1
|
Walker SB, Duarte JL, Di Filippo LD, Chorilli M. Improving the Biopharmaceutical Properties of Cannabinoids in Glioblastoma Multiforme Therapy With Nanotechnology: A Drug Delivery Perspective. Drug Dev Res 2024; 85:e70023. [PMID: 39620407 DOI: 10.1002/ddr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor in adults and is known for its rapid proliferation and infiltrative nature. Current therapeutic strategies include surgical resection followed by radio- and chemotherapy. Still, they are hindered by GBM biological characteristics and physical-chemical properties of chemotherapeutic drugs, leading to limited efficacy and poor prognosis. Cannabinoids have emerged as potential anti-GBM agents, exhibiting antiangiogenic, antimetastatic, and antiproliferative effects. However, their hydrophobicity and poor oral bioavailability pose significant challenges for clinical applications. This study evaluates the potential of nanocarriers in enhancing the solubility and targeted delivery of cannabinoids for GBM therapy. The innovative combination of nanotechnology with cannabinoid-based treatment offers a promising strategy to improve therapeutic outcomes. We addressed the application of nanocarriers to deliver cannabinoids, which can enhance passage across the blood-brain barrier and enable targeted therapy. Studies demonstrate the potential of nanocarriers in improving solubility, stability, and controlled release of cannabinoids, highlighting the advancements in nanocarrier design for optimized delivery to glioma cells. Cannabinoids can exert their antitumor effect, including the induction of apoptosis through the ceramide and p8-regulated pathways and the modulation of immune responses. The evidence found in this study supports the potential of cannabinoid-based nanotechnologies in GBM therapeutic regimens as a strategy to enhance its efficacy and patient outcomes.
Collapse
Affiliation(s)
- Stephanie B Walker
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jonatas L Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo D Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
2
|
Bukowska B. Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases. Int J Mol Sci 2024; 25:12738. [PMID: 39684447 DOI: 10.3390/ijms252312738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cannabis sativa L. contains numerous compounds with antioxidant and anti-inflammatory properties, including the flavonoids and the cannabinoids, particularly Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids have an effect on the endocannabinoid system (ECS), a cellular communication network, and are, hence, widely studied for medical applications. Epidiolex®, a 99% pure oral CBD extract, has been approved by the FDA for the treatment of epilepsy. Nabiximols (Sativex) is an oromucosal spray containing equal volume of THC and CBD, and it is commonly used as an add-on treatment for unresponsive spasticity in multiple sclerosis (MS) patients. Several in vitro and in vivo studies have also shown that cannabinoids can be used to treat various types of cancer, such as melanoma and brain glioblastoma; the first positive clinical trials on the anticancer effect of a THC:CBD blend with temozolomide (TMZ) in the treatment of highly invasive brain cancer are very promising. The cannabinoids exert their anticancer properties in in vitro investigations by the induction of cell death, mainly by apoptosis and cytotoxic autophagy, and the inhibition of cell proliferation. In several studies, cannabinoids have been found to induce tumor regression and inhibit angiogenic mechanisms in vitro and in vivo, as well as in two low-numbered epidemiological studies. They also exhibit antiviral effects by inhibiting ACE2 transcription, blocking viral replication and fusion, and acting as anti-inflammatory agents; indeed, prior CBD consumption (a study of 93,565 persons in Chicago) has also been associated with a much lower incidence of SARS-CoV-2 infections. It is postulated that cannabis extracts can be used in the treatment of many other diseases such as systemic lupus erythematosus, type 1 diabetes, or various types of neurological disorders, e.g., Alzheimer's disease. The aim of this review is to outline the current state of knowledge regarding currently used medicinal preparations derived from C. sativa L. in the treatment of selected cancer and viral diseases, and to present the latest research on the potential applications of its secondary metabolites.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street141/143, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Hu Z, Qin Z, Xie J, Qu Y, Yin L. Cannabidiol and its application in the treatment of oral diseases: therapeutic potentials, routes of administration and prospects. Biomed Pharmacother 2024; 176:116271. [PMID: 38788594 DOI: 10.1016/j.biopha.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cannabidiol (CBD), one of the most important active ingredients in cannabis, has been reported to have some pharmacological effects such as antibacterial and analgesic effects, and to have therapeutic potential in the treatment of oral diseases such as oral cancer, gingivitis and periodontal diseases. However, there is a lack of relevant systematic research and reviews. Therefore, based on the etiology and clinical symptoms of several common oral diseases, this paper focuses on the therapeutic potential of CBD in periodontal diseases, pulp diseases, oral mucosal diseases, oral cancer and temporomandibular joint diseases. The pharmacological effects of CBD and the distribution and function of its receptors in the oral cavity are also summarized. In order to provide reference for future research and further clinical application of CBD, we also summarize several possible routes of administration and corresponding characteristics. Finally, the challenges faced while applying CBD clinically and possible solutions are discussed, and we also look to the future.
Collapse
Affiliation(s)
- Zonghao Hu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zishun Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Xie
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yue Qu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lihua Yin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Tang Y, Wang M, Yu J, Lv G, Wang Y, Yu B. The antitumor action of endocannabinoids in the tumor microenvironment of glioblastoma. Front Pharmacol 2024; 15:1395156. [PMID: 38720772 PMCID: PMC11076672 DOI: 10.3389/fphar.2024.1395156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Approximately 80% of all malignant brain tumors are gliomas, which are primary brain tumors. The most prevalent subtype of glioma, glioblastoma multiforme (GBM), is also the most deadly. Chemotherapy, immunotherapy, surgery, and conventional pharmacotherapy are currently available therapeutic options for GBM; unfortunately, these approaches only prolong the patient's life by 5 years at most. Despite numerous intensive therapeutic options, GBM is considered incurable. Accumulating preclinical data indicate that overt antitumoral effects can be induced by pharmacologically activating endocannabinoid receptors on glioma cells by modifying important intracellular signaling cascades. The complex mechanism underlying the endocannabinoid receptor-evoked antitumoral activity in experimental models of glioma may inhibit the ability of cancer cells to invade, proliferate, and exhibit stem cell-like characteristics, along with altering other aspects of the complex tumor microenvironment. The exact biological function of the endocannabinoid system in the development and spread of gliomas, however, is remains unclear and appears to rely heavily on context. Previous studies have revealed that endocannabinoid receptors are present in the tumor microenvironment, suggesting that these receptors could be novel targets for the treatment of GBM. Additionally, endocannabinoids have demonstrated anticancer effects through signaling pathways linked to the classic features of cancer. Thus, the pharmacology of endocannabinoids in the glioblastoma microenvironment is the main topic of this review, which may promote the development of future GBM therapies.
Collapse
Affiliation(s)
- Yi Tang
- Department of Pharmacy, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliate Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Maoru Wang
- Drug Dispensing Department, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Jiangping Yu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
5
|
Dasram MH, Naidoo P, Walker RB, Khamanga SM. Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy. Int J Mol Sci 2024; 25:1371. [PMID: 38338649 PMCID: PMC10855826 DOI: 10.3390/ijms25031371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.
Collapse
Affiliation(s)
| | | | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa (R.B.W.)
| |
Collapse
|
6
|
Bhaskaran D, Savage J, Patel A, Collinson F, Mant R, Boele F, Brazil L, Meade S, Buckle P, Lax S, Billingham L, Short SC. A randomised phase II trial of temozolomide with or without cannabinoids in patients with recurrent glioblastoma (ARISTOCRAT): protocol for a multi-centre, double-blind, placebo-controlled trial. BMC Cancer 2024; 24:83. [PMID: 38225549 PMCID: PMC10790538 DOI: 10.1186/s12885-023-11792-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common adult malignant brain tumour, with an incidence of 5 per 100,000 per year in England. Patients with tumours showing O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation represent around 40% of newly diagnosed GBM. Relapse/tumour recurrence is inevitable. There is no agreed standard treatment for patients with GBM, therefore, it is aimed at delaying further tumour progression and maintaining health-related quality of life (HRQoL). Limited clinical trial data exist using cannabinoids in combination with temozolomide (TMZ) in this setting, but early phase data demonstrate prolonged overall survival compared to TMZ alone, with few additional side effects. Jazz Pharmaceuticals (previously GW Pharma Ltd.) have developed nabiximols (trade name Sativex®), an oromucosal spray containing a blend of cannabis plant extracts, that we aim to assess for preliminary efficacy in patients with recurrent GBM. METHODS ARISTOCRAT is a phase II, multi-centre, double-blind, placebo-controlled, randomised trial to assess cannabinoids in patients with recurrent MGMT methylated GBM who are suitable for treatment with TMZ. Patients who have relapsed ≥ 3 months after completion of initial first-line treatment will be randomised 2:1 to receive either nabiximols or placebo in combination with TMZ. The primary outcome is overall survival time defined as the time in whole days from the date of randomisation to the date of death from any cause. Secondary outcomes include overall survival at 12 months, progression-free survival time, HRQoL (using patient reported outcomes from QLQ-C30, QLQ-BN20 and EQ-5D-5L questionnaires), and adverse events. DISCUSSION Patients with recurrent MGMT promoter methylated GBM represent a relatively good prognosis sub-group of patients with GBM. However, their median survival remains poor and, therefore, more effective treatments are needed. The phase II design of this trial was chosen, rather than phase III, due to the lack of data currently available on cannabinoid efficacy in this setting. A randomised, double-blind, placebo-controlled trial will ensure an unbiased robust evaluation of the treatment and will allow potential expansion of recruitment into a phase III trial should the emerging phase II results warrant this development. TRIAL REGISTRATION ISRCTN: 11460478. CLINICALTRIALS Gov: NCT05629702.
Collapse
Affiliation(s)
- Divyalakshmi Bhaskaran
- School of Medicine, University of Leeds, LS2 9JT, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Joshua Savage
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Amit Patel
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Fiona Collinson
- School of Medicine, University of Leeds, LS2 9JT, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rhys Mant
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Florien Boele
- School of Medicine, University of Leeds, LS2 9JT, Leeds, UK
| | - Lucy Brazil
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sara Meade
- University Hospitals Birmingham Foundation Trust, Birmingham, UK
| | | | - Siân Lax
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Susan C Short
- School of Medicine, University of Leeds, LS2 9JT, Leeds, UK.
- Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
7
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
8
|
Sirbu CA, Georgescu R, Pleşa FC, Paunescu A, Marilena Ţânţu M, Nicolae AC, Caloianu I, Mitrica M. Cannabis and Cannabinoids in Multiple Sclerosis: From Experimental Models to Clinical Practice-A Review. Am J Ther 2023; 30:e220-e231. [PMID: 37278703 DOI: 10.1097/mjt.0000000000001568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND As far as 80% of people diagnosed with multiple sclerosis (MS) experience disabling symptoms in the course of the disease, such as spasticity and neuropathic pain. As first-line symptomatic therapy is associated with important adverse reactions, cannabinoids have become increasingly popular among patients with MS. This review intends to provide an overview of the evidence of the role of cannabinoids in treating symptoms related to MS and to encourage further research on this matter. AREAS OF UNCERTAINTY To date, the evidence supporting the role of cannabis and its derivatives in alleviating the MS-related symptoms comes only from studies on experimental models of demyelination. To the best of our knowledge, relatively few clinical trials inquired about the therapeutic effects of cannabinoids on patients with MS, with variable results. DATA SOURCES We conducted a literature search through PubMed and Google Scholar from the beginning until 2022. We included articles in English describing the latest findings regarding the endocannabinoid system, the pharmacology of cannabinoids, and their therapeutic purpose in MS. RESULTS Evidence from preclinical studies showed that cannabinoids can limit the demyelination process, promote remyelination, and have anti-inflammatory properties by reducing immune cell infiltration of the central nervous system in mice with experimental autoimmune encephalomyelitis. Moreover, it has been established that experimental autoimmune encephalomyelitis mice treated with cannabinoids experienced a significant reduction of symptoms and slowing of the disease progression. Given the complexity of human immune and nervous systems, cannabinoids did not have the anticipated effects on human subjects. However, data obtained from clinical trials showed some beneficial results of cannabinoids as a single or as add-on therapy in reducing the spasticity and pain related to MS. CONCLUSION Considering their various mechanisms of action and good tolerability, cannabinoids remain an interesting therapy for spasticity and chronic pain related to MS.
Collapse
Affiliation(s)
- Carmen-Adella Sirbu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Ruxandra Georgescu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Florentina Cristina Pleşa
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Alina Paunescu
- Department of Natural Sciences, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Monica Marilena Ţânţu
- Department of Health Care and Physical Therapy, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Alina Crenguţa Nicolae
- Biochemistry Department, "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Bucharest, Romania; and
| | - Ionut Caloianu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, Romania
| |
Collapse
|
9
|
Costas‐Insua C, Guzmán M. Endocannabinoid signaling in glioma. Glia 2023; 71:127-138. [PMID: 35322459 PMCID: PMC9790654 DOI: 10.1002/glia.24173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
High-grade gliomas constitute the most frequent and aggressive form of primary brain cancer in adults. These tumors express cannabinoid CB1 and CB2 receptors, as well as other elements of the endocannabinoid system. Accruing preclinical evidence supports that pharmacological activation of cannabinoid receptors located on glioma cells exerts overt anti-tumoral effects by modulating key intracellular signaling pathways. The mechanism of this cannabinoid receptor-evoked anti-tumoral activity in experimental models of glioma is intricate and may involve an inhibition not only of cancer cell survival/proliferation, but also of invasiveness, angiogenesis, and the stem cell-like properties of cancer cells, thereby affecting the complex tumor microenvironment. However, the precise biological role of the endocannabinoid system in the generation and progression of glioma seems very context-dependent and remains largely unknown. Increasing our basic knowledge on how (endo)cannabinoids act on glioma cells could help to optimize experimental cannabinoid-based anti-tumoral therapies, as well as the preliminary clinical testing that is currently underway.
Collapse
Affiliation(s)
- Carlos Costas‐Insua
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Department of Biochemistry and Molecular BiologyInstituto Universitario de Investigación Neuroquímica (IUIN), Complutense UniversityMadridSpain,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Department of Biochemistry and Molecular BiologyInstituto Universitario de Investigación Neuroquímica (IUIN), Complutense UniversityMadridSpain,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| |
Collapse
|
10
|
Worster B, Hajjar ER, Handley N. Cannabis Use in Patients With Cancer: A Clinical Review. JCO Oncol Pract 2022; 18:743-749. [PMID: 35749680 DOI: 10.1200/op.22.00080] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cannabis use and interest continues to increase among patients with cancer and caregivers. High-quality research remains scant in many areas, causing hesitancy or discomfort among most clinical providers. Although we have limitations on hard outcomes, we can provide some guidance and more proactively engage in conversations with patients and family about cannabis. Several studies support the efficacy of cannabis for various cancer and treatment-related symptoms, such as chemotherapy-induced nausea and cancer pain. Although formulations and dosing guidelines for clinicians do not formally exist at present, attention to tetrahydrocannabinol concentration and understanding of risks with inhalation can reduce risk. Conflicting information exists on the interaction between cannabis and immunotherapy as well as estrogen receptor interactions. Motivational interviewing can help engage in more productive, less stigmatized conversations.
Collapse
Affiliation(s)
- Brooke Worster
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.,Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Emily R Hajjar
- College of Pharmacy, Thomas Jefferson University, Philadelphia, PA
| | - Nathan Handley
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.,Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA.,Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
11
|
Cannabis sativa ethanolic extract demonstrated significant anti-tumor effects associated with elevated expression of AXIN1 protein in glioblastoma U87-MG cell line. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Sakarin S, Meesiripan N, Sangrajrang S, Suwanpidokkul N, Prayakprom P, Bodhibukkana C, Khaowroongrueng V, Suriyachan K, Thanasittichai S, Srisubat A, Surawongsin P, Rattanapinyopituk K. Antitumor Effects of Cannabinoids in Human Pancreatic Ductal Adenocarcinoma Cell Line (Capan-2)-Derived Xenograft Mouse Model. Front Vet Sci 2022; 9:867575. [PMID: 35937289 PMCID: PMC9353045 DOI: 10.3389/fvets.2022.867575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background Pancreatic cancer is considered a rare type of cancer, but the mortality rate is high. Cannabinoids extracted from the cannabis plant have been interested as an alternative treatment in cancer patients. Only a few studies are available on the antitumor effects of cannabinoids in pancreatic cancer. Therefore, this study aims to evaluate the antitumor effects of cannabinoids in pancreatic cancer xenografted mouse model. Materials and Methods Twenty-five nude mice were subcutaneously transplanted with a human pancreatic ductal adenocarcinoma cell line (Capan-2). All mice were randomly assigned into 5 groups including negative control (gavage with sesame oil), positive control (5 mg/kg 5-fluorouracil intraperitoneal administration), and cannabinoids groups that daily received THC:CBD, 1:6 at 1, 5, or 10 mg/kg body weight for 30 days, respectively. Xenograft tumors and internal organs were collected for histopathological examination and immunohistochemistry. Results The average tumor volume was increased in all groups with no significant difference. The average apoptotic cells and caspase-3 positive cells were significantly increased in cannabinoid groups compared with the negative control group. The expression score of proliferating cell nuclear antigen in positive control and cannabinoids groups was decreased compared with the negative control group. Conclusions Cannabinoids have an antitumor effect on the Capan-2-derived xenograft mouse model though induce apoptosis and inhibit proliferation of tumor cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | - Nuntana Meesiripan
- Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | - Suleeporn Sangrajrang
- Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | | | | | | | | | - Kankanit Suriyachan
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, Thailand
| | - Somchai Thanasittichai
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, Thailand
| | - Attasit Srisubat
- Division of Medical Technical and Academic Affairs, Ministry of Public Health, Nonthaburi, Thailand
| | - Pattamaporn Surawongsin
- Research and Technology Assessment Department, Ophthalmology Department, Lerdsin Hospital, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Center of Excellent for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Kasem Rattanapinyopituk
| |
Collapse
|
13
|
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel) 2022; 14:2412. [PMID: 35626018 PMCID: PMC9139611 DOI: 10.3390/cancers14102412] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies, with a median overall survival of approximately 15 months. In this review, we analyze the pathogenesis of GBM, as well as epidemiological data, by age, gender, and tumor location. The data indicate that GBM is the higher-grade primary brain tumor and is significantly more common in men. The risk of being diagnosed with glioma increases with age, and median survival remains low, despite medical advances. In addition, it is difficult to determine clearly how GBM is influenced by stimulants, certain medications (e.g., NSAIDs), cell phone use, and exposure to heavy metals.
Collapse
Affiliation(s)
- Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48 St., 71-210 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| |
Collapse
|
14
|
Legare CA, Raup-Konsavage WM, Vrana KE. Therapeutic Potential of Cannabis, Cannabidiol, and Cannabinoid-Based Pharmaceuticals. Pharmacology 2022; 107:131-149. [DOI: 10.1159/000521683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> There is a growing interest in the use of cannabis (and its extracts), as well as CBD oil (hemp extracts containing cannabidiol), for therapeutic purposes. While there is reason to believe that cannabinoids may be efficacious for a number of different diseases and syndromes, there exist limited objective data supporting the use of crude materials (CBD oil, cannabis extracts, and/or cannabis itself). <b><i>Summary:</i></b> In the present review, we examined data for pure cannabinoid compounds (dronabinol, nabilone, and CBD), as well as partially purified medicinal cannabis extracts (nabiximols), to provide guidance on the potential therapeutic uses of high-THC cannabis and CBD oil. In general, data support a role for cannabis/cannabinoids in pain, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting. Given the biological activities of the cannabinoids, there may be utility in treatment of central nervous system disorders (such as neurodegenerative diseases, PTSD, and addiction) or for the treatment of cancer. However, those data are much less compelling. <b><i>Key Message:</i></b> On balance, there are reasons to support the potential use of medical cannabis and cannabis extract (Δ<sup>9</sup>-THC-dominant or CBD-dominant), but much more careful research is required.
Collapse
|
15
|
Durán-Lobato M, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci Rep 2022; 12:1297. [PMID: 35079042 PMCID: PMC8789857 DOI: 10.1038/s41598-022-05301-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects. However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems. In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye. Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms. Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain.
| | - Josefa Álvarez-Fuentes
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Mercedes Fernández-Arévalo
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Lucía Martín-Banderas
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| |
Collapse
|
16
|
Abrams DI. Cannabis, Cannabinoids and Cannabis-Based Medicines in Cancer Care. Integr Cancer Ther 2022; 21:15347354221081772. [PMID: 35225051 PMCID: PMC8882944 DOI: 10.1177/15347354221081772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
As medical cannabis becomes legal in more states, cancer patients are increasingly interested in the potential utility of the ancient botanical in their treatment regimen. Although eager to discuss cannabis use with their oncologist, patients often find that their provider reports that they do not have adequate information to be helpful. Oncologists, so dependent on evidence-based data to guide their treatment plans, are dismayed by the lack of published literature on the benefits of medical cannabis. This results largely from the significant barriers that have existed to effectively thwart the ability to conduct trials investigating the potential therapeutic efficacy of the plant. This is a narrative review aimed at clinicians, summarizing cannabis phytochemistry, trials in the areas of nausea and vomiting, appetite, pain and anticancer activity, including assessment of case reports of antitumor use, with reflective assessments of the quality and quantity of evidence. Despite preclinical evidence and social media claims, the utility of cannabis, cannabinoids or cannabis-based medicines in the treatment of cancer remains to be convincingly demonstrated. With an acceptable safety profile, cannabis and its congeners may be useful in managing symptoms related to cancer or its treatment. Further clinical trials should be conducted to evaluate whether the preclinical antitumor effects translate into benefit for cancer patients. Oncologists should familiarize themselves with the available database to be able to better advise their patients on the potential uses of this complementary botanical therapy.
Collapse
|
17
|
Gelmi TJ, Weinmann W, Pfäffli M. Impact of smoking cannabidiol (CBD)-rich marijuana on driving ability. Forensic Sci Res 2021; 6:195-207. [PMID: 34868711 PMCID: PMC8635612 DOI: 10.1080/20961790.2021.1946924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To investigate effects of smoking cannabidiol (CBD)-rich marijuana on driving ability and determine free CBD and Δ9-tetrahydrocannabinol (THC) concentrations in capillary blood samples, a randomised, double-blind, placebo-controlled, two-way crossover pilot study was conducted with 33 participants. Participants smoked a joint containing 500 mg of tobacco and either 500 mg of CBD-rich marijuana (16.6% total CBD; 0.9% total THC) or 500 mg of a placebo substance, then performed three different dimensions of the Vienna Test System TRAFFIC examining reaction time, behaviour under stress, and concentration performance. For further assessment of participants' fitness to drive, three tests of balance and coordination were evaluated and vital signs (blood pressure and pulse) were measured. Dried blood spot samples of capillary blood were taken after smoking and after completion of the tests to determine the cannabinoid concentrations (CBD, THC and THC-metabolites). The results revealed no significant differences between the effects of smoking CBD-rich marijuana and placebo on reaction time, motor time, behaviour under stress, or concentration performance. Maximum free CBD and THC concentrations in capillary blood were detected shortly after smoking, ranging between 2.6-440.0 ng/mL and 6.7-102.0 ng/mL, respectively. After 45 min, capillary blood concentrations had already declined and were in the range of 1.9-135.0 ng/mL (free CBD) and 0.9-38.0 ng/mL (free THC). Although the observed levels of free THC concentrations have been reported to cause symptoms of impairment in previous studies in which THC-rich marijuana was smoked, no signs of impairment were found in the current study. This finding suggests that higher CBD concentrations cause a negative allosteric effect in the endocannabinoid system, preventing the formation of such symptoms. Nevertheless, it is recommended that consumers refrain from driving for several hours after smoking CBD-rich marijuana, as legal THC concentration limits may be exceeded. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1946924 .
Collapse
Affiliation(s)
- Tim J Gelmi
- Department of Forensic Toxicology and Chemistry, Institute of Forensic Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Wolfgang Weinmann
- Department of Forensic Toxicology and Chemistry, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Matthias Pfäffli
- Department of Traffic Sciences, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Abrams DI, Velasco G, Twelves C, Ganju RK, Bar-Sela G. Cancer Treatment: Preclinical & Clinical. J Natl Cancer Inst Monogr 2021; 2021:107-113. [PMID: 34850894 DOI: 10.1093/jncimonographs/lgab010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The first evidence that cannabinoids may have in vitro and in vivo antineoplastic activity against tumor cell lines and animal tumor models was published in the Journal of the National Cancer Institute nearly 50 years ago. Cannabinoids appear to induce apoptosis in rodent brain tumors by way of direct interaction with the cannabinoid receptor. They may inhibit angiogenesis and tumor cell invasiveness. Despite preclinical findings, attempts to translate the benefits from bench to bedside have been limited. This session provides a review of the basic science supporting the use of cannabinoids in gliomas, paired with the first randomized clinical trial of a cannabis-based therapy for glioblastoma multiforme. Another preclinical presentation reports the effects of cannabinoids on triple-negative breast cancer cell lines and how cannabidiol may affect tumors. The session's second human trial raises concerns about the use of botanical cannabis in patients with advanced cancer receiving immunotherapy suggesting inferior outcomes.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology Division, Department of Medicine, University of California, San Francisco, CA, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.,Group of Cannabinoid Signaling in Cancer Cells, Division of Oncology Research, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Chris Twelves
- Department of Oncology, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, England, UK
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gil Bar-Sela
- Oncology and Hematology Division, Cancer Center, Emek Medical Center, Afula,Israel.,Bruce Rappaport Faculty of Medicine, Technion/Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
McAllister SD, Abood ME, Califano J, Guzmán M. Cannabinoid Cancer Biology and Prevention. J Natl Cancer Inst Monogr 2021; 2021:99-106. [PMID: 34850900 DOI: 10.1093/jncimonographs/lgab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Plant-based, synthetic, and endogenous cannabinoids have been shown to control a diverse array of biological processes, including regulation of cell fate across cancers. Their promise as broad-based antitumor agents in preclinical models has led to the initiation of pilot clinical trials. Session 5 of the National Cancer Institute's Cannabis, Cannabinoids and Cancer Research Symposium provides an overview of this research topic. Overall, the presentations highlight cannabinoid signal transduction and specific molecular mechanisms underlying cannabinoid antitumor activity. They also demonstrate the broad-based antitumor activity of the plant-based, synthetic, and endogenous cannabinoid compounds. Importantly, evidence is presented demonstrating when cannabinoids may be contraindicated as a treatment for cancer, as in the case of human papilloma virus-meditated oropharynx cancer or potentially other p38 MAPK pathway-driven cancers. Finally, it is discussed that a key to advancing cannabinoids into the clinic is to conduct well-designed, large-scale clinical trials to determine whether cannabinoids are effective antitumor agents in cancer patients.
Collapse
Affiliation(s)
- Sean D McAllister
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joseph Califano
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, CIBERNED, IUIN and IRYCIS, Complutense University, Madrid, Spain
| |
Collapse
|
20
|
Alsayed SSR, Suri A, Bailey AW, Lane S, Werry EL, Huang CC, Yu LF, Kassiou M, Sredni ST, Gunosewoyo H. Synthesis and antitumour evaluation of indole-2-carboxamides against paediatric brain cancer cells. RSC Med Chem 2021; 12:1910-1925. [PMID: 34825187 PMCID: PMC8597418 DOI: 10.1039/d1md00065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Paediatric glioblastomas are rapidly growing, devastating brain neoplasms with an invasive phenotype. Radiotherapy and chemotherapy, which are the current therapeutic adjuvant to surgical resection, are still associated with various toxicity profiles and only marginally improve the course of the disease and life expectancy. A considerable body of evidence supports the antitumour and apoptotic effects of certain cannabinoids, such as WIN55,212-2, against a wide spectrum of cancer cells, including gliomas. In fact, we previously highlighted the potent cytotoxic activity of the cannabinoid ligand 5 against glioblastoma KNS42 cells. Taken together, in this study, we designed, synthesised, and evaluated several indoles and indole bioisosteres for their antitumour activities. Compounds 8a, 8c, 8f, 12c, and 24d demonstrated significant inhibitory activities against the viability (IC50 = 2.34-9.06 μM) and proliferation (IC50 = 2.88-9.85 μM) of paediatric glioblastoma KNS42 cells. All five compounds further retained their antitumour activities against two atypical teratoid/rhabdoid tumour (AT/RT) cell lines. When tested against a medulloblastoma DAOY cell line, only 8c, 8f, 12c, and 24d maintained their viability inhibitory activities. The viability assay against non-neoplastic human fibroblast HFF1 cells suggested that compounds 8a, 8c, 8f, and 12c act selectively towards the panel of paediatric brain tumour cells. In contrast, compound 24d and WIN55,212-2 were highly toxic toward HFF1 cells. Due to their structural resemblance to known cannabimimetics, the most potent compounds were tested in cannabinoid 1 and 2 receptor (CB1R and CB2R) functional assays. Compounds 8a, 8c, and 12c failed to activate or antagonise both CB1R and CB2R, whereas compounds 8f and 24d antagonised CB1R and CB2R, respectively. We also performed a transcriptional analysis on KNS42 cells treated with our prototype compound 8a and highlighted a set of seven genes that were significantly downregulated. The expression levels of these genes were previously shown to be positively correlated with tumour growth and progression, indicating their implication in the antitumour activity of 8a. Overall, the drug-like and selective antitumour profiles of indole-2-carboxamides 8a, 8c, 8f, and 12c substantiate the versatility of the indole scaffold in cancer drug discovery.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Samuel Lane
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney NSW 2006 Australia
- Faculty of Medicine and Health, The University of Sydney NSW 2006 Australia
| | - Chiang-Ching Huang
- Department of Biostatistics, Zilber School of Public Health, University of Wisconsin Milwaukee WI 53205 USA
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Michael Kassiou
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine Chicago IL 60611 USA
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
21
|
Khalid S, Almalki FA, Hadda TB, Bader A, Abu-Izneid T, Berredjem M, Elsharkawy ER, Alqahtani AM. Medicinal Applications of Cannabinoids Extracted from Cannabis sativa (L.): A New Route in the Fight Against COVID-19? Curr Pharm Des 2021; 27:1564-1578. [PMID: 33267756 DOI: 10.2174/1381612826666201202125807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
Cannabis sativa is a well-known plant that has been recognized for its benefits since ancient times by several medicinal systems, including those of China, India, Greece, and Egypt. Although C. sativa is one of the most investigated medicinal plants in the world, it faces some of the greatest controversies surrounding its legalization and use as a medication. C. sativa contains several hundred phytoconstituents, including the infamous "cannabinoids". It is necessary to properly understand the medicinal importance of these phytochemicals and spread awareness among the countries where cannabis is still facing legal obstacles. The current review focuses on the most recent literature pertaining to various applications of cannabinoids, with a special focus on the medicinal aspect of these phytochemicals. Peer-reviewed articles focusing on the importance of cannabis and cannabinoids are the target of this review. Articles were selected based on the relevance to the general scope of the work, i.e., application of cannabinoids. Cannabinoids can truly be regarded as wonder drugs, considering their immense diversity of usage. Unfortunately, however, many of the mares have never been researched biologically or pharmacologically due to their low yield in the plant. However, the approval of some cannabinoids by the FDA (along with other recognized national medical health systems) has opened the horizon for the use of these natural drugs in medicines such as Epidiolex® (cannabidiol, used for the treatment of severe forms of epilepsy) and Sativex®(Δ9-tetrahydrocannabinol and cannabidiol, used for the treatment of spasticity caused by multiple sclerosis). Many pharmacological properties of C. sativa are attributed to cannabidiol (CBD), a non-psychoactive component, along with Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive component. This review addresses the most important applications or current utilization of cannabinoids in a variety of treatments such as chronic pain, cancer, emesis, anorexia, irritable bowel syndrome, communicable diseases, glaucoma, and central nervous system disorders. The biosynthetic pathway of cannabinoids is also discussed. In short, cannabis has a myriad of bioactive compounds that have the potential to increase the list of approved cannabinoids suitable for therapy.
Collapse
Affiliation(s)
- Shah Khalid
- Department of Botany, Islamia College, Peshawar, Pakistan
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, Collage of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000 Annaba, Algeria
| | - Eman R Elsharkawy
- Chemistry Department, Faculty of Science, Northern Borders University, Arar, Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
22
|
Schloss J, Lacey J, Sinclair J, Steel A, Sughrue M, Sibbritt D, Teo C. A Phase 2 Randomised Clinical Trial Assessing the Tolerability of Two Different Ratios of Medicinal Cannabis in Patients With High Grade Gliomas. Front Oncol 2021; 11:649555. [PMID: 34094937 PMCID: PMC8176855 DOI: 10.3389/fonc.2021.649555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cannabis for cancer is very topical and, given the use of illicit cannabis preparations used in this vulnerable population, research investigating standardised, quality-assured medicinal cannabis is critical to inform clinicians and assist patient safety. Methods A randomized trial involving adult patients diagnosed with a high-grade glioma, no history of substance abuse, liver or kidney damage or myocardial infarction were eligible for inclusion in a tolerability study on two different ratios of medicinal cannabis. Baseline screening of brain morphology, blood pathology, functional status, and cognition was conducted. A retrospective control group was used for comparison for secondary outcomes. Results Participants (n=88) were on average 53.3 years old. A paired t-test assessed the Functional Assessment of Cancer Therapy for Brain Cancer (FACT-Br) between groups from baseline to week 12 found that the 1:1 ratio favoured both physical (p=0.025) and functional (p=0.014) capacity and improved sleep (p=0.009). Analysis of changes from baseline to week 12 also found 11% of 61 participants had a reduction in disease, 34% were stable, 16% had slight enhancement, and 10% had progressive disease. No serious adverse events occurred. Side effects included dry mouth, tiredness at night, dizziness, drowsiness. Conclusion This study demonstrated that a single nightly dose of THC-containing medicinal cannabis was safe, had no serious adverse effects and was well tolerated in patients. Medicinal cannabis significantly improved sleep, functional wellbeing, and quality of life. Clinical Trial Registration Australian New Zealand Clinical Trials Registry (ANZCTR) http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373556&isReview=true, identifier ACTRN12617001287325.
Collapse
Affiliation(s)
- Janet Schloss
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia.,Office of Research, Endeavour College of Natural Health, Brisbane, QLD, Australia.,Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Judith Lacey
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Sydney, NSW, Australia.,Supportive Care, Chris O'Brien Lifehouse Cancer Hospital, Sydney, NSW, Australia.,Clinical School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Justin Sinclair
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| | - Amie Steel
- Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Michael Sughrue
- Prince of Wales Private Hospital, Centre for Minimally Invasive Neurosurgery, Sydney, NSW, Australia
| | - David Sibbritt
- Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Charles Teo
- Prince of Wales Private Hospital, Centre for Minimally Invasive Neurosurgery, Sydney, NSW, Australia
| |
Collapse
|
23
|
A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br J Cancer 2021; 124:1379-1387. [PMID: 33623076 PMCID: PMC8039032 DOI: 10.1038/s41416-021-01259-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preclinical data suggest some cannabinoids may exert antitumour effects against glioblastoma (GBM). Safety and preliminary efficacy of nabiximols oromucosal cannabinoid spray plus dose-intense temozolomide (DIT) was evaluated in patients with first recurrence of GBM. METHODS Part 1 was open-label and Part 2 was randomised, double-blind, and placebo-controlled. Both required individualised dose escalation. Patients received nabiximols (Part 1, n = 6; Part 2, n = 12) or placebo (Part 2 only, n = 9); maximum of 12 sprays/day with DIT for up to 12 months. Safety, efficacy, and temozolomide (TMZ) pharmacokinetics (PK) were monitored. RESULTS The most common treatment-emergent adverse events (TEAEs; both parts) were vomiting, dizziness, fatigue, nausea and headache. Most patients experienced TEAEs that were grade 2 or 3 (CTCAE). In Part 2, 33% of both nabiximols- and placebo-treated patients were progression-free at 6 months. Survival at 1 year was 83% for nabiximols- and 44% for placebo-treated patients (p = 0.042), although two patients died within the first 40 days of enrolment in the placebo arm. There were no apparent effects of nabiximols on TMZ PK. CONCLUSIONS With personalised dosing, nabiximols had acceptable safety and tolerability with no drug-drug interaction identified. The observed survival differences support further exploration in an adequately powered randomised controlled trial. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: Part 1- NCT01812603; Part 2- NCT01812616.
Collapse
|
24
|
Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM. The Neuroprotective Properties, Functions, and Roles of Cannabis sativa in Selected Diseases Related to the Nervous System. Cent Nerv Syst Agents Med Chem 2021; 21:20-38. [PMID: 33504317 DOI: 10.2174/1871524921666210127110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cannabis and its extracts are now being explored due to their huge health benefits. Although, the effect they elicit, whether on humans or rodents, may vary based on the age of the animal/subject and or the time in which the extract is administered. However, several debates exist concerning the various medical applications of these compounds. Nonetheless, their applicability as therapeutics should not be clouded based on their perceived negative biological actions. METHODS Articles from reliable databases such as Science Direct, PubMed, Google Scholar, Scopus, and Ovid were searched. Specific search methods were employed using multiple keywords: ''Medicinal Cannabis; endocannabinoid system; cannabinoids receptors; cannabinoids and cognition; brain disorders; neurodegenerative diseases''. For the inclusion/exclusion criteria, only relevant articles related to medicinal Cannabis and its various compounds were considered. RESULTS The current review highlights the role, effects, and involvement of Cannabis, cannabinoids, and endocannabinoids in preventing selected neurodegenerative diseases and possible amelioration of cognitive impairments. Furthermore, it also focuses on Cannabis utilization in many disease conditions such as Alzheimer's and Parkinson's disease among others. CONCLUSION In conclusion, the usage of Cannabis should be further explored as accumulating evidence suggests that it could be effective and somewhat safe, especially when adhered to the recommended dosage. Furthermore, in-depth studies should be conducted in order to unravel the specific mechanism underpinning the involvement of cannabinoids at the cellular level and their therapeutic applications.
Collapse
Affiliation(s)
- Onesimus Mahdi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad T H Baharuldin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Nurul Huda M Nor
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Samaila M Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Saravanan Jagadeesan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad A M Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| |
Collapse
|
25
|
Lei X, Chen X, Quan Y, Tao Y, Li J. Targeting CYP2J2 to Enhance the Anti-Glioma Efficacy of Cannabinoid Receptor 2 Stimulation by Inhibiting the Pro-Angiogenesis Function of M2 Microglia. Front Oncol 2020; 10:574277. [PMID: 33330047 PMCID: PMC7729163 DOI: 10.3389/fonc.2020.574277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Enhancing the therapeutic efficacy of anti-tumor drugs is essential for cancer management. Although cannabinoid receptor 2 (CB2R) stimulation exerts anti-tumor action in glioma cells by regulating cellular proliferation, differentiation, or apoptosis, selective CB2R agonist alone does not achieve a satisfactory therapeutic outcome. Herein, we aimed to evaluate the possible strategy for enhancing the anti-glioma efficacy of JWH133, a selective CB2R agonist. In this study, immunofluorescence and qRT-PCR were used to investigate microglia polarization. Tumor growth was monitored via bioluminescent imaging using the IVIS Spectrum System. The angiogenesis of human brain microvascular endothelial cells (HBMECs) was detected by the tube formation assay. qRT-PCR was used to investigate cytochrome P450 2J2 (CYP2J2) and 11,12-epoxyeicosatrienoic acid (11,12-EET) expression. Our results showed that administration of JWH133 significantly promoted microglial M2 polarization both in vitro and in vivo. The medium supernatant of M2 microglia induced by JWH133 treatment facilitated angiogenesis of HBMECs. CYP2J2 expression and 11,12-EET release in the supernatant of JWH133-induced M2 microglia were significantly upregulated. Treatment with 11,12-EET prompted HBMEC angiogenesis and glioma growth. CYP2J2 knockdown restrained the release of 11,12-EET and significantly enhanced the anti-tumor effect of JWH133 on glioma. This study showed that targeting CYP2J2 might be a beneficial strategy to enhance the anti-glioma efficacy of JWH133 by inhibiting the pro-angiogenesis function of M2 microglia.
Collapse
Affiliation(s)
- Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulian Quan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Junlong Li
- Office of Scientific Research Administration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
26
|
Zhelyazkova M, Kirilov B, Momekov G. The pharmacological basis for application of cannabidiol in cancer chemotherapy. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e51304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chemotherapy is one of the therapeutic approaches for cancer treatment and has demonstrated great success with the introduction of selectively acting molecules against specific biomarkers of some types of tumors. Despite this success there is a large unmet need for novel therapies that provide effective control on the progression of advanced or drug-resistant cancer diseases. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, as possible agents for cancer therapy. We analyzed the anticancer properties and mechanism of action of cannabidiol (CBD), the main non-psychoactive cannabinoid received from hemp of Cannabis plant. Despite of data for pleiotropic effects of CBD, we here present the results for the efficacy of CBD in the modulation of different stages of cancer development. The analysis of the anticancer properties of CBD is made in relation to the proposed or newly discovered molecular targets of action. Thereafter, we consider the specific effects of CBD on primary tumors, their invasiveness and metastases, whether the influence on identified tumor markers in different types of tumors reflect the therapeutic potential of CBD. The studies reviewed herein indicate that CBD elicit activity through the cannabinoid receptor dependent and independent pathways. The processes such as ceramide production, ER-stress, autophagy and apoptosis, angiogenesis and matrix remodeling also appear to regulate the anticancer activity of CBD. So, the pharmacological basis for therapeutic application of CBD is constructed on the scientific data for its antitumor activity, extensively provided studies in vitro and in vivo in animal tumor models, and available data on the safety profile of clinically approved CBD products. We also try to reduce the deficits of our understanding in relation of pharmacological synergistic interactions of CBD with cytostatic drugs, where data remains limited. It is recognized that more studies for defining the specific molecular and signaling mechanisms of anticancer action of cannabinoids, particularly CBD, requires further evaluation. We believe that the therapeutic advantages of CBD are associated not only with its non-psychoactive behavior, but also are related to its influence on the important biochemical pathways and signal molecules, defining the genome instability and specific changes of the malignant tumor cells.
Collapse
|
27
|
Hon AJ, Kraus P. Spasticity Management After Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00280-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Valentino WL, McKinnon BJ. Cannabis & ENT: State certification-An expanding yet unregulated system. Am J Otolaryngol 2020; 41:102459. [PMID: 32299638 DOI: 10.1016/j.amjoto.2020.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES 1) Ascertain the status of cannabis legalization by state, 2) Explore the process required to obtain cannabis credentials for both the patient and the physician, 3) Determine the level of interest of otolaryngologists in the medicinal cannabis, and 4) Explore possible research directions into efficacy and potential complications. STUDY DESIGN Descriptive study. METHODS Internet searches were conducted to identify each state's Medical Cannabis Program website. The qualifying conditions, list of approved-practitioners, process required for both practitioners and patients for approval were noted. Lists of approved practitioners were analyzed to determine the prevalence of board-certified otolaryngologists. RESULTS Of the 33 states that authorize medicinal cannabis, eight provide lists of approved-practitioners, six of which provide specialty information. A total of 24 Otolaryngologists can be found of the 5944 physicians on these six lists. All otolaryngologists were located in highly-populated metropolitan areas with a mean number of 29.9 years in practice. Significant variations exist between each state including legal definitions and qualifying conditions. CONCLUSIONS Lack of consistent regulation across the country drives uncertainty regarding the adoption of medicinal cannabis. Very few otolaryngologists in the country are registered to certify patients for medical cannabis. While the medicinal use of cannabis may currently have limited applications within otolaryngology, many areas that have yet to be explored.
Collapse
Affiliation(s)
| | - Brian J McKinnon
- Department of Otolaryngology - Head and Neck Surgery, UTMB Health, United States of America.
| |
Collapse
|
29
|
β-Caryophyllene Inhibits Cell Proliferation through a Direct Modulation of CB2 Receptors in Glioblastoma Cells. Cancers (Basel) 2020; 12:cancers12041038. [PMID: 32340197 PMCID: PMC7226353 DOI: 10.3390/cancers12041038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/13/2023] Open
Abstract
Glioblastomas are aggressive cancers characterized by uncontrolled proliferation and inflammation. b-caryophyllene (BCP) is a cannabinoid receptor 2 (CB2) agonist that showed an important anti-inflammatory effect through the interaction of CB2 and peroxisome proliferator-activated receptor gamma (PPARg) receptors. BCP effects were investigated in an in vitro model of glioblastoma. U-373 and U87, derived from a human glioblastoma, and human glioma stem-like cells (GSCs) were treated with BCP at different doses and time-points. AM360, a specific CB2 antagonist, was added 2 h before BCP treatment. BCP showed a significant anti-proliferative effect, reducing cell viability, inhibiting cell cycle, and increasing apoptosis, as demonstrated by Tunel assay, caspase-3 and caspase -9 activation. In addition, the pro-apoptotic BAX expression was increased, whereas the anti-apoptotic Bcl-2 expression was reduced. Treatment with BCP decreased Beclin-1, LC3 and p62/SQSTM1 expression, indicating a possible switch of autophagy to apoptosis. BCP’s anti-inflammatory effect was demonstrated by NF-κB reduction, PPARg activation and TNF-a decrease; BCP significantly reduced Jun N-Terminal Kinase (JNK) expression as a consequence of TNF-α inhibition. AM360 abrogated BCP effects, thus demonstrating the BCP mechanism of action through the CB2 receptor. These findings let us hypothesize that BCP may act as a tumor suppressor in glioblastoma, acting on CB2 receptor and modulating JNK.
Collapse
|
30
|
Luís Â, Marcelino H, Rosa C, Domingues F, Pereira L, Cascalheira JF. The effects of cannabinoids on glioblastoma growth: A systematic review with meta-analysis of animal model studies. Eur J Pharmacol 2020; 876:173055. [PMID: 32145324 DOI: 10.1016/j.ejphar.2020.173055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive malignant brain tumour, with a poor prognosis despite available surgical and radio-chemotherapy, rising the necessity for searching alternative therapies. Several preclinical studies evaluating the efficacy of cannabinoids in animal models of GBM have been described, but the diversity of experimental conditions and of outcomes hindered definitive conclusions about cannabinoids efficacy. A search in different databases (Pubmed, Web of Science, Scopus and SciELO) was conducted during June 2019 to systematically identify publications evaluating the effects of cannabinoids in murine xenografts models of GBM. The tumour volume and number of animals were extracted, and a random effects meta-analysis of these results was performed to estimate the efficacy of cannabinoids. The impact of different experimental factors and publication bias on the efficacy of cannabinoids was also assessed. Nine publications, which satisfied the inclusion criteria, were identified and subdivided in 22 studies involving 301 animals. Overall, cannabinoid therapy reduced the fold of increase in tumour volume in animal models of GBM, when compared with untreated controls. The overall weighted standardized difference in means (WSDM) for the effect of cannabinoids was -1.399 (95% CI: -1.900 to -0.898; P-value<0.0001). Furthermore, treatment efficacy was observed for different types of cannabinoids, alone or in combination, and for different treatment durations. Cannabinoid therapy was still effective after correcting for publication bias. The results indicate that cannabinoids reduce the tumour growth in animal models of GBM, even after accounting for publication bias.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Grupo de Revisões Sistemáticas da Literatura (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Helena Marcelino
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Carolina Rosa
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Luísa Pereira
- Grupo de Revisões Sistemáticas da Literatura (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - José Francisco Cascalheira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal.
| |
Collapse
|
31
|
Li H, Liu Y, Tian D, Tian L, Ju X, Qi L, Wang Y, Liang C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer's disease. Eur J Med Chem 2020; 192:112163. [PMID: 32109623 DOI: 10.1016/j.ejmech.2020.112163] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/05/2023]
Abstract
Herein, 11 general types of natural cannabinoids from Cannabis sativa as well as 50 (-)-CBD analogues with therapeutic potential were described. The underlying molecular mechanisms of CBD as a therapeutic candidate for epilepsy and neurodegenerative diseases were comprehensively clarified. CBD indirectly acts as an endogenous cannabinoid receptor agonist to exert its neuroprotective effects. CBD also promotes neuroprotection through different signal transduction pathways mediated indirectly by cannabinoid receptors. Furthermore, CBD prevents the glycogen synthase kinase 3β (GSK-3β) hyperphosphorylation caused by Aβ and may be developed as a new therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Danni Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xingke Ju
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Liang Qi
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
32
|
Nugent SM, Meghani SH, Rogal SS, Merlin JS. Medical cannabis use among individuals with cancer: An unresolved and timely issue. Cancer 2020; 126:1832-1836. [PMID: 32012232 DOI: 10.1002/cncr.32732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Shannon M Nugent
- Department of Psychiatry, Oregon Health and Science University, Portland, Oregon.,Center to Improve Veteran Involvement in Care, VA Portland Health Care System, Portland, Oregon
| | - Salimah H Meghani
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shari S Rogal
- Center for Health Equity Research and Promotion, VA Pittsburgh Health Care System, Pittsburgh, Pennsylvania
| | - Jessica S Merlin
- Section of Palliative Care and Medical Ethics, Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Research on Health Care, Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Laezza C, Pagano C, Navarra G, Pastorino O, Proto MC, Fiore D, Piscopo C, Gazzerro P, Bifulco M. The Endocannabinoid System: A Target for Cancer Treatment. Int J Mol Sci 2020; 21:ijms21030747. [PMID: 31979368 PMCID: PMC7037210 DOI: 10.3390/ijms21030747] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, the endocannabinoid system has received great interest as a potential therapeutic target in numerous pathological conditions. Cannabinoids have shown an anticancer potential by modulating several pathways involved in cell growth, differentiation, migration, and angiogenesis. However, the therapeutic efficacy of cannabinoids is limited to the treatment of chemotherapy-induced symptoms or cancer pain, but their use as anticancer drugs in chemotherapeutic protocols requires further investigation. In this paper, we reviewed the role of cannabinoids in the modulation of signaling mechanisms implicated in tumor progression.
Collapse
Affiliation(s)
- Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
- Correspondence: (C.L.); (M.B.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Olga Pastorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
- Correspondence: (C.L.); (M.B.)
| |
Collapse
|
34
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
35
|
Abstract
OPINION STATEMENT Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology, Zuckerberg San Francisco General, Integrative Oncology, UCSF Osher Center for Integrative Medicine, Professor of Clinical Medicine, University of California San Francisco, Ward 84, 995 Potrero, San Francisco, CA, 94110, USA.
| |
Collapse
|
36
|
Dumitru CA, Sandalcioglu IE, Karsak M. Cannabinoids in Glioblastoma Therapy: New Applications for Old Drugs. Front Mol Neurosci 2018; 11:159. [PMID: 29867351 PMCID: PMC5964193 DOI: 10.3389/fnmol.2018.00159] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/25/2018] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and one of the deadliest types of solid cancer overall. Despite aggressive therapeutic approaches consisting of maximum safe surgical resection and radio-chemotherapy, more than 95% of GBM patients die within 5 years after diagnosis. Thus, there is still an urgent need to develop novel therapeutic strategies against this disease. Accumulating evidence indicates that cannabinoids have potent anti-tumor functions and might be used successfully in the treatment of GBM. This review article summarizes the latest findings on the molecular effects of cannabinoids on GBM, both in vitro and in (pre-) clinical studies in animal models and patients. The therapeutic effect of cannabinoids is based on reduction of tumor growth via inhibition of tumor proliferation and angiogenesis but also via induction of tumor cell death. Additionally, cannabinoids were shown to inhibit the invasiveness and the stem cell-like properties of GBM tumors. Recent phase II clinical trials indicated positive results regarding the survival of GBM patients upon cannabinoid treatment. Taken together these findings underline the importance of elucidating the full pharmacological effectiveness and the molecular mechanisms of the cannabinoid system in GBM pathophysiology.
Collapse
Affiliation(s)
- Claudia A Dumitru
- Department of Neurosurgery, KRH Klinikum Nordstadt, Nordstadt Hospital Hannover, Hannover, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, KRH Klinikum Nordstadt, Nordstadt Hospital Hannover, Hannover, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
37
|
Abrams DI. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report. Eur J Intern Med 2018; 49:7-11. [PMID: 29325791 DOI: 10.1016/j.ejim.2018.01.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/01/2018] [Indexed: 12/30/2022]
Abstract
The National Academies of Sciences, Engineering and Medicine conducted a rapid turn-around comprehensive review of recent medical literature on The Health Effects of Cannabis and Cannabinoids. The 16-member committee adopted the key features of a systematic review process, conducting an extensive search of relevant databases and considered 10,000 recent abstracts to determine their relevance. Primacy was given to recently published systematic reviews and primary research that studied one of the committee's 11 prioritized health endpoints- therapeutic effects; cancer incidence; cardiometabolic risk; respiratory disease; immune function; injury and death; prenatal, perinatal and postnatal outcomes; psychosocial outcomes; mental health; problem Cannabis use; and Cannabis use and abuse of other substances. The committee developed standard language to categorize the weight of evidence regarding whether Cannabis or cannabinoids use for therapeutic purposes are an effective or ineffective treatment for the prioritized health endpoints of interest. In the Therapeutics chapter reviewed here, the report concluded that there was conclusive or substantial evidence that Cannabis or cannabinoids are effective for the treatment of pain in adults; chemotherapy-induced nausea and vomiting and spasticity associated with multiple sclerosis. Moderate evidence was found for secondary sleep disturbances. The evidence supporting improvement in appetite, Tourette syndrome, anxiety, posttraumatic stress disorder, cancer, irritable bowel syndrome, epilepsy and a variety of neurodegenerative disorders was described as limited, insufficient or absent. A chapter of the NASEM report enumerated multiple barriers to conducting research on Cannabis in the US that may explain the paucity of positive therapeutic benefits in the published literature to date.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology, Zuckerberg San Francisco General Hospital, Professor of Clinical Medicine, University of California San Francisco Ward 84, 995 Potrero Avenue, San Francisco, CA 94110, USA.
| |
Collapse
|
38
|
Keresztes A, Streicher JM. Synergistic interaction of the cannabinoid and death receptor systems - a potential target for future cancer therapies? FEBS Lett 2017; 591:3235-3251. [PMID: 28948607 DOI: 10.1002/1873-3468.12863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 01/16/2023]
Abstract
Cannabinoid receptors have been shown to interact with other receptors, including tumor necrosis factor receptor superfamily (TNFRS) members, to induce cancer cell death. When cannabinoids and death-inducing ligands (including TNF-related apoptosis-inducing ligand) are administered together, they have been shown to synergize and demonstrate enhanced antitumor activity in vitro. Certain cannabinoid ligands have been shown to sensitize cancer cells and synergistically interact with members of the TNFRS, thus suggesting that the combination of cannabinoids with death receptor (DR) ligands induces additive or synergistic tumor cell death. This review summarizes recent findings on the interaction of the cannabinoid and DR systems and suggests possible clinical co-application of cannabinoids and DR ligands in the treatment of various malignancies.
Collapse
Affiliation(s)
- Attila Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
da Rovare VP, Magalhães GP, Jardini GD, Beraldo ML, Gameiro MO, Agarwal A, Luvizutto GJ, Paula-Ramos L, Camargo SEA, de Oliveira LD, Bazan R, El Dib R. Cannabinoids for spasticity due to multiple sclerosis or paraplegia: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2017; 34:170-185. [DOI: 10.1016/j.ctim.2017.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
|
40
|
Bogdanović V, Mrdjanović J, Borišev I. A Review of the Therapeutic Antitumor Potential of Cannabinoids. J Altern Complement Med 2017; 23:831-836. [PMID: 28799775 DOI: 10.1089/acm.2017.0016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The aim of this review is to discuss cannabinoids from a preclinical and clinical oncological perspective and provide the audience with a concise, retrospective overview of the most significant findings concerning the potential use of cannabinoids in cancer treatment. METHODS A literature survey of medical and scientific databases was conducted with a focus on the biological and medical potential of cannabinoids in cancer treatment. RESULTS Cannabis sativa is a plant rich in more than 100 types of cannabinoids. Besides exogenous plant cannabinoids, mammalian endocannabinoids and synthetic cannabinoid analogues have been identified. Cannabinoid receptors type 1 (CB1) and type 2 (CB2) have been isolated and characterized from mammalian cells. Through cannabinoid receptor and non-receptor signaling pathways, cannabinoids show specific cytotoxicity against tumor cells, while protecting healthy tissue from apoptosis. The dual antiproliferative and proapoptotic effects of cannabinoids and associated signaling pathways have been investigated on a large panel of cancer cell lines. Cannabinoids also display potent anticancer activity against tumor xenografts, including tumors that express high resistance to standard chemotherapeutics. Few studies have investigated the possible synergistic effects of cannabinoids with standard oncology therapies, and are based on the preclinically confirmed concept of "cannabinoid sensitizers." Also, clinical trials aimed to confirm the antineoplastic activity of cannabinoids have only been evaluated on a small number of subjects, with no consensus conclusions regarding their effectiveness. CONCLUSIONS A large number of cannabinoid compounds have been discovered, developed, and used to study the effects of cannabinoids on cancers in model systems. However, few clinical trials have been conducted on the use of cannabinoids in the treatment of cancers in humans. Further studies require extensive monitoring of the effects of cannabinoids alone or in combination with standard anticancer strategies. With such knowledge, cannabinoids could become a therapy of choice in contemporary oncology.
Collapse
Affiliation(s)
- Višnja Bogdanović
- 1 Medical Faculty, University of Novi Sad , Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Jasminka Mrdjanović
- 1 Medical Faculty, University of Novi Sad , Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Ivana Borišev
- 2 Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad , Novi Sad, Serbia
| |
Collapse
|
41
|
Scott KA, Dalgleish AG, Liu WM. Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration. Int J Oncol 2017; 51:369-377. [PMID: 28560402 DOI: 10.3892/ijo.2017.4022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Phytocannabinoids possess anticancer activity when used alone, and a number have also been shown to combine favourably with each other in vitro in leukaemia cells to generate improved activity. We have investigated the effect of pairing cannabinoids and assessed their anticancer activity in cell line models. Those most effective were then used with the common anti-leukaemia drugs cytarabine and vincristine, and the effects of this combination therapy on cell death studied in vitro. Results show a number of cannabinoids could be paired together to generate an effect superior to that achieved if the components were used individually. For example, in HL60 cells, the IC50 values at 48 h for cannabidiol (CBD) and tetrahydrocannabinol (THC) when used alone were 8 and 13 µM, respectively; however, if used together, it was 4 µM. Median-effect analysis confirmed the benefit of using cannabinoids in pairs, with calculated combination indices being <1 in a number of cases. The most efficacious cannabinoid-pairs subsequently synergised further when combined with the chemotherapy agents, and were also able to sensitise leukaemia cells to their cytotoxic effects. The sequence of administration of these drugs was important though; using cannabinoids after chemotherapy resulted in greater induction of apoptosis, whilst this was the opposite when the schedule of administration was reversed. Our results suggest that when certain cannabinoids are paired together, the resulting product can be combined synergistically with common anti-leukaemia drugs allowing the dose of the cytotoxic agents to be dramatically reduced yet still remain efficacious. Nevertheless, the sequence of drug administration is crucial to the success of these triple combinations and should be considered when planning such treatments.
Collapse
Affiliation(s)
- Katherine A Scott
- Department of Oncology, Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Angus G Dalgleish
- Department of Oncology, Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Wai M Liu
- Department of Oncology, Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
42
|
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175:133-150. [PMID: 28232276 DOI: 10.1016/j.pharmthera.2017.02.041] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Anna Maria Malfitano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Anna Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Gaia Cuomo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Giorgio Faggiana
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | | | | | | | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy; Corporea, Fondazione Idis-Città della Scienza, Naples, Italy.
| |
Collapse
|
43
|
Likar R, Nahler G. The use of cannabis in supportive care and treatment of brain tumor. Neurooncol Pract 2017; 4:151-160. [PMID: 31385997 DOI: 10.1093/nop/npw027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabinoids are multitarget substances. Currently available are dronabinol (synthetic delta-9-tetrahydrocannabinol, THC), synthetic cannabidiol (CBD) the respective substances isolated and purified from cannabis, a refined extract, nabiximols (THC:CBD = 1.08:1.00); and nabilone, which is also synthetic and has properties that are very similar to those of THC. Cannabinoids have a role in the treatment of cancer as palliative interventions against nausea, vomiting, pain, anxiety, and sleep disturbances. THC and nabilone are also used for anorexia and weight loss, whereas CBD has no orexigenic effect. The psychotropic effects of THC and nabilone, although often undesirable, can improve mood when administered in low doses. CBD has no psychotropic effects; it is anxiolytic and antidepressive. Of particular interest are glioma studies in animals where relatively high doses of CBD and THC demonstrated significant regression of tumor volumes (approximately 50% to 95% and even complete eradication in rare cases). Concomitant treatment with X-rays or temozolomide enhanced activity further. Similarly, a combination of THC with CBD showed synergistic effects. Although many questions, such as on optimized treatment schedules, are still unresolved, today's scientific results suggest that cannabinoids could play an important role in palliative care of brain tumor patients.
Collapse
Affiliation(s)
- Rudolf Likar
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstrasse 11, 9020 Klagenfurt am Wörthersee (R.L.); CIS Clinical Investigation Support GmbH, Kaiserstrasse 43, 1070 Wien (G.N.)
| | - Gerhard Nahler
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstrasse 11, 9020 Klagenfurt am Wörthersee (R.L.); CIS Clinical Investigation Support GmbH, Kaiserstrasse 43, 1070 Wien (G.N.)
| |
Collapse
|
44
|
Nabors LB, Surboeck B, Grisold W. Complications from pharmacotherapy. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:235-250. [PMID: 26948358 DOI: 10.1016/b978-0-12-802997-8.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The pharmacotherapy management of cancers of the nervous system has significant overlap with systemic solid cancers that may utilize similar drugs or agents. There is however a unique aspect related to central nervous system (CNS) cancers where therapies directed against a malignant process may have enhanced toxicities or toxicities unique to the CNS. In addition, many agents used to treat CNS malignancies have unique CNS toxicities that may require a specific intervention. This chapter attempts to review conventional and biologic therapies utilized for CNS malignancies and characterize expected and, if known, unique toxicities.
Collapse
Affiliation(s)
- L Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Birgit Surboeck
- Department of Neurology, Kaiser-Franz-Josef Hospital, Vienna, Austria
| | - Wolfgang Grisold
- Department of Neurology, Kaiser-Franz-Josef Hospital, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
NIU FENG, ZHAO SONG, XU CHANGYAN, SHA HUI, BI GUIBIN, CHEN LIN, YE LONG, GONG PING, NIE TIANHONG. Potentiation of the antitumor activity of adriamycin against osteosarcoma by cannabinoid WIN-55,212-2. Oncol Lett 2015; 10:2415-2421. [PMID: 26622862 PMCID: PMC4580018 DOI: 10.3892/ol.2015.3525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is the most frequent primary malignant bone tumor that occurs in children and adolescents. The present study aimed to identify novel therapeutic strategies for osteosarcoma, by assessing the antitumor activity of the cannabinoid WIN-55,212-2 and its combined effect with adriamycin (ADM) against the MG-63 human osteosarcoma cell line. To evaluate the antiproliferative action of these molecules, a Cell Counting kit-8 (CCK-8) assay was used. The ability of cannabinoid to inhibit the migration, invasion and angiogenic activity of MG-63 cells were assessed by scratch, Transwell® chamber and angiogenesis assays, respectively, in vitro. To examine the alterations in expression of targeted genes, quantitative polymerase chain reaction and western blot analysis were used. The administration of cannabinoid combined with ADM was demonstrated to inhibit the growth of MG-63 cells, resulting in a cell viability of 32.12±3.13%, which was significantly lower (P<0.05) compared with the cell viability following treatment with cannabinoid (70.86±7.55%) and ADM (62.87±5.98%) alone. Greater antimetastasis and antiangiogenic activities were also observed following the coadministration of the two agents compared with individual treatments and controls. In addition, the expression levels of Notch-1, matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in MG-63 cells were downregulated following the treatments with cannabinoid alone or in combination with ADM. In conclusion, the present findings demonstrated that cannabinoid WIN-55,212-2 may significantly potentiate the antiproliferative, antimetastasis and antiangiogenic effects of ADM against MG-63 cells via the downregulation of Notch-1, MMP-2 and VEGF. These findings may offer a novel strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- FENG NIU
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - SONG ZHAO
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - CHANG-YAN XU
- Department of Medical Records, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - HUI SHA
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - GUI-BIN BI
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - LIN CHEN
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - LONG YE
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - PING GONG
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - TIAN-HONG NIE
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
46
|
Martín-Banderas L, Muñoz-Rubio I, Prados J, Álvarez-Fuentes J, Calderón-Montaño JM, López-Lázaro M, Arias JL, Leiva MC, Holgado MA, Fernández-Arévalo M. In vitro and in vivo evaluation of Δ⁹-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. Int J Pharm 2015; 487:205-12. [PMID: 25899283 DOI: 10.1016/j.ijpharm.2015.04.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/29/2023]
Abstract
Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ(9)-tetrahidrocannabinol (Δ(9)-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈ 290 nm) increased upon coating with PEG, CS, and PEG-CS up to ≈ 590 nm, ≈ 745 nm, and ≈ 790 nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈ 95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ(9)-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ(9)-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.
Collapse
Affiliation(s)
- L Martín-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - I Muñoz-Rubio
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - J Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain
| | - J Álvarez-Fuentes
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - J M Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - J L Arias
- Biosanitary Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - M C Leiva
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain
| | - M A Holgado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M Fernández-Arévalo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
47
|
Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Mauricio MD, Vila JM, Marchio P, Valles SL. WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture. PLoS One 2015; 10:e0122843. [PMID: 25874692 PMCID: PMC4395436 DOI: 10.1371/journal.pone.0122843] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/18/2015] [Indexed: 01/07/2023] Open
Abstract
Alzheimer´s disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid) on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Diana Aguirre-Rueda
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Elena Obrador
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Jose Mª Vila
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Soraya L. Valles
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
48
|
Abstract
Answer questions and earn CME/CNE Marijuana has been used for centuries, and interest in its medicinal properties has been increasing in recent years. Investigations into these medicinal properties has led to the development of cannabinoid pharmaceuticals such as dronabinol, nabilone, and nabiximols. Dronabinol is best studied in the treatment of nausea secondary to cancer chemotherapy and anorexia associated with weight loss in patients with acquired immune deficiency syndrome, and is approved by the US Food and Drug Administration for those indications. Nabilone has been best studied for the treatment of nausea secondary to cancer chemotherapy. There are also limited studies of these drugs for other conditions. Nabiximols is only available in the United States through clinical trials, but is used in Canada and the United Kingdom for the treatment of spasticity secondary to multiple sclerosis and pain. Studies of marijuana have concentrated on nausea, appetite, and pain. This article will review the literature regarding the medical use of marijuana and these cannabinoid pharmaceuticals (with emphasis on indications relevant to oncology), as well as available information regarding adverse effects of marijuana use.
Collapse
Affiliation(s)
- Joan L Kramer
- Medical Editor, American Cancer Society, Atlanta, GA
| |
Collapse
|
49
|
Morales P, Blasco-Benito S, Andradas C, Gómez-Cañas M, Flores JM, Goya P, Fernández-Ruiz J, Sánchez C, Jagerovic N. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer. J Med Chem 2015; 58:2256-64. [PMID: 25671648 DOI: 10.1021/acs.jmedchem.5b00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Triple-negative breast cancer (TNBC) represents a subtype of breast cancer characterized by high aggressiveness. There is no current targeted therapy for these patients whose prognosis, as a group, is very poor. Here, we report the synthesis and evaluation of a potent antitumor agent in vivo for this type of breast cancer designed as a combination of quinone/cannabinoid pharmacophores. This new compound (10) has been selected from a series of chromenopyrazolediones with full selectivity for the nonpsychotropic CB2 cannabinoid receptor and with efficacy in inducing death of human TNBC cell lines. The dual concept quinone/cannabinoid was supported by the fact that compound 10 exerts antitumor effect by inducing cell apoptosis through activation of CB2 receptors and through oxidative stress. Notably, it did not show either cytotoxicity on noncancerous human mammary epithelial cells nor toxic effects in vivo, suggesting that it may be a new therapeutic tool for the management of TNBC.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, CSIC , Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Scott KA, Dalgleish AG, Liu WM. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol Cancer Ther 2014; 13:2955-67. [PMID: 25398831 DOI: 10.1158/1535-7163.mct-14-0402] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-grade glioma is one of the most aggressive cancers in adult humans and long-term survival rates are very low as standard treatments for glioma remain largely unsuccessful. Cannabinoids have been shown to specifically inhibit glioma growth as well as neutralize oncogenic processes such as angiogenesis. In an attempt to improve treatment outcome, we have investigated the effect of Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) both alone and in combination with radiotherapy in a number of glioma cell lines (T98G, U87MG, and GL261). Cannabinoids were used in two forms, pure (P) and as a botanical drug substance (BDS). Results demonstrated a duration- and dose-dependent reduction in cell viability with each cannabinoid and suggested that THC-BDS was more efficacious than THC-P, whereas, conversely, CBD-P was more efficacious than CBD-BDS. Median effect analysis revealed all combinations to be hyperadditive [T98G 48-hour combination index (CI) at FU50, 0.77-1.09]. Similarly, pretreating cells with THC-P and CBD-P together for 4 hours before irradiation increased their radiosensitivity when compared with pretreating with either of the cannabinoids individually. The increase in radiosensitivity was associated with an increase in markers of autophagy and apoptosis. These in vitro results were recapitulated in an orthotopic murine model for glioma, which showed dramatic reductions in tumor volumes when both cannabinoids were used with irradiation (day 21: 5.5 ± 2.2 mm(3) vs. 48.7 ± 24.9 mm(3) in the control group; P < 0.01). Taken together, our data highlight the possibility that these cannabinoids can prime glioma cells to respond better to ionizing radiation, and suggest a potential clinical benefit for glioma patients by using these two treatment modalities.
Collapse
Affiliation(s)
- Katherine A Scott
- Department of Oncology, Division of Clinical Sciences, St George's, University of London, London, United Kingdom
| | - Angus G Dalgleish
- Department of Oncology, Division of Clinical Sciences, St George's, University of London, London, United Kingdom
| | - Wai M Liu
- Department of Oncology, Division of Clinical Sciences, St George's, University of London, London, United Kingdom.
| |
Collapse
|