1
|
Martínez-Mendiola CA, Estrada JA, Zapi-Colín LÁ, Contreras-Chávez GG, Contreras I. Effect of pyridoxine or cobalamin supplementation on apoptosis and cell cycle progression in a human glioblastoma cell line. Int J Neurosci 2024; 134:1320-1331. [PMID: 37750905 DOI: 10.1080/00207454.2023.2263815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/04/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Glioblastoma is the most aggressive type of brain tumor, with current therapies failing to significantly improve patient survival. Vitamins have important effects on cellular processes that are relevant for tumor development and progression. AIM The present study explored the effect of pyridoxine or cobalamin supplementation on the viability and cell cycle progression of human glioblastoma cell line U-87 MG. METHOD Cell cultures were treated with increasing concentrations of pyridoxine or cobalamin for 24-72 h. After supplementation, cell viability and cell cycle progression were assessed by spectrophotometry and flow cytometry. Analysis of Bcl-2 and active caspase 3 expression in supplemented cells was performed by western blot. RESULT The results show that pyridoxine supplementation decreases cell viability in a dose and time dependent manner. Loss of viability in pyridoxin-supplemented cells is probably related to less cell cycle progression, higher active caspase 3 expression and apoptosis. In addition, Bcl-2 expression did not appear to be altered by vitamin supplementation, but active caspase 3 expression was significantly increased in pyridoxine-, but not cobalamin-supplemented cells, furthermore, cobalamin inhibited the pyridoxine cytotoxicity in the cell viability assay when combined. CONCLUSION The results suggest that pyridoxine supplementation promotes apoptosis in human glioblastoma-derived cells and may be useful to enhance the effect of cytotoxic therapies in vivo.
Collapse
Affiliation(s)
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Luis Á Zapi-Colín
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Gerson G Contreras-Chávez
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
2
|
Xia X, Xu F, Dai D, Xiong A, Sun R, Ling Y, Qiu L, Wang R, Ding Y, Lin M, Li H, Xie Z. VDR is a potential prognostic biomarker and positively correlated with immune infiltration: a comprehensive pan-cancer analysis with experimental verification. Biosci Rep 2024; 44:BSR20231845. [PMID: 38639057 PMCID: PMC11065647 DOI: 10.1042/bsr20231845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment, or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared with normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12, and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways, respectively, in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.
Collapse
MESH Headings
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Humans
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Gene Expression Regulation, Neoplastic
- Thyroid Cancer, Papillary/immunology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Cell Line, Tumor
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Cancer-Associated Fibroblasts/pathology
- Databases, Genetic
Collapse
Affiliation(s)
- Xuedi Xia
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Dexing Dai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - An Xiong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ruoman Sun
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Yali Ling
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Lei Qiu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Rui Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ya Ding
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Miaoying Lin
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Haibo Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Zhongjian Xie
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
3
|
Nobutoki T. Vitamin D in tuberous sclerosis complex-associated tumors. Front Pediatr 2024; 12:1392380. [PMID: 38846332 PMCID: PMC11153746 DOI: 10.3389/fped.2024.1392380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Mammalian target of rapamycin inhibitors (mTORi) have been used to treat pediatric tuberous sclerosis complex (TSC)-associated tumors, particularly in cases with contraindications to surgery or difficulties in complete tumor resection. However, some patients experience side effects and tumor regression after discontinuation of the treatment. Therefore, there is an urgent need to develop drugs that can be used in combination with mTORi to increase their efficacy and minimize their side effects. 1,25-Dihydroxyvitamin D3 (1,25-D), which has anticancer properties, may be a promising candidate for adjuvant or alternative therapy because TSC and cancer cells share common mechanisms, including angiogenesis, cell growth, and proliferation. Vitamin D receptor-mediated signaling can be epigenetically modified and plays an important role in susceptibility to 1,25-D. Therefore, vitamin D signaling may be a promising drug target, and in vitro studies are required to evaluate the efficacy of 1,25-D in TSC-associated tumors, brain development, and core symptoms of psychiatric disorders.
Collapse
Affiliation(s)
- Tatsuro Nobutoki
- Department of Pediatrics, Social Welfare Aiseikai, Suihoen, Japan
| |
Collapse
|
4
|
Rehbein S, Possmayer AL, Bozkurt S, Lotsch C, Gerstmeier J, Burger M, Momma S, Maletzki C, Classen CF, Freiman TM, Dubinski D, Lamszus K, Stringer BW, Herold-Mende C, Münch C, Kögel D, Linder B. Molecular Determinants of Calcitriol Signaling and Sensitivity in Glioma Stem-like Cells. Cancers (Basel) 2023; 15:5249. [PMID: 37958423 PMCID: PMC10648216 DOI: 10.3390/cancers15215249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma is the most common primary brain cancer in adults and represents one of the worst cancer diagnoses for patients. Suffering from a poor prognosis and limited treatment options, tumor recurrences are virtually inevitable. Additionally, treatment resistance is very common for this disease and worsens the prognosis. These and other factors are hypothesized to be largely due to the fact that glioblastoma cells are known to be able to obtain stem-like traits, thereby driving these phenotypes. Recently, we have shown that the in vitro and ex vivo treatment of glioblastoma stem-like cells with the hormonally active form of vitamin D3, calcitriol (1α,25(OH)2-vitamin D3) can block stemness in a subset of cell lines and reduce tumor growth. Here, we expanded our cell panel to over 40 different cultures and can show that, while half of the tested cell lines are sensitive, a quarter can be classified as high responders. Using genetic and proteomic analysis, we further determined that treatment success can be partially explained by specific polymorphism of the vitamin D3 receptor and that high responders display a proteome suggestive of blockade of stemness, as well as migratory potential.
Collapse
Affiliation(s)
- Sarah Rehbein
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Anna-Lena Possmayer
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Catharina Lotsch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Julia Gerstmeier
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Michael Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60596 Frankfurt am Main, Germany;
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, 60596 Frankfurt am Main, Germany;
| | - Claudia Maletzki
- Department of Medicine, Clinic III-Hematology, Oncology, Alliative Care Rostock, 18057 Rostock, Germany;
| | - Carl Friedrich Classen
- Division of Pediatric Oncology, Hematology and Palliative Medicine Section, Department of Pediatrics and Adolescent Medicine, University Medicine Rostock, 18057 Rostock, Germany;
| | - Thomas M. Freiman
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Daniel Dubinski
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg—Eppendorf, 20251 Hamburg, Germany;
| | - Brett W. Stringer
- College of Medicine and Public Health, Flinders University, Sturt Rd., Bedford Park, SA 5042, Australia;
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| |
Collapse
|
5
|
Yuan R, Zhang W, You Y, Cui G, Gao Z, Wang X, Chen J. Vitamin D3 suppresses the cholesterol homeostasis pathway in patient-derived glioma cell lines. FEBS Open Bio 2023; 13:1789-1806. [PMID: 37489660 PMCID: PMC10476568 DOI: 10.1002/2211-5463.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.
Collapse
Affiliation(s)
- Ran Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yong‐Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityChina
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of MedicineShanghai UniversityNantongChina
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical SciencesNanjing Medical UniversityChina
| | - Jian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
6
|
Biomarkers Regulated by Lipid-Soluble Vitamins in Glioblastoma. Nutrients 2022; 14:nu14142873. [PMID: 35889829 PMCID: PMC9322598 DOI: 10.3390/nu14142873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), a highly lethal form of adult malignant gliomas with little clinical advancement, raises the need for alternative therapeutic approaches. Lipid-soluble vitamins have gained attention in malignant brain tumors owing to their pleiotropic properties and their anti-cancer potential have been reported in a number of human GBM cell lines. The aim of this paper is to systematically review and describe the roles of various biomarkers regulated by lipid-soluble vitamins, such as vitamins A, D, E, and K, in the pathophysiology of GBM. Briefly, research articles published between 2005 and 2021 were systematically searched and selected from five databases (Scopus, PubMed, Ovid MEDLINE, EMBASE via Ovid, and Web of Science) based on the study’s inclusion and exclusion criteria. In addition, a number of hand-searched research articles identified from Google Scholar were also included for the analysis. A total of 40 differentially expressed biomarkers were identified from the 19 eligible studies. The results from the analysis suggest that retinoids activate cell differentiation and suppress the biomarkers responsible for stemness in human GBM cells. Vitamin D appears to preferentially modulate several cell cycle biomarkers, while vitamin E derivatives seem to predominantly modulate biomarkers related to apoptosis. However, vitamin K1 did not appear to induce any significant changes to the Raf/MEK/ERK signaling or apoptotic pathways in human GBM cell lines. From the systematic analysis, 12 biomarkers were identified that may be of interest for further studies, as these were modulated by one or two of these lipid-soluble vitamins.
Collapse
|
7
|
Lo CSC, Kiang KMY, Leung GKK. Anti-tumor effects of vitamin D in glioblastoma: mechanism and therapeutic implications. J Transl Med 2022; 102:118-125. [PMID: 34504307 DOI: 10.1038/s41374-021-00673-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
Glioma is the most prevalent primary brain tumor in adults among which glioblastoma is the most malignant and lethal subtype. Its common resistance to conventional chemotherapeutics calls for the development of alternative or concomitant treatment. Taking advantage of its endocrine function as a neurosteroid, vitamin D has become a target of interest to be used in conjunction with different chemotherapies. In this article, we review the mechanisms through which vitamin D and its analogs induce anti-tumor activity in glioblastoma, and the practical issues relevant to their potential application based on in vitro and in vivo studies. Vitamin D has largely been reported to promote cell cycle arrest and induce cell death to suppress tumor growth in glioblastoma. Glioblastoma cells treated with vitamin D have also shown reduced migratory and invasive phenotypes, and reduced stemness. It is worth noting that vitamin D analogs are able to produce similar inhibitory actions without causing adverse effects such as hypercalcemia in vivo. Upregulation of vitamin D receptors by vitamin D and its analogs may also play a role in enhancing its anti-tumor activity. Based on current findings and taking into consideration its potential cancer-protective effects, the clinical application of vitamin D in glioblastoma treatment and prevention will be discussed. With some study findings subject to controversy, further investigation is warranted to elucidate the mechanism of action of vitamin D and to evaluate relevant issues regarding its treatment efficacy and potential clinical application.
Collapse
Affiliation(s)
- Carmen Sze-Ching Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Karrie Mei-Yee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong.
| |
Collapse
|
8
|
Gerstmeier J, Possmayer AL, Bozkurt S, Hoffmann ME, Dikic I, Herold-Mende C, Burger MC, Münch C, Kögel D, Linder B. Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers (Basel) 2021; 13:cancers13143577. [PMID: 34298790 PMCID: PMC8303292 DOI: 10.3390/cancers13143577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cancer cells with a stem-like phenotype that are thought to be highly tumorigenic are commonly described in glioblastoma, the most common primary adult brain cancer. This phenotype comprises high self-renewal capacity and resistance against chemotherapy and radiation therapy, thereby promoting tumor progression and disease relapse. Here, we show that calcitriol, the hormonally active form of the “sun hormone” vitamin D3, effectively suppresses stemness properties in glioblastoma stem-like cells (GSCs), supporting the hypothesis that calcitriol sensitizes them to additional chemotherapy. Indeed, a physiological organotypic brain slice model was used to monitor tumor growth of GSCs, and the effectiveness of combined treatment with temozolomide, the current standard-of-care, and calcitriol was proven. These findings indicate that further research on applying calcitriol, a well-known and safe drug, as a potential adjuvant therapy for glioblastoma is both justified and necessary. Abstract Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.
Collapse
Affiliation(s)
- Julia Gerstmeier
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Anna-Lena Possmayer
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Marina E. Hoffmann
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Ivan Dikic
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany;
| | - Michael C. Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany;
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Donat Kögel
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- Correspondence: ; Tel.: +49-69-6301-6930
| |
Collapse
|
9
|
Travers S, Litofsky NS. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sci 2021; 11:brainsci11050533. [PMID: 33922443 PMCID: PMC8146925 DOI: 10.3390/brainsci11050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Survival in glioblastoma remains poor despite advancements in standard-of-care treatment. Some patients wish to take a more active role in their cancer treatment by adopting daily lifestyle changes to improve their quality of life or overall survival. We review the available literature through PubMed and Google Scholar to identify laboratory animal studies, human studies, and ongoing clinical trials. We discuss which health habits patients adopt and which have the most promise in glioblastoma. While results of clinical trials available on these topics are limited, dietary restrictions, exercise, use of supplements and cannabis, and smoking cessation all show some benefit in the comprehensive treatment of glioblastoma. Marital status also has an impact on survival. Further clinical trials combining standard treatments with lifestyle modifications are necessary to quantify their survival advantages.
Collapse
|
10
|
Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, Jin W, Gao X. The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment. Front Immunol 2020; 11:737. [PMID: 32391020 PMCID: PMC7193311 DOI: 10.3389/fimmu.2020.00737] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid progenitor and precursor cells at different stages of differentiation, which play an important role in tumor immunosuppression. Glioma is the most common and deadliest primary malignant tumor of the brain, and ample evidence supports key contributions of MDSCs to the immunosuppressive tumor microenvironment, which is a key factor stimulating glioma progression. In this review, we summarize the source and characterization of MDSCs, discuss their immunosuppressive functions, and current approaches that target MDSCs for tumor control. Overall, the review provides insights into the roles of MDSC immunosuppression in the glioma microenvironment and suggests that MDSC control is a powerful cellular therapeutic target for currently incurable glioma tumors.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Zhifang Hu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
In Vitro and In Vivo Antitumor Activity of Vitamin D3 in Malignant Gliomas: A Systematic Review. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.94542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Knockdown of MCM10 Gene Impairs Glioblastoma Cell Proliferation, Migration and Invasion and the Implications for the Regulation of Tumorigenesis. J Mol Neurosci 2020; 70:759-768. [PMID: 32030558 DOI: 10.1007/s12031-020-01486-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/17/2020] [Indexed: 10/24/2022]
Abstract
Minichromosome maintenance 10 (MCM10) plays an important role in DNA replication and is expressed in a variety of tumors, including glioma. However, its role and mechanism in glioma remain elusive. The purpose of this study was to examine the molecular function of MCM10 in glioblastoma cell lines in vitro and to further investigate the molecular mechanisms in the network mediated by MCM10. Cell proliferation, invasion, and migration were investigated in the absence of MCM10 mediated by RNA interference (RNAi) in U87 and U251 cell lines. Microarray data were obtained from U87 cells infected with a lentivirus expressing a small interfering RNA (siRNA) targeting MCM10, and ingenuity pathway analysis (IPA) was performed. Molecular signaling pathways, gene functions, and upstream and downstream regulatory genes and networks were analyzed. MCM10 was positively stained in human glioblastoma multiforme (GBM) samples according to immunohistochemistry. Silencing MCM10 in U87 and U251 cells significantly reduced cell proliferation, migration, and invasion. In U87 cells transfected with MCM10, 274 genes were significantly upregulated, while 313 genes were downregulated. IPA revealed that MCM10 is involved in the IGF-1 signaling pathway, and calcitriol appears to be a significant upstream regulator of MCM10. Other factors, such as TWIST1 and Stat3, also interact within the MCM10-mediated network. Our data indicate that MCM10 is involved in the regulation of GBM in vitro and may provide more evidence for understanding the molecular mechanisms of this fatal disease.
Collapse
|
13
|
Norlin M. Effects of vitamin D in the nervous system: Special focus on interaction with steroid hormone signalling and a possible role in the treatment of brain cancer. J Neuroendocrinol 2020; 32:e12799. [PMID: 31593305 DOI: 10.1111/jne.12799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022]
Abstract
The active vitamin D hormone, 1,25-dihydroxyvitamin D3 , exerts many physiological actions in the body, including effects on the nervous system. Studies of steroidogenesis in cells of the nervous system and elsewhere not only indicate that 1,25-dihydroxyvitamin D3 affects steroidogenic pathways but also suggest varying responses in different cell types. For example, 1,25-dihydroxyvitamin D3 stimulates the expression of aromatase in human glioma but not in human neuroblastoma cells or rat astrocytes. However, in astrocytes, 1,25-dihydroxyvitamin D3 suppresses 3β-hydroxysteroid dehydrogenase and steroid 17-hydroxylase/lyase. Other studies indicate cross-talk between vitamin D signalling and signalling of oestrogens, progesterone or glucocorticoids. Reported data indicate synergistic effects of combinations of 1,25-dihydroxyvitamin D3 and other steroid hormones on neuroinflammation, neurite outgrowth and neuroprotection. Also, dysregulation of steroid pathways affecting brain cells is found in vitamin D deficiency. Thus, several studies suggest that active vitamin D may affect steroid hormone synthesis and/or signalling in the nervous system, although the potential mechanisms for these responses remain unclear. 1,25-Dihydroxyvitamin D3 suppresses proliferation in several cell types and is therefore of interest in cancer treatment. Also, epidemiological studies associate vitamin D levels with cancer risk or outcomes. Reported data on tumours of the nervous system are mainly on glioma, a common type of brain cancer. Expression of the vitamin D receptor in glioma tumours is associated with improved survival. Several studies show that 1,25-dihydroxyvitamin D3 and vitamin D analogues (synthetic vitamin D-like compounds) suppress proliferation and migration in human vitamin D receptor-expressing glioma cell lines. Studies on mechanisms for actions of 1,25-dihydroxyvitamin D3 or its analogues indicate regulation of cell cycle proteins and senescence markers. These compounds also show synergism in combination with other cancer therapies treating glioma. From the data available, vitamin D analogues emerge as interesting candidates for the future improved treatment of human glioma and possibly also other cancers of the nervous system.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Shirvani-Farsani Z, Behmanesh M. RNAi-mediated knockdown of VDR surprisingly suppresses cell growth in Jurkat T and U87-MG cells. Heliyon 2019; 5:e02837. [PMID: 31763486 PMCID: PMC6861732 DOI: 10.1016/j.heliyon.2019.e02837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/09/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Vitamin D receptor (VDR) is a nuclear receptor for 1,25-Dihydroxyvitamin D3. VDR is expressed in many types of cells and involved in different biological processes such as immunity and inflammation. In addition, the role for VDR has been indicated in different diseases including multiple sclerosis (MS). In this study, we investigated the effects of VDR knockdown on growth, apoptosis, cell cycle, and some inflammatory gene expressions in Jurkat and U87-MG cell lines. The cell lines were transfected with plasmids encoding short hairpin RNA specific to VDR mRNA. Next, growth, apoptosis, and cell cycle were evaluated using MTT assay and annexin VDR along with flowcytometry. Then the mRNA expression of some genes was determined by real-time PCR at 24 h and 48 h after transfection. The cell growth and apoptosis of VDR-shRNA transfected Jurkat T cells and U87-MG cells were surprisingly changed compared with those in control cells. The expression of IL-10, NF-KB, TGF-β1, TGF-β R I, and TGF-β R II in two cell lines transfected with VDR-shRNA was significantly changed compared to control cells. VDR showed a new unexpected function to control cell growth in vitro. In addition, while VDR knocking down in two different cell lines of U87-MG and Jurkat cells had different effects on NF-kB and TGF-beta expression levels, its effects on cell growth and apoptosis were similar. This may suggest that these two different cell lines can show similar anti-proliferative effects by different downstream signalling pathways. Therefore, these data may be useful to design novel diagnostic and therapeutic methods for diseases such as MS.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, IR Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
15
|
Elmaci I, Ozpinar A, Ozpinar A, Perez JL, Altinoz MA. From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma Multiforme (GBM) and a proposal for Vitamin D + all-trans retinoic acid + Temozolomide combination in treatment of GBM. Metab Brain Dis 2019; 34:687-704. [PMID: 30937698 DOI: 10.1007/s11011-019-00412-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Here we review tumoricidal efficacy of Vitamin D analogues in glioblastoma multiforme (GBM) and potential synergisms with retinoic acid and temozolomide based on epidemiological and cellular studies. Epidemiological data suggest that winter birth is associated with higher risk of GBM, and GBM debulking in the winter enhanced mortality, which may relate with lower exposure to sunlight essential to convert cholecalciferol to Vitamin D. Comparative studies on blood bank specimens revealed that higher prediagnosis levels of calcidiol are associated with lower risk of GBM in elderly men. Supplemental Vitamin D reduced mortality in GBM patients in comparison to nonusers. Expression of Vitamin D Receptor is associated with a good prognosis in GBM. Conversely, Vitamin D increases glial tumor synthesis of neutrophins NGF and NT-3, the low affinity neurotrophin receptor p75NTR, IL-6 and VEGF, which may enhance glioma growth. Antitumor synergisms between temozolomide and Vitamin D and Vitamin D with Vitamin A derivatives were observed. Hence, we hypothesize that Calcitriol + ATRA (All-Trans Retinoic Acid) + Temozolomide - CAT combination might be a safer approach to benefit from Vitamin D in the management of high-grade glial tumors. Adding acetazolomide to this protocol may reduce the risk of pseudotumor cerebri, as both Vitamin D and Vitamin A excess may cause intracranial hypertension; this approach may provide further benefit as acetazolomide also exhibits anticancer activity.
Collapse
Affiliation(s)
- Ilhan Elmaci
- Acibadem University, Istanbul, Neuroacademy Group, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Perez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey.
- Neurooncology Branch, Neuroacademy Group, Istanbul, Turkey.
- Department of Psychiatry, Maastricht University, Maastricht, Holland, The Netherlands.
| |
Collapse
|
16
|
Sui A, Xu Y, Pan B, Guo T, Wu J, Shen Y, Yang J, Guo X. Histone demethylase KDM6B regulates 1,25‐dihydroxyvitamin D3‐induced senescence in glioma cells. J Cell Physiol 2019; 234:17990-17998. [PMID: 30825201 DOI: 10.1002/jcp.28431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Aixia Sui
- Department of Oncology Hebei General Hospital Shijiazhuang China
| | - Yongbing Xu
- Department of Oncology Hebei General Hospital Shijiazhuang China
- Graduate School, Hebei Medical University Shijiazhuang China
| | - Baogen Pan
- Department of Neurosurgery Hebei General Hospital Shijiazhuang China
| | - Tao Guo
- Department of Oncology Hebei General Hospital Shijiazhuang China
| | - Jiang Wu
- Department of Neurosurgery Hebei General Hospital Shijiazhuang China
| | - Yongqing Shen
- Department of Nursing Hebei University of Chinese Medicine Shijiazhuang China
| | - Junjie Yang
- Department of Oncology Hebei General Hospital Shijiazhuang China
| | - Xiaoqiang Guo
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics Peking University Shenzhen Hospital Shenzhen China
| |
Collapse
|
17
|
Brook L, Palade P, Maatough A, Whitfield GK, Emeterio LS, Hsieh D, Hsieh JC. Hairless regulates p53 target genes to exert tumor suppressive functions in glioblastoma. J Cell Biochem 2018; 120:533-543. [PMID: 30191601 DOI: 10.1002/jcb.27408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/11/2018] [Indexed: 11/07/2022]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and is associated with a poor prognosis, with most patients living less than a year after diagnosis. Given that GBM nearly always recurs after conventional treatments, there is an urgent need to identify novel molecular targets. Hairless (HR) is a nuclear factor enriched in the skin and has been previously implicated in hair cycling. HR is also highly expressed in the brain, but its significance is unknown. We found that human hairless gene (HR) expression is significantly decreased in all GBM subtypes compared with normal brain tissue and is predictive of prognosis, which suggests that loss of HR expression can contribute to GBM pathogenesis. HR was recently discovered to bind to and regulate p53 responsive elements, and thus we hypothesized that HR may have a tumor suppressive function in GBM by modulating p53 target gene expression. We found that HR indeed regulates p53 target genes, including those implicated in cell cycle progression and apoptosis in the GBM-derived U87 cell line, and restoring HR expression triggered G2/M arrest and apoptosis. An analysis of sequenced genomes from patients with GBM revealed 10 HR somatic mutations in patients with glioma, two of which are located in the histone demethylase domain of HR. These two mutations, P996S and K1004N, were reconstructed and found to have impaired p53 transactivating properties. Collectively, the results of our study suggest that HR has tumor suppressive functions in GBM, which may be clinically relevant and a potential avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Lemlem Brook
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Patricia Palade
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Anas Maatough
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Graham Kerr Whitfield
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Lis San Emeterio
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - David Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jui-Cheng Hsieh
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| |
Collapse
|
18
|
Emanuelsson I, Wikvall K, Friman T, Norlin M. Vitamin D Analogues Tacalcitol and Calcipotriol Inhibit Proliferation and Migration of T98G Human Glioblastoma Cells. Basic Clin Pharmacol Toxicol 2018; 123:130-136. [PMID: 29575677 DOI: 10.1111/bcpt.13007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
The active form of vitamin D (1α,25-dihydroxyvitamin D) acts as a steroid hormone and binds to the vitamin D receptor. This receptor is expressed in most cell types including cells in the central nervous system (CNS). Vitamin D has several functions in the body including effects on brain development, neuroprotection and immunological regulation. It has been shown that vitamin D has antiproliferative activities in different cancer cell lines. Tacalcitol and calcipotriol are synthetic analogues of 1α,25-dihydroxyvitamin D with reduced effect on calcium metabolism. The aim of this study was to analyse the effects of tacalcitol and calcipotriol on cell viability, proliferation and migration in the human glioblastoma cell line T98G. Glioblastoma is the most lethal type of primary tumours in the CNS. Both analogues decreased cell viability and/or growth, dose-dependently, in concentrations between 1 nM and 10 μM. Manual counting indicated suppressive effects by the vitamin D analogues on proliferation. Treatment with tacalcitol strongly suppressed thymidine incorporation, indicating that the vitamin D analogues mainly inhibit proliferation. Also, effects on cell migration were measured with wound-healing assay. Both calcipotriol and tacalcitol reduced the migration rate of T98G cells compared to vehicle-treated cells. However, they had no effect on caspase-3 and -7 activities, suggesting that their mechanism of action does not involve induction of apoptosis. The current results indicate that the vitamin D analogues tacalcitol and calcipotriol strongly reduce proliferation and migration of human glioblastoma T98G cells, suggesting a potential role for this type of compounds in treatment of brain cancer.
Collapse
Affiliation(s)
- Ida Emanuelsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Tomas Friman
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Ferronato MJ, Alonso EN, Salomón DG, Fermento ME, Gandini NA, Quevedo MA, Mascaró E, Vitale C, Fall Y, Facchinetti MM, Curino AC. Antitumoral effects of the alkynylphosphonate analogue of calcitriol EM1 on glioblastoma multiforme cells. J Steroid Biochem Mol Biol 2018; 178:22-35. [PMID: 29102624 DOI: 10.1016/j.jsbmb.2017.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/22/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the worst and most common brain tumor, characterized by high proliferation and invasion rates. The current standard treatment is mainly based on chemoradiotherapy and this approach has slightly improved patient survival. Thus, novel strategies aimed at prolonging the survival and ensuring a better quality of life are necessary. In the present work, we investigated the antitumoral effect of the novel analogue of calcitriol EM1 on GBM cells employing in vitro, in silico, and in vivo assays. In vitro, we demonstrated that EM1 treatment selectively decreases the viability of murine and human tumor cells without affecting that of normal human astrocytes. The analysis of the mechanisms showed that EM1 produces cell cycle arrest in the T98G cell line, which is accompanied by an increase in p21, p27, p57 protein levels and a decrease in cyclin D1, p-Akt-S473, p-ERK1/2 and c-Jun expression. Moreover, EM1 treatment also exerts in GBM cells anti-migratory effects and decreases their invasive capacity by a reduction in MMP-9 proteolytic activity. In silico, we demonstrated that EM1 is able to bind to the vitamin D receptor with greater affinity than calcitriol. Finally, we showed that EM1 treatment of nude mice administered at 50ug/kg body weight during 21days neither induces hypercalcemia nor toxicity effects. In conclusion, all the results indicate the potential of EM1 analogue as a promising therapeutic alternative for GBM treatment.
Collapse
Affiliation(s)
- María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Débora Gisele Salomón
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Norberto Ariel Gandini
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Mario Alfredo Quevedo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Facultad de Ciencias Químicas, Ciudad Universitaria, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Evangelina Mascaró
- Laboratorio de Química Orgánica, Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Química (UNS), Bahía Blanca, Argentina
| | - Cristian Vitale
- Laboratorio de Química Orgánica, Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Química (UNS), Bahía Blanca, Argentina
| | - Yagamare Fall
- Departamento de Química Orgánica, Facultad de Química e Instituto de Investigación Biomédica (IBI), Universidad de Vigo, Campus Lagoas de Marcosende, 36310 Vigo, Spain
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
20
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
21
|
Graziano S, Johnston R, Deng O, Zhang J, Gonzalo S. Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence. Oncogene 2016; 35:5362-5376. [PMID: 27041576 PMCID: PMC5050051 DOI: 10.1038/onc.2016.77] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/26/2016] [Accepted: 02/19/2016] [Indexed: 12/22/2022]
Abstract
Oncogenic Ras expression is associated with activation of the DNA damage response (DDR) pathway, as evidenced by elevated DNA damage, primarily DNA double-strand breaks (DSBs), and activation of DNA damage checkpoints, which in primary human cells leads to entry into senescence. DDR activation is viewed as a physiological barrier against uncontrolled proliferation in oncogenic Ras-expressing cells, and arises in response to genotoxic stress due to the production of reactive oxygen species (ROS) that damage DNA, and to hyper-replication stress. Although oncogene-induced senescence (OIS) is considered a tumor suppressor mechanism, the accumulation of DNA damage in senescent cells is thought to cause genomic instability, eventually allowing secondary hits in the genome that promote tumorigenesis. To date, the molecular mechanisms behind DNA repair defects during OIS remain poorly understood. Here, we show that oncogenic Ras expression in human primary cells results in down-regulation of BRCA1 and 53BP1, two key factors in DNA DSBs repair by homologous recombination (HR) and non-homologous end joining (NHEJ), respectively. As a consequence, Ras-induced senescent cells are hindered in their ability to recruit BRCA1 and 53BP1 to DNA damage sites. While BRCA1 is down-regulated at transcripts levels, 53BP1 loss is caused by activation of cathepsin L (CTSL)-mediated degradation of 53BP1 protein. Moreover, we discovered a marked down-regulation of vitamin D receptor (VDR) during OIS, and a role for the vitamin D/VDR axis regulating the levels of these DNA repair factors during OIS. This study reveals a new functional relationship between the oncogene Ras, the vitamin D/VDR axis, and the expression of DNA repair factors, in the context of OIS. The observed deficiencies in DNA repair factors in senescent cells could contribute to the genomic instability that allows senescence bypass and tumorigenesis.
Collapse
Affiliation(s)
- S Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, MO, USA
| | - R Johnston
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, MO, USA
| | - O Deng
- Department of Radiation Oncology, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - J Zhang
- Department of Radiation Oncology, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - S Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
22
|
The Role of Glucose Modulation and Dietary Supplementation in Patients With Central Nervous System Tumors. Curr Treat Options Oncol 2016; 16:36. [PMID: 26143267 DOI: 10.1007/s11864-015-0356-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OPINION STATEMENT Central nervous system gliomas are the most common primary brain tumor, and these are most often high-grade gliomas. Standard therapy includes a combination of surgery, radiation, and chemotherapy which provides a modest increase in survival, but virtually, no patients are cured, the overall prognosis remains poor, and new therapies are desperately needed. Tumor metabolism is a well-recognized but understudied therapeutic approach to treating cancers. Dietary and nondietary modulation of glucose homeostasis and the incorporation of dietary supplements and other natural substances are potentially important interventions to affect cancer cell growth, palliate symptoms, reduce treatment-associated side effects, and improve the quality and quantity of life in patients with cancer. These approaches are highly desired by patients. However, they can be financially burdensome, associated with toxicities, and have, on occasion, reduced the efficacy of proven therapies and negatively impacted patient outcomes. The lack of rigorous scientific data evaluating almost all diet and supplement-based therapies currently limits their incorporation into standard oncologic practice. Rigorous studies are needed to document and improve these potentially useful approaches in patients with brain and other malignancies.
Collapse
|
23
|
Jayaram S, Gupta MK, Shivakumar BM, Ghatge M, Sharma A, Vangala RK, Sirdeshmukh R. Insights from Chromosome-Centric Mapping of Disease-Associated Genes: Chromosome 12 Perspective. J Proteome Res 2015; 14:3432-40. [PMID: 26143930 DOI: 10.1021/acs.jproteome.5b00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In line with the aims of the Chromosome-based Human Proteome Project and the Biology/Disease-based Human Proteome Project, we have been studying differentially expressed transcripts and proteins in gliomas—the most prevalent primary brain tumors. Here, we present a perspective on important insights from this analysis in terms of their co-expression, co-regulation/de-regulation, and co-localization on chromosome 12 (Chr. 12). We observe the following: (1) Over-expression of genes mapping onto amplicon regions of chromosomes may be considered as a biological validation of mass spectrometry data. (2) Their co-localization further suggests common determinants of co-expression and co-regulation of these clusters. (3) Co-localization of "missing" protein genes of Chr. 12 in close proximity to functionally related genes may help in predicting their functions. (4) Further, integrating differentially expressed gene-protein sets and their ontologies with medical terms associated with clinical phenotypes in a chromosome-centric manner reveals a network of genes, diseases, and pathways—a diseasome network. Thus, chromosomal mapping of disease data sets can help uncover important regulatory and functional links that may offer new insights for biomarker development.
Collapse
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | | | - Madankumar Ghatge
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | - Ankit Sharma
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | | | - Ravi Sirdeshmukh
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Foundation, Narayana Health , Bangalore-560099, India
| |
Collapse
|