples of 235 low and high grade gliomas, two pathologists (A and B) estimated the Ki-67 LI (5-10% intervals) for whole tumour slides and for hot spots. In 20 of the cases intraobserver variability was evaluated. For digital quantification (C) slides were scanned with subsequent systematic random sampling of viable tumour areas. A software classifier trained to identify positive and negative nuclei calculated the Ki-67 LI. The interobserver agreements were evaluated using kappa (κ) statistics. RESULTS The observed proportions of agreement and κ values for Ki-67 LI for whole tumour slides were: A/B: 46% (κ = 0.32); A/C: 37% (κ = 0.26); B/C: 37% (κ = 0.26). For hot spots equivalent values were: A/B: 14% (κ = 0.04); A/C: 18% (κ = 0.09); B/C: 31% (κ = 0.21). CONCLUSIONS Interobserver variability was pronounced between pathologists and for pathologists versus digital quantification when attempting to estimate a precise value of the Ki-67 LI. Ki-67 LI should therefore be used with caution and should not be over interpreted in the grading of gliomas. Digital quantification of Ki-67 LI in gliomas was feasible, but intra- and interlaboratory robustness need to be determined.
Collapse
Affiliation(s)
- Ljudmilla A. G. Nielsen
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
- Department of Pathology, Hospital of Southern Jutland/ Sygehus Sønderjylland, Kresten Philipsens Vej 15, Dk-6200 Aabenraa, Denmark
| | - Julie A. Bangsø
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| | - Kim H. Lindahl
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| | - Rikke H. Dahlrot
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, Dk-5000 Odense C, Denmark
| | - Jacob v. B. Hjelmborg
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, J.B. Winsløws Vej 9, Entrance B, 1st, Dk-5000 Odense C, Denmark
| | - Steinbjørn Hansen
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, Dk-5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| | - Bjarne W. Kristensen
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| |
Collapse
|
25
|
Rosenberg T, Aaberg-Jessen C, Petterson SA, Kristensen BW. Heterogenic expression of stem cell markers in patient-derived glioblastoma spheroid cultures exposed to long-term hypoxia. CNS Oncol 2018; 7:CNS15. [PMID: 29708435 PMCID: PMC5977272 DOI: 10.2217/cns-2017-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: To investigate the time profile of hypoxia and stem cell markers in glioblastoma spheroids of known molecular subtype. Materials & methods: Patient-derived glioblastoma spheroids were cultured up to 7 days in either 2% or 21% oxygen. Levels of proliferation (Ki-67), hypoxia (HIF-1α, CA9 and VEGF) and stem cell markers (CD133, nestin and musashi-1) were investigated by immunohistochemistry. Results: Hypoxia markers as well as CD133 and partially nestin increased in long-term hypoxia. The proliferation rate and spheroid size were highest in normoxia. Conclusion: We found differences in hypoxia and stem cell marker profiles between the patient-derived glioblastoma cultures. This heterogeneity should be taken into consideration in development of future therapeutic strategies.
Collapse
Affiliation(s)
- Tine Rosenberg
- Department of Pathology, Odense University Hospital, Odense 5000, Denmark.,Department of ORL - Head & Neck Surgery, Odense University Hospital, Odense 5000, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Charlotte Aaberg-Jessen
- Department of Pathology, Odense University Hospital, Odense 5000, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Odense 5000, Denmark
| | - Stine Asferg Petterson
- Department of Pathology, Odense University Hospital, Odense 5000, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense 5000, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| |
Collapse
|
26
|
Dahlrot RH, Dowsett J, Fosmark S, Malmström A, Henriksson R, Boldt H, de Stricker K, Sørensen MD, Poulsen HS, Lysiak M, Söderkvist P, Rosell J, Hansen S, Kristensen BW. Prognostic value of O-6-methylguanine-DNA methyltransferase (MGMT) protein expression in glioblastoma excluding nontumour cells from the analysis. Neuropathol Appl Neurobiol 2018; 44:172-184. [PMID: 28574607 DOI: 10.1111/nan.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 01/20/2023]
Abstract
AIMS It is important to predict response to treatment with temozolomide (TMZ) in glioblastoma (GBM) patients. Both MGMT protein expression and MGMT promoter methylation status have been reported to predict the response to TMZ. We investigated the prognostic value of quantified MGMT protein levels in tumour cells and the prognostic importance of combining information of MGMT protein level and MGMT promoter methylation status. METHODS MGMT protein expression was quantified in tumour cells in 171 GBMs from the population-based Region of Southern Denmark (RSD)-cohort using a double immunofluorescence approach. Pyrosequencing was performed in 157 patients. For validation we used GBM-patients from a Nordic Study (NS) investigating the effect of radiotherapy and different TMZ schedules. RESULTS When divided at the median, patients with low expression of MGMT protein (AF-low) had the best prognosis (HR = 1.5, P = 0.01). Similar results were observed in the subgroup of patients receiving the Stupp regimen (HR = 2.0, P = 0.001). In the NS-cohort a trend towards superior survival (HR = 1.6, P = 0.08) was seen in patients with AF-low. Including MGMT promoter methylation status, we found for both cohorts that patients with methylated MGMT promoter and AF-low had the best outcome; median OS 23.1 and 20.0 months, respectively. CONCLUSION Our data indicate that MGMT protein expression in tumour cells has an independent prognostic significance. Exclusion of nontumour cells contributed to a more exact analysis of tumour-specific MGMT protein expression. This should be incorporated in future studies evaluating MGMT status before potential integration into clinical practice.
Collapse
Affiliation(s)
- R H Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - J Dowsett
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - S Fosmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - A Malmström
- Department of Advanced Home Care, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - R Henriksson
- Department of Radiation Sciences & Oncology, Umeå University, Umeå, Sweden
- Regional Cancer Center Stockholm Gotland, Stockholm, Sweden
| | - H Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - K de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - M D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - H S Poulsen
- Department of Radiation Biology & Oncology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - M Lysiak
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - P Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Rosell
- Regional Cancer Center South East Sweden and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - S Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - B W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Chen HY, Lin LT, Wang ML, Lee SH, Tsai ML, Tsai CC, Liu WH, Chen TC, Yang YP, Lee YY, Chang YL, Huang PI, Chen YW, Lo WL, Chiou SH, Chen MT. Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma. Oncotarget 2018; 7:42485-42501. [PMID: 27285760 PMCID: PMC5173150 DOI: 10.18632/oncotarget.9890] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiform (GBM) is one of the most lethal human malignant brain tumors with high risks of recurrence and poor treatment outcomes. The RNA-binding protein Musashi-1 (MSI1) is a marker of neural stem/progenitor cells. Recent study showed that high expression level of MSI1 positively correlates with advanced grade of GBM, where MSI1 increases the growth of GBM. Herein, we explore the roles of MSI1 as well as the underlying mechanisms in the regulation of drug resistance and tumorigenesis of GBM cells. Our results demonstrated that overexpression of MSI1 effectively protected GBM cells from drug-induced apoptosis through down-regulating pro-apoptotic genes; whereas inhibition of AKT withdrew the MSI1-induced anti-apoptosis and cell survival. We further showed that MSI1 robustly promoted the secretion of the pro-inflammatory cytokine IL-6, which was governed by AKT activity. Autonomously, the secreted IL-6 enhanced AKT activity in an autocrine/paracrine manner, forming a positive feedback regulatory loop with the MSI1-AKT pathway. Our results conclusively demonstrated a novel drug resistance mechanism in GBM cells that MSI1 inhibits drug-induced apoptosis through AKT/IL6 regulatory circuit. MSI1 regulates both cellular signaling and tumor-microenvironmental cytokine secretion to create an intra- and intercellular niche for GBM to survive from chemo-drug attack.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Ting Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Hsien Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Long Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Chang Tsai
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chien Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Teh Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Rosager AM, Sørensen MD, Dahlrot RH, Boldt HB, Hansen S, Lathia JD, Kristensen BW. Expression and prognostic value of JAM-A in gliomas. J Neurooncol 2017; 135:107-117. [PMID: 28677106 PMCID: PMC5658466 DOI: 10.1007/s11060-017-2555-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Gliomas are among the most lethal cancers, being highly resistant to both chemo- and radiotherapy. The expression of junctional adhesion molecule-A (JAM-A) was recently identified on the surface of stem cell-like brain tumor-initiating cells and suggested to function as a unique glioblastoma niche adhesion factor influencing the tumorigenic potential of brain tumor-initiating cells. We have recently identified high JAM-A expression to be associated with poor outcome in glioblastomas, and our aim was to further investigate the expression of JAM-A in gliomas focusing especially on the prognostic value in WHO grade II and III gliomas. JAM-A protein expression was evaluated by immunohistochemistry and advanced quantitative image analysis with continuous estimates of staining intensity. The JAM-A antibody stained tumor cell membranes and cytoplasm to various extent in different glioma subtypes, and the intensity was higher in glioblastomas than low-grade gliomas. We could not detect an association with overall survival in patients with grade II and III tumors. Double-immunofluorescence stainings in glioblastomas revealed co-expression of JAM-A with CD133, SOX2, nestin, and GFAP in tumor cells as well as some co-expression with the microglial/macrophage marker IBA-1. In conclusion, JAM-A expression was higher in glioblastomas compared to low-grade gliomas and co-localized with recognized stem cell markers suggesting an association of JAM-A with glioma aggressiveness. No significant association between JAM-A expression and overall survival was found in grade II and III gliomas. Further research is needed to determine the function and clinical impact of JAM-A in gliomas.
Collapse
Affiliation(s)
- Ann Mari Rosager
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark
| | - Mia D Sørensen
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark.
| | - Rikke H Dahlrot
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Henning B Boldt
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark
| | - Steinbjørn Hansen
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, 9500 Euclid Avenue, NC10, Cleveland, OH, 44195, USA
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark
| |
Collapse
|
29
|
Sørensen MD, Dahlrot RH, Boldt HB, Hansen S, Kristensen BW. Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol Appl Neurobiol 2017; 44:185-206. [PMID: 28767130 DOI: 10.1111/nan.12428] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Abstract
AIMS Glioblastomas are highly aggressive and treatment resistant. Increasing evidence suggests that tumour-associated macrophages/microglia (TAMs) facilitate tumour progression by acquiring a M2-like phenotype. Our objective was to investigate the prognostic value of TAMs in gliomas using automated quantitative double immunofluorescence. METHODS Samples from 240 patients with primary glioma were stained with antibodies against ionized calcium-binding adaptor molecule-1 (IBA-1) and cluster of differentiation 204 (CD204) to detect TAMs and M2-like TAMs. The expression levels were quantified by software-based classifiers. The associations between TAMs, gemistocytic cells and glioblastoma subtype were examined with immuno- and haematoxylin-eosin stainings. Three tissue arrays containing glioblastoma specimens were included to study IBA-1/CD204 levels in central tumour and tumour periphery and to characterize CD204+ cells. RESULTS Our data revealed that the amount of especially CD204+ TAMs increases with malignancy grade. In grade III-IV, high CD204 expression was associated with shorter survival, while high IBA-1 intensity correlated with a longer survival. In grade IV, CD204 showed independent prognostic value when adjusting for clinical data and the methylation status of O6-methylguanine-DNA methyltransferase. Our findings were confirmed in two bioinformatics databases. TAMs were more abundant in central tumour tissue, mesenchymal glioblastomas and gliomas with many gemistocytic cells. CD204+ TAMs co-expressed proteins related to tumour aggressiveness including matrix metallopeptidase-14 and hypoxia-inducible factor-1α. CONCLUSIONS This is the first study to use automated quantitative immunofluorescence to determine the prognostic impact of TAMs. Our results suggest that M2-like TAMs hold an unfavourable prognostic value in high-grade gliomas and may contribute to a pro-tumourigenic microenvironment.
Collapse
Affiliation(s)
- M D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - R H Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - H B Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - S Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - B W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Musashi-1 Enhances Glioblastoma Cell Migration and Cytoskeletal Dynamics through Translational Inhibition of Tensin3. Sci Rep 2017; 7:8710. [PMID: 28821879 PMCID: PMC5562834 DOI: 10.1038/s41598-017-09504-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 01/11/2023] Open
Abstract
The RNA-binding protein Musashi-1 (MSI1) exerts essential roles in multiple cellular functions, such as maintenance of self-renewal and pluripotency of stem cells. MSI1 overexpression has been observed in several tumor tissues, including glioblastoma (GBM), and is considered as a well-established marker for tumor metastasis and recurrence. However, the molecular mechanisms by which MSI1 regulates cell migration are still undetermined. Here we reported that MSI1 alters cell morphology, promotes cell migration, and increases viscoelasticity of GBM cells. We also found that MSI1 directly binds to the 3′UTR of Tensin 3 (TNS3) mRNA, a negative regulator of cell migration, to inhibit its translation. Additionally, we identified that RhoA-GTP could be a potential regulator in MSI1/TNS3-mediated cell migration and morphological changes. In a xenograft animal model, high expression ratio of MSI1 to TNS3 enhanced GBM tumor migration. We also confirmed that MSI1 and TNS3 expressions are mutually exclusive in migratory tumor lesions, and GBM patients with MSI1high/TNS3low pattern tend to have poor clinical outcome. Taken together, our findings suggested a critical role of MSI1-TNS3 axis in regulating GBM migration and highlighted that the ratio of MSI1/TNS3 could predict metastatic and survival outcome of GBM patients.
Collapse
|
31
|
Fosmark S, Hellwege S, Dahlrot RH, Jensen KL, Derand H, Lohse J, Sørensen MD, Hansen S, Kristensen BW. APNG as a prognostic marker in patients with glioblastoma. PLoS One 2017; 12:e0178693. [PMID: 28662073 PMCID: PMC5490991 DOI: 10.1371/journal.pone.0178693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
Aim Expression of the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG) has been correlated to temozolomide resistance. Our aim was to evaluate the prognostic value of APNG in a population-based cohort with 242 gliomas including 185 glioblastomas (GBMs). Cellular heterogeneity of GBMs was taken into account by excluding APNG expression in non-tumor cells from the analysis. Methods APNG expression was evaluated using automated image analysis and a novel quantitative immunohistochemical (IHC) assay (qIHC), where APNG protein expression was evaluated through countable dots. Non-tumor cells were excluded using an IHC/qIHC double-staining. For verification, APNG was measured by a quantitative double-immunofluorescence (IF) assay. As validation APNG mRNA expression was evaluated using independent TCGA data. Results Using qIHC, high levels of APNG were associated with better overall survival (OS) in univariate (HR = 0.50; P < 0.001) and multivariate analysis (HR = 0.53; P = 0.001). Patients with methylated MGMT promoters and high APNG expression demonstrated better OS, than patients with methylated MGMT promoters and low APNG expression (HR = 0.59; P = 0.08). Retesting the cohort using IF showed similar results in both univariate (HR = 0.61; P = 0.002) and multivariate analysis (HR = 0.81; P = 0.2). The results were supported by data from the TCGA database. Conclusions Using two different assays combined with quantitative image analysis excluding non-tumour cells, APNG was an independent prognostic factor among patients with a methylated MGMT promoter. We expect that APNG qIHC can potentially identify GBM patients who will not benefit from treatment with temozolomide.
Collapse
Affiliation(s)
- Sigurd Fosmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sofie Hellwege
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rikke H. Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | | | | | - Mia D. Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Steinbjørn Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Bjarne W. Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
32
|
Iglesia RP, Prado MB, Cruz L, Martins VR, Santos TG, Lopes MH. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther 2017; 8:76. [PMID: 28412969 PMCID: PMC5392955 DOI: 10.1186/s13287-017-0518-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Background Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prion protein (PrPC) and its partner, the co-chaperone Hsp70/90 organizing protein (HOP), as potential target candidates due to their role in GBM tumorigenesis and in neural stem cell maintenance. Methods GSCs expressing different levels of PrPC were cultured as neurospheres with growth factors, and characterized with stem cells markers and adhesion molecules markers through immunofluorescence and flow cytometry. We than evaluated GSC self-renewal and proliferation by clonal density assays and BrdU incorporation, respectively, in front of recombinant HOP treatment, combined or not with a HOP peptide which mimics the PrPC binding site. Stable silencing of HOP was also performed in parental and/or PrPC-depleted cell populations, and proliferation in vitro and tumor growth in vivo were evaluated. Migration assays were performed on laminin-1 pre-coated glass. Results We observed that, when GBM cells are cultured as neurospheres, they express specific stemness markers such as CD133, CD15, Oct4, and SOX2; PrPC is upregulated compared to monolayer culture and co-localizes with CD133. PrPC silencing downregulates the expression of molecules associated with cancer stem cells, upregulates markers of cell differentiation and affects GSC self-renewal, pointing to a pivotal role for PrPC in the maintenance of GSCs. Exogenous HOP treatment increases proliferation and self-renewal of GSCs in a PrPC-dependent manner while HOP knockdown disturbs the proliferation process. In vivo, PrPC and/or HOP knockdown potently inhibits the growth of subcutaneously implanted glioblastoma cells. In addition, disruption of the PrPC-HOP complex by a HOP peptide, which mimics the PrPC binding site, affects GSC self-renewal and proliferation indicating that the HOP-PrPC complex is required for GSC stemness. Furthermore, PrPC-depleted GSCs downregulate cell adhesion-related proteins and impair cell migration indicating a putative role for PrPC in the cell surface stability of cell adhesion molecules and GBM cell invasiveness, respectively. Conclusions In conclusion, our results show that the modulation of HOP-PrPC engagement or the decrease of PrPC and HOP expression may represent a potential therapeutic intervention in GBM, regulating glioblastoma stem-like cell self-renewal, proliferation, and migration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0518-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebeca Piatniczka Iglesia
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil
| | - Mariana Brandão Prado
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil
| | - Lilian Cruz
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil
| | - Vilma Regina Martins
- Laboratory of Cell and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, Sao Paulo, SP, 02056-070, Brazil
| | - Tiago Góss Santos
- Laboratory of Cell and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, Sao Paulo, SP, 02056-070, Brazil
| | - Marilene Hohmuth Lopes
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
33
|
Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, Riccadonna C, Pellegatta S, Hulo N, Dutoit V, Derouazi M, Dietrich PY, Walker PR, Martinvalet D. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells. EMBO J 2017; 36:1493-1512. [PMID: 28283580 DOI: 10.15252/embj.201695429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Atsuko Kasahara
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Valentina Chiusolo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Guillaume Jacquemin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Emma Boydell
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sebastian Zamorano
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cristina Riccadonna
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Serena Pellegatta
- Department of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Hulo
- Biomathematical and Biostatistical Analysis, Institute of Genetics and Genomics University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Amal Therapeutics, Geneva, Switzerland
| | - Pierre Yves Dietrich
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Ramachandran RK, Sørensen MD, Aaberg-Jessen C, Hermansen SK, Kristensen BW. Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in astrocytomas. PLoS One 2017; 12:e0172234. [PMID: 28234925 PMCID: PMC5325257 DOI: 10.1371/journal.pone.0172234] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/01/2017] [Indexed: 12/04/2022] Open
Abstract
Astrocytomas are the most frequent primary brain tumors in adults, and despite aggressive treatment patients often experience recurrence. Survival decreases with increasing tumor grade, and especially patients with grade IV glioblastoma have poor prognosis due to the aggressive character of this tumor. Matrix metalloproteinase-2 (MMP-2) is an extracellular matrix degrading enzyme which has been shown to play important roles in different cancers. The aim of this study was to investigate the expression and prognostic potential of MMP-2 in astrocytomas. Tissue samples from 89 patients diagnosed with diffuse astrocytoma, anaplastic astrocytoma and glioblastoma were stained immunohistochemically using a monoclonal MMP-2 antibody. The MMP-2 intensity in cytoplasm/membrane was quantified by a trained software-based classifier using systematic random sampling in 10% of the tumor area. We found MMP-2 expression in tumor cells and blood vessels. Measurements of MMP-2 intensity increased with tumor grade, and MMP-2 expression was found to be significantly higher in glioblastomas compared to normal brain tissue (p<0.001), diffuse astrocytomas (p<0.001) and anaplastic astrocytomas (p<0.05). MMP-2 expression was associated with shorter overall survival in patients with grade II-IV astrocytic tumors (HR 1.60; 95% CI 1.03–2.48; p = 0.036). In glioblastoma, high MMP-2 was associated with poorer prognosis in patients who survived longer than 8.5 months independent of age and gender (HR 2.27; 95% CI 1.07–4.81; p = 0.033). We found a positive correlation between MMP-2 and tissue inhibitor of metalloproteinases-1 (TIMP-1), and combined MMP-2 and TIMP-1 had stronger prognostic value than MMP-2 alone also when adjusting for age and gender (HR 2.78; 95% CI 1.30–5.92; p = 0.008). These findings were validated in bioinformatics databases. In conclusion, this study indicates that MMP-2 is associated with aggressiveness in astrocytomas and may hold an unfavorable prognostic value in patients with glioblastoma.
Collapse
Affiliation(s)
- Rahimsan K. Ramachandran
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mia D. Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Charlotte Aaberg-Jessen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simon K. Hermansen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne W. Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets. Clin Cancer Res 2017; 23:2143-2153. [PMID: 28143872 DOI: 10.1158/1078-0432.ccr-16-2728] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila, the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR.
Collapse
Affiliation(s)
- Alexander E Kudinov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yanis Boumber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan ZM, Bishop AJR, Penalva LOF. Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2271-8. [PMID: 27470713 PMCID: PMC5012509 DOI: 10.1016/j.ajpath.2016.05.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation and as a key oncogenic factor in numerous solid tumors, including glioblastoma. To explore the potential use of MSI1 targeting in therapy, we studied MSI1 in the context of radiation sensitivity. Knockdown of MSI1 led to a decrease in cell survival and an increase in DNA damage compared to control in cells treated with ionizing radiation. We subsequently examined mechanisms of double-strand break repair and found that loss of MSI1 reduces the frequency of nonhomologous end-joining. This phenomenon could be attributed to the decreased expression of DNA-protein kinase catalytic subunit, which we have previously identified as a target of MSI1. Collectively, our results suggest a role for MSI1 in double-strand break repair and that its inhibition may enhance the effect of radiotherapy.
Collapse
Affiliation(s)
- Patricia Rosa de Araujo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Acarizia E da Silva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Suzanne C Burns
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Philip J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
37
|
Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype. PLoS One 2016; 11:e0155106. [PMID: 27171431 PMCID: PMC4865242 DOI: 10.1371/journal.pone.0155106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness, proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1). A double immunofluorescence approach identifying mIDH1 positive tumor cells and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers. The orthotopic model therefore has a promising translational potential.
Collapse
|
38
|
Glioma Stemlike Cells Enhance the Killing of Glioma Differentiated Cells by Cytotoxic Lymphocytes. PLoS One 2016; 11:e0153433. [PMID: 27073883 PMCID: PMC4830556 DOI: 10.1371/journal.pone.0153433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme, the most aggressive primary brain tumor, is maintained by a subpopulation of glioma cells with self-renewal properties that are able to recapitulate the entire tumor even after surgical resection or chemo-radiotherapy. This typifies the vast heterogeneity of this tumor with the two extremes represented on one end by the glioma stemlike cells (GSC) and on the other by the glioma differentiated cells (GDC). Interestingly, GSC are more sensitive to immune effector cells than the GDC counterpart. However, how GSC impact on the killing on the GDC and vice versa is not clear. Using a newly developed cytotoxicity assay allowing to simultaneously monitor cytotoxic lymphocytes-mediated killing of GSC and GDC, we found that although GSC were always better killed and that their presence enhanced the killing of GDC. In contrast, an excess of GDC had a mild protective effect on the killing of GSC, depending on the CTL type. Overall, our results suggest that during combination therapy, immunotherapy would be the most effective after prior treatment with conventional therapies.
Collapse
|
39
|
Music D, Dahlrot RH, Hermansen SK, Hjelmborg J, de Stricker K, Hansen S, Kristensen BW. Expression and prognostic value of the WEE1 kinase in gliomas. J Neurooncol 2016; 127:381-9. [DOI: 10.1007/s11060-015-2050-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
40
|
Msi1 promotes tumor growth and cell proliferation by targeting cell cycle checkpoint proteins p21, p27 and p53 in cervical carcinomas. Oncotarget 2015; 5:10870-85. [PMID: 25362645 PMCID: PMC4279416 DOI: 10.18632/oncotarget.2539] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/28/2014] [Indexed: 01/08/2023] Open
Abstract
Musashi RNA-binding protein1 (Msi1), a member of the RNA-binding protein family, has been reported to be a diagnostic marker and potential therapeutic target in some cancers, its function in cervical cancer remains unknown. In this study, we found Msi1 was highly expressed in cervical cancer tissues, and over-expressing Msi1 in cervical cancer cells enhanced tumor formation and cell proliferation and accelerated cells into the S phase. Whereas, down-regulating Msi1 by shRNA in cervical cancer cells inhibited tumor formation and cell proliferation and slowed cell into the S phase, suggesting that Msi1 might act as cell cycle regulator. Immunohistochemistry assay showed the negative correlation between Msi1 and p21, p27 and p53, suggesting that Msi1 might regulate these cycle regulators in cervical cancer. Moreover, the expression of the p21, p27 and p53 proteins were down-regulated in Msi1 overexpressing cervical cancer cells and up-regulated in shMsi1 cervical cancer cells. Luciferase assays and RNA-protein binding assays confirmed that Msi1 could bind to the mRNA 3′UTRs of p21, p27 and p53 and suppress the translation of these proteins. Our findings provide new evidence that Msi1 might promote cell proliferation by accelerating the cell cycle by directly targeting p21, p27 and p53.
Collapse
|
41
|
RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma. Mol Cell Biol 2015; 35:2965-78. [PMID: 26100017 DOI: 10.1128/mcb.00410-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022] Open
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has emerged as a key oncogenic factor in numerous solid tumors, including glioblastoma. However, its mechanism of action has not yet been established comprehensively. To identify its target genes comprehensively and determine the main routes by which it influences glioblastoma phenotypes, we conducted individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP) experiments. We confirmed that MSI1 has a preference for UAG sequences contained in a particular structural context, especially in 3' untranslated regions. Although numerous binding sites were also identified in intronic sequences, our RNA transcriptome sequencing analysis does not favor the idea that MSI1 is a major regulator of splicing in glioblastoma cells. MSI1 target mRNAs encode proteins that function in multiple pathways of cell proliferation and cell adhesion. Since these associations indicate potentially new roles for MSI1, we investigated its impact on glioblastoma cell adhesion, morphology, migration, and invasion. These processes are known to underpin the spread and relapse of glioblastoma, in contrast to other tumors where metastasis is the main driver of recurrence and progression.
Collapse
|
42
|
Dahlrot RH, Sørensen MD, Rosager AM, Hellwege S, Bangsø JA, Rosenberg T, Petterson SA, Klitkou J, Fosmark S, Hansen S, Kristensen BW. Novel approaches for quantifying protein biomarkers in gliomas: benefits and pitfalls. CNS Oncol 2015; 3:287-98. [PMID: 25286040 DOI: 10.2217/cns.14.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The therapeutic paradigm of gliomas is changing from a general approach towards an individualized and targeted approach. Accordingly, the search for prognostic and predictive biomarkers, as well as the demand for quantitative, feasible and robust methods for biomarker analysis increases. We find that software classifiers can identify and quantify the expression of a given biomarker within different subcellular compartments and that such classifiers can exclude frequently occurring nontumor cells, thereby avoiding potential bias. The use of a quantitative approach provides a continuous measurement of the expression, allowing establishment of new cut-points and identification of patients with specific prognoses. However, some pitfalls must be noted. This article focuses on benefits and pitfalls of novel approaches for quantifying protein biomarkers in gliomas.
Collapse
Affiliation(s)
- Rikke H Dahlrot
- Department of Oncology, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
High levels of c-Met is associated with poor prognosis in glioblastoma. J Neurooncol 2015; 122:517-27. [PMID: 25800004 DOI: 10.1007/s11060-015-1723-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/18/2015] [Indexed: 10/23/2022]
Abstract
The tyrosine kinase receptor c-Met has been suggested to be involved in crucial parts of glioma biology like tumor stemness, growth and invasion. The aim of this study was to investigate the prognostic value of c-Met in a population-based glioma patient cohort. Tissue samples from 238 patients with WHO grade I, II, III and IV tumors were analyzed using immunohistochemical staining and advanced image analysis. Strong c-Met expression was found in tumor cells, blood vessels, and peri-necrotic areas. At the subcellular level, c-Met was identified in the cytoplasm and in the cell membrane. Measurements of high c-Met intensity correlated with high WHO grade (p = 0.006) but no association with survival was observed in patients with WHO grade II (p = 0.09) or III (p = 0.17) tumors. High expression of c-Met was associated with shorter overall survival in patients with glioblastoma multiforme (p = 0.03). However the prognostic effect of c-Met in glioblastomas was time-dependent and only observed in patients who survived more than 8.5 months, and not within the first 8.5 months after diagnosis. This was significant in multivariate analysis (HR 1.99, 95 % CI 1.29-3.08, p = 0.002) adjusted for treatment and the clinical variables age (HR 1.01, 95 % CI 0.99-1.03, p = 0.30), performance status (HR 1.34, 95 % CI 1.17-1.53, p < 0.001), and tumor crossing midline (HR 1.28, 95 % CI 0.79-2.07, p = 0.29). In conclusion, this study showed that high levels of c-Met holds unfavorable prognostic value in glioblastomas.
Collapse
|