1
|
Kim SW, Lee J, Jo KW, Jeong YH, Shin WS, Kim KT. RNF144A-VRK2-G3BP1 axis regulates stress granule assembly. Cell Death Discov 2025; 11:158. [PMID: 40204710 PMCID: PMC11982375 DOI: 10.1038/s41420-025-02460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Under the cellular stress, stress granules (SGs) help survival and proliferation of the cell. Unfortunately, the same SGs help unwanted cancer cells under stressful environment, including anti-cancer chemotherapy treatment. While SGs elevate the cancer cell's resistance to chemotherapy, the mechanism behind the formation of SGs in cancer cell under chemotherapy treatment is still to be revealed. Here, we identified that the level of VRK2 and the phosphorylation of its novel substrate, G3BP1, are reduced when the cellular stress was increased by sodium arsenite (SA) or cisplatin treatment. We also demonstrated that the level of RNF144A is increased in response to the stress and further downregulates VRK2 through proteasomal degradation in various types of cancer cells. Furthermore, inhibition of SG formation by the overexpression of VRK2 sensitized the cells to the stress and chemotherapy. Together, our study establishes an RNF144A-VRK2-G3BP1 axis that regulates SG formation and suggest its potential usage in anti-cancer therapy.
Collapse
Affiliation(s)
- Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyung Won Jo
- Hesed Bio Corporation, Pohang, Gyeongbuk, Republic of Korea
| | - Young-Hun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Won Sik Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyong-Tai Kim
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
2
|
Qin M, Fan W, Chen F, Ruan K, Liu D. Caprin1 Bridges PRMT1 to G3BP1 and Spaces Them to Ensure Proper Stress Granule Formation. J Mol Biol 2024; 436:168727. [PMID: 39079611 DOI: 10.1016/j.jmb.2024.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Qin M, Fan W, Li L, Xu T, Zhang H, Chen F, Man J, Kombe AJK, Zhang J, Shi Y, Yao X, Yang Z, Hou Z, Ruan K, Liu D. PRMT1 and TDRD3 promote stress granule assembly by rebuilding the protein-RNA interaction network. Int J Biol Macromol 2024; 277:134411. [PMID: 39097054 DOI: 10.1016/j.ijbiomac.2024.134411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Stress granules (SGs) are membrane-less organelles (MLOs) or cytosolic compartments formed upon exposure to environmental cell stress-inducing stimuli. SGs are based on ribonucleoprotein complexes from a set of cytoplasmic proteins and mRNAs, blocked in translation due to stress cell-induced polysome disassembly. Post-translational modifications (PTMs) such as methylation, are involved in SG assembly, with the methylation writer PRMT1 and its reader TDRD3 colocalizing to SGs. However, the role of this writer-reader system in SG assembly remains unclear. Here, we found that PRMT1 methylates SG constituent RNA-binding proteins (RBPs) on their RGG motifs. Besides, we report that TDRD3, as a reader of asymmetric dimethylarginines, enhances RNA binding to recruit additional RNAs and RBPs, lowering the percolation threshold and promoting SG assembly. Our study enriches our understanding of the molecular mechanism of SG formation by elucidating the functions of PRMT1 and TDRD3. We anticipate that our study will provide a new perspective for comprehensively understanding the functions of PTMs in liquid-liquid phase separation driven condensate assembly.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Linge Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hanyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwen Man
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhonghuai Hou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
4
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
Jia Y, Jia R, Dai Z, Zhou J, Ruan J, Chng W, Cai Z, Zhang X. Stress granules in cancer: Adaptive dynamics and therapeutic implications. iScience 2024; 27:110359. [PMID: 39100690 PMCID: PMC11295550 DOI: 10.1016/j.isci.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Stress granules (SGs), membrane-less cellular organelles formed via liquid-liquid phase separation, are central to how cells adapt to various stress conditions, including endoplasmic reticulum stress, nutrient scarcity, and hypoxia. Recent studies have underscored a significant link between SGs and the process of tumorigenesis, highlighting that proteins, associated components, and signaling pathways that facilitate SG formation are often upregulated in cancer. SGs play a key role in enhancing tumor cell proliferation, invasion, and migration, while also inhibiting apoptosis, facilitating immune evasion, and driving metabolic reprogramming through multiple mechanisms. Furthermore, SGs have been identified as crucial elements in the development of resistance against chemotherapy, immunotherapy, and radiotherapy across a variety of cancer types. This review delves into the complex role of SGs in cancer development and resistance, bringing together the latest progress in the field and exploring new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengfeng Dai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - WeeJoo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
6
|
Li Y, Xu C, Qian X, Wang G, Han C, Hua H, Dong M, Chen J, Yu H, Zhang R, Feng X, Yang Z, Pan Y. Myeloid PTEN loss affects the therapeutic response by promoting stress granule assembly and impairing phagocytosis by macrophages in breast cancer. Cell Death Discov 2024; 10:344. [PMID: 39080255 PMCID: PMC11289284 DOI: 10.1038/s41420-024-02094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Breast cancer (BRCA) has become the most common type of cancer in women. Improving the therapeutic response remains a challenge. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a classic tumour suppressor with emerging new functions discovered in recent years, and myeloid PTEN loss has been reported to impair antitumour immunity. In this study, we revealed a novel mechanism by which myeloid PTEN potentially affects antitumour immunity in BRCA. We detected accelerated stress granule (SG) assembly under oxidative stress in PTEN-deficient bone marrow-derived macrophages (BMDMs) through the EGR1-promoted upregulation of TIAL1 transcription. PI3K/AKT/mTOR (PAM) pathway activation also promoted SG formation. ATP consumption during SG assembly in BMDMs impaired the phagocytic ability of 4T1 cells, potentially contributing to the disruption of antitumour immunity. In a BRCA neoadjuvant cohort, we observed a poorer response in myeloid PTENlow patients with G3BP1 aggregating as SGs in CD68+ cells, a finding that was consistent with the observation in our study that PTEN-deficient macrophages tended to more readily assemble SGs with impaired phagocytosis. Our results revealed the unconventional impact of SGs on BMDMs and might provide new perspectives on drug resistance and therapeutic strategies for the treatment of BRCA patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chao Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaojun Qian
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Gang Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chaoqiang Han
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Hua
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Menghao Dong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jian Chen
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyang Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rutong Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaoxi Feng
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhenye Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yueyin Pan
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
7
|
Mao S, Xie C, Liu Y, Zhao Y, Li M, Gao H, Xiao Y, Zou Y, Zheng Z, Gao Y, Xie J, Tian B, Wang L, Hua Y, Xu H. Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) promotes stress granule formation via YBX1 phosphorylation in ovarian cancer. Cell Mol Life Sci 2024; 81:113. [PMID: 38436697 PMCID: PMC10912283 DOI: 10.1007/s00018-023-05086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 03/05/2024]
Abstract
APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.
Collapse
Affiliation(s)
- Shuyu Mao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Chong Xie
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Yufeng Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Mengxia Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinses Academy of Sciences, Hangzhou, China
| | - Han Gao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinses Academy of Sciences, Hangzhou, China
| | - Yue Xiao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yongkang Zou
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiguo Zheng
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ya Gao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Juan Xie
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Lin N, Sun L, Chai J, Qi H, Zhao Y, Ma J, Xia M, Hu X. Stress granules affect the dual PI3K/mTOR inhibitor response by regulating the mitochondrial unfolded protein response. Cancer Cell Int 2024; 24:38. [PMID: 38238825 PMCID: PMC10795350 DOI: 10.1186/s12935-024-03210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Drug resistance remains a challenge in ovarian cancer. In addition to aberrant activation of relevant signaling pathways, the adaptive stress response is emerging as a new spotlight of drug resistance in cancer cells. Stress granules (SGs) are one of the most important features of the adaptive stress response, and there is increasing evidence that SGs promote drug resistance in cancer cells. In the present study, we compared two types of ovarian cancer cells, A2780 and SKOV3, using the dual PI3K/mTOR inhibitor, PKI-402. We found that SGs were formed and SGs could intercept the signaling factor ATF5 and regulate the mitochondrial unfolded protein response (UPRmt) in A2780 cells. Therefore, exploring the network formed between SGs and membrane-bound organelles, such as mitochondria, which may provide a new insight into the mechanisms of antitumor drug functions.
Collapse
Affiliation(s)
- Nan Lin
- First Hospital of Jilin University, Changchun, China
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiannan Chai
- Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, 130021, China
| | - Hang Qi
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuanxin Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaoyan Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meihui Xia
- Department of Obstetrics, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoqing Hu
- Department of Ophthalmology, First Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
9
|
Li T, Zeng Z, Fan C, Xiong W. Role of stress granules in tumorigenesis and cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189006. [PMID: 37913942 DOI: 10.1016/j.bbcan.2023.189006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Lamichhane PP, Samir P. Cellular Stress: Modulator of Regulated Cell Death. BIOLOGY 2023; 12:1172. [PMID: 37759572 PMCID: PMC10525759 DOI: 10.3390/biology12091172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Cellular stress response activates a complex program of an adaptive response called integrated stress response (ISR) that can allow a cell to survive in the presence of stressors. ISR reprograms gene expression to increase the transcription and translation of stress response genes while repressing the translation of most proteins to reduce the metabolic burden. In some cases, ISR activation can lead to the assembly of a cytoplasmic membraneless compartment called stress granules (SGs). ISR and SGs can inhibit apoptosis, pyroptosis, and necroptosis, suggesting that they guard against uncontrolled regulated cell death (RCD) to promote organismal homeostasis. However, ISR and SGs also allow cancer cells to survive in stressful environments, including hypoxia and during chemotherapy. Therefore, there is a great need to understand the molecular mechanism of the crosstalk between ISR and RCD. This is an active area of research and is expected to be relevant to a range of human diseases. In this review, we provided an overview of the interplay between different cellular stress responses and RCD pathways and their modulation in health and disease.
Collapse
Affiliation(s)
| | - Parimal Samir
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Zhou H, Luo J, Mou K, Peng L, Li X, Lei Y, Wang J, Lin S, Luo Y, Xiang L. Stress granules: functions and mechanisms in cancer. Cell Biosci 2023; 13:86. [PMID: 37179344 PMCID: PMC10182661 DOI: 10.1186/s13578-023-01030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Stress granules (SGs) are non-enveloped structures formed primarily via protein and RNA aggregation under various stress conditions, including hypoxia and viral infection, as well as oxidative, osmotic, and heat-shock stress. SGs assembly is a highly conserved cellular strategy to reduce stress-related damage and promote cell survival. At present, the composition and dynamics of SGs are well understood; however, data on the functions and related mechanisms of SGs are limited. In recent years, SGs have continued to attract attention as emerging players in cancer research. Intriguingly, SGs regulate the biological behavior of tumors by participating in various tumor-associated signaling pathways, including cell proliferation, apoptosis, invasion and metastasis, chemotherapy resistance, radiotherapy resistance, and immune escape. This review discusses the roles and mechanisms of SGs in tumors and suggests novel directions for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
12
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
13
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431 DOI: 10.5483/bmbrep.2022.55.12.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
14
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
15
|
Wang J, Gan Y, Cao J, Dong X, Ouyang W. Pathophysiology of stress granules: An emerging link to diseases (Review). Int J Mol Med 2022; 49:44. [PMID: 35137915 PMCID: PMC8846937 DOI: 10.3892/ijmm.2022.5099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Under unfavorable environmental conditions, eukaryotic cells may form stress granules (SGs) in the cytosol to protect against injury and promote cell survival. The initiation, mRNA and protein composition, distribution and degradation of SGs are subject to multiple intracellular post-translational modifications and signaling pathways to cope with stress damage. Despite accumulated comprehensive knowledge of their composition and dynamics, the function of SGs remains poorly understood. When the stress persists, aberrant and/or persistent intracellular SGs and aggregation of SGs-related proteins may lead to various diseases. In the present article, the research progress regarding the generation, modification and function of SGs was reviewed. The regulatory effects and influencing factors of SGs in the development of tumors, cardiovascular diseases, viral infections and neurodegenerative diseases were also summarized, which may provide novel insight for preventing and treating SG-related diseases.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yixia Gan
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jian Cao
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xuefen Dong
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Wei Ouyang
- Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| |
Collapse
|
16
|
Adnane S, Marino A, Leucci E. LncRNAs in human cancers: signal from noise. Trends Cell Biol 2022; 32:565-573. [DOI: 10.1016/j.tcb.2022.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
|
17
|
Asadi MR, Moslehian MS, Sabaie H, Poornabi M, Ghasemi E, Hassani M, Hussen BM, Taheri M, Rezazadeh M. Stress Granules in the Anti-Cancer Medications Mechanism of Action: A Systematic Scoping Review. Front Oncol 2021; 11:797549. [PMID: 35004322 PMCID: PMC8739770 DOI: 10.3389/fonc.2021.797549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Stress granule (SG) formation is a well-known cellular mechanism for minimizing stress-related damage and increasing cell survival. In addition to playing a critical role in the stress response, SGs have emerged as critical mediators in human health. It seems logical that SGs play a key role in cancer cell formation, development, and metastasis. Recent studies have shown that many SG components contribute to the anti-cancer medications' responses through tumor-associated signaling pathways and other mechanisms. SG proteins are known for their involvement in the translation process, control of mRNA stability, and capacity to function in both the cytoplasm and nucleus. The current systematic review aimed to include all research on the impact of SGs on the mechanism of action of anti-cancer medications and was conducted using a six-stage methodological framework and the PRISMA guideline. Prior to October 2021, a systematic search of seven databases for eligible articles was performed. Following the review of the publications, the collected data were subjected to quantitative and qualitative analysis. Notably, Bortezomib, Sorafenib, Oxaliplatin, 5-fluorouracil, Cisplatin, and Doxorubicin accounted for the majority of the medications examined in the studies. Overall, this systematic scoping review attempts to demonstrate and give a complete overview of the function of SGs in the mechanism of action of anti-cancer medications by evaluating all research.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziye Poornabi
- Student Research Committee, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Elham Ghasemi
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maryam Rezazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Zhang X, Wang L, Zhang Q, Lyu S, Zhu D, Shen M, Ke X, Qu Y. Small molecule targeting topoisomerase 3β for cancer therapy. Pharmacol Res 2021; 174:105927. [PMID: 34740818 DOI: 10.1016/j.phrs.2021.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
DNA topoisomerases are proved cancer therapeutic targets with clinically successful anticancer drugs for decades. However, the role of RNA topoisomerase (TOP3β) remained mysterious especially in cancer, and no targeted agent has been reported yet. In a target identification assay of anti-cancer compound using a modified DrugTargetSeqR strategy, mutation of TOP3B was detected in cancer cells acquired resistance to cinobufagin (CBG), a key compound of Huachansu that has been approved for cancer therapy in China. We demonstrated that CBG directly engaged with TOP3β, and promoted TOP3β depletion in wildtype but not mutant cancer cells. Notably, knockout of TOP3β in cancer cells significantly reduced tumor enlargement but not initiation, and inhibited colony formation upon nutrient deprivation. We also demonstrated that CBG induced formation of stress granule, RNA-loop and asymmetric DNA damages in cancer cells, and all these phenotypes were significantly attenuated in TOP3B knockout cells. Of note, examination of a panel of cancer cell lines revealed associations among cell growth inhibition and induction of DNA damage as well as TOP3B depletion upon CBG treatment. Our findings not only highlighted TOP3β as a promising therapeutic target of cancer, but also identified CBG as a lead chemical inhibitor of TOP3β for cancer therapy.
Collapse
Affiliation(s)
- Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Lei Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Qi Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Song Lyu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Darong Zhu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Mengzhen Shen
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
19
|
Shi X, Si X, Zhang E, Zang R, Yang N, Cheng H, Zhang Z, Pan B, Sun Y. Paclitaxel-induced stress granules increase LINE-1 mRNA stability to promote drug resistance in breast cancer cells. J Biomed Res 2021; 35:411-424. [PMID: 34857678 PMCID: PMC8637660 DOI: 10.7555/jbr.35.20210105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abnormal expression of long interspersed element-1 (LINE-1) has been implicated in drug resistance, while our previous study showed that chemotherapy drug paclitaxel (PTX) increased LINE-1 level with unknown mechanism. Bioinformatics analysis suggested the regulation of LINE-1 mRNA by drug-induced stress granules (SGs). This study aimed to explore whether and how SGs are involved in drug-induced LINE-1 increase and thereby promotes drug resistance of triple negative breast cancer (TNBC) cells. We demonstrated that SGs increased LINE-1 expression by recruiting and stabilizing LINE-1 mRNA under drug stress, thereby adapting TNBC cells to chemotherapy drugs. Moreover, LINE-1 inhibitor efavirenz (EFV) could inhibit drug-induced SG to destabilize LINE-1. Our study provides the first evidence of the regulation of LINE-1 by SGs that could be an important survival mechanism for cancer cells exposed to chemotherapy drugs. The findings provide a useful clue for developing new chemotherapeutic strategies against TNBCs.
Collapse
Affiliation(s)
- Xiao Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinxin Si
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ershao Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruochen Zang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - He Cheng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhihong Zhang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, China
| | - Beijing Pan
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
20
|
Cadena Sandoval M, Heberle AM, Rehbein U, Barile C, Ramos Pittol JM, Thedieck K. mTORC1 Crosstalk With Stress Granules in Aging and Age-Related Diseases. FRONTIERS IN AGING 2021; 2:761333. [PMID: 35822040 PMCID: PMC9261333 DOI: 10.3389/fragi.2021.761333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a master regulator of metabolism and aging. A complex signaling network converges on mTORC1 and integrates growth factor, nutrient and stress signals. Aging is a dynamic process characterized by declining cellular survival, renewal, and fertility. Stressors elicited by aging hallmarks such as mitochondrial malfunction, loss of proteostasis, genomic instability and telomere shortening impinge on mTORC1 thereby contributing to age-related processes. Stress granules (SGs) constitute a cytoplasmic non-membranous compartment formed by RNA-protein aggregates, which control RNA metabolism, signaling, and survival under stress. Increasing evidence reveals complex crosstalk between the mTORC1 network and SGs. In this review, we cover stressors elicited by aging hallmarks that impinge on mTORC1 and SGs. We discuss their interplay, and we highlight possible links in the context of aging and age-related diseases.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander Martin Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ulrike Rehbein
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Cecilia Barile
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - José Miguel Ramos Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- *Correspondence: Kathrin Thedieck, , ,
| |
Collapse
|
21
|
Li H, Lin PH, Gupta P, Li X, Zhao SL, Zhou X, Li Z, Wei S, Xu L, Han R, Lu J, Tan T, Yang DH, Chen ZS, Pawlik TM, Merritt RE, Ma J. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer 2021; 20:118. [PMID: 34521423 PMCID: PMC8439062 DOI: 10.1186/s12943-021-01418-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). Methods Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. Results We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. Conclusion Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01418-3.
Collapse
Affiliation(s)
- Haichang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| | - Pei-Hui Lin
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xiangguang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Serena Li Zhao
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Zhongguang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Shengcai Wei
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Li Xu
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Renzhi Han
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Jing Lu
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Tao Tan
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Robert E Merritt
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Chavrier P, Mamessier É, Aulas A. [Stress granules, emerging players in cancer research]. Med Sci (Paris) 2021; 37:735-741. [PMID: 34491181 DOI: 10.1051/medsci/2021109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cancer cells are submitted to numerous stresses during tumor development, such as hypoxia, lack of nutrient, oxidative stress, or mechanical constriction. A complex mechanism termed the integrated stress response (ISR) occurs allowing cell survival. This mechanism leads to the formation of membraneless cytoplasmic structures called stress granules. The hypothesis that these structures play a major role during tumorigenesis has recently emerged. Here, we describe the biological function of stress granules and of proteins that their formation. We also present the current evidences for their involvement in the development of tumors and in the tumor resistance to cancer drugs. Finally, we discuss the interest of targeting stress granule formation to enhance treatment efficiency in order to delay tumor progression.
Collapse
Affiliation(s)
- Pauline Chavrier
- Laboratoire d'oncologie prédictive, Centre de recherche en cancérologie de Marseille (CRCM), Unité mixte de rechercheInserm 1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 27 boulevard Leï Roure, 13009 Marseille, France
| | - Émilie Mamessier
- Laboratoire d'oncologie prédictive, Centre de recherche en cancérologie de Marseille (CRCM), Unité mixte de rechercheInserm 1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 27 boulevard Leï Roure, 13009 Marseille, France
| | - Anaïs Aulas
- Laboratoire d'oncologie prédictive, Centre de recherche en cancérologie de Marseille (CRCM), Unité mixte de rechercheInserm 1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 27 boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
23
|
Chatterjee D, Chakrabarti O. Role of stress granules in modulating senescence and promoting cancer progression: Special emphasis on glioma. Int J Cancer 2021; 150:551-561. [PMID: 34460104 DOI: 10.1002/ijc.33787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Stress granules (SGs) contain mRNAs and proteins stalled in translation during stress; these are increasingly being implicated in diseases, including neurological disorders and cancer. The dysregulated assembly, persistence, disassembly and clearance of SGs contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, SGs have only recently been implicated in its pathogenesis. Senescence has long been established to play an antitumorigenic role, however, relatively less studied is its protumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review, we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilized for therapeutic intervention.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Tweedie A, Nissan T. Hiding in Plain Sight: Formation and Function of Stress Granules During Microbial Infection of Mammalian Cells. Front Mol Biosci 2021; 8:647884. [PMID: 33996904 PMCID: PMC8116797 DOI: 10.3389/fmolb.2021.647884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/21/2023] Open
Abstract
Stress granule (SG) formation is a host cell response to stress-induced translational repression. SGs assemble with RNA-binding proteins and translationally silent mRNA. SGs have been demonstrated to be both inhibitory to viruses, as well as being subverted for viral roles. In contrast, the function of SGs during non-viral microbial infections remains largely unexplored. A handful of microbial infections have been shown to result in host SG assembly. Nevertheless, a large body of evidence suggests SG formation in hosts is a widespread response to microbial infection. Diverse stresses caused by microbes and their products can activate the integrated stress response in order to inhibit translation initiation through phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). This translational response in other contexts results in SG assembly, suggesting that SG assembly can be a general phenomenon during microbial infection. This review explores evidence for host SG formation in response to bacterial, fungal, and protozoan infection and potential functions of SGs in the host and for adaptations of the pathogen.
Collapse
Affiliation(s)
- Alistair Tweedie
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tracy Nissan
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Hajj GNM, Nunes PBC, Roffe M. Genome-wide translation patterns in gliomas: An integrative view. Cell Signal 2020; 79:109883. [PMID: 33321181 DOI: 10.1016/j.cellsig.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most frequent tumors of the central nervous system (CNS) and include the highly malignant glioblastoma (GBM). Characteristically, gliomas have translational control deregulation related to overactivation of signaling pathways such as PI3K/AKT/mTORC1 and Ras/ERK1/2. Thus, mRNA translation appears to play a dominant role in glioma gene expression patterns. The, analysis of genome-wide translated transcripts, together known as the translatome, may reveal important information for understanding gene expression patterns in gliomas. This review provides a brief overview of translational control mechanisms altered in gliomas with a focus on the current knowledge related to the translatomes of glioma cells and murine glioma models. We present an integrative meta-analysis of selected glioma translatome data with the aim of identifying recurrent patterns of gene expression preferentially regulated at the level of translation and obtaining clues regarding the pathological significance of these alterations. Re-analysis of several translatome datasets was performed to compare the translatomes of glioma models with those of their non-tumor counterparts and to document glioma cell responses to radiotherapy and MNK modulation. The role of recurrently altered genes in the context of translational control and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Glaucia Noeli Maroso Hajj
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| | - Paula Borzino Cordeiro Nunes
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil
| | - Martin Roffe
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| |
Collapse
|
26
|
Do TQT, Gaudreau-Lapierre A, Palii CG, Resende VMF, Campuzano D, Aeschimann CS, Brand M, Trinkle-Mulcahy L. A Nuclear Stress Pathway that Parallels Cytoplasmic Stress Granule Formation. iScience 2020; 23:101664. [PMID: 33134894 PMCID: PMC7586129 DOI: 10.1016/j.isci.2020.101664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Stress adaptation is exploited by cancer cells to survive and proliferate under adverse conditions. Survival pathways induced by stress are thus highly promising therapeutic targets. One key pathway involves formation of cytoplasmic stress granules, which regulate the location, stability, and translation of specific mRNAs. Here, we describe a transcriptional stress response that is triggered by similar stressors and characterized by accumulation of RepoMan (cell division cycle associated 2) at nuclear stress foci (nucSF). Formation of these structures is reversible, and they are distinct from known nuclear organelles and stress bodies. Immunofluorescence analysis revealed accumulation of heterochromatic markers, and increased association of RepoMan with the adenylate cyclase 2 (ADCY2) gene locus in stressed cells accompanied reduced levels of ADCY2 mRNA and protein. Quantitative comparison of the RepoMan interactome in stressed vs. unstressed cells identified condensin II as a nucSF factor, suggesting their functional association in the establishment and/or maintenance of these facultative heterochromatic domains.
Collapse
Affiliation(s)
- Tyler Quoc-Thai Do
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Antoine Gaudreau-Lapierre
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carmen G. Palii
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Virginia Maria Ferreira Resende
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Denise Campuzano
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Claire Simada Aeschimann
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Majorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
27
|
Wang F, Li J, Fan S, Jin Z, Huang C. Targeting stress granules: A novel therapeutic strategy for human diseases. Pharmacol Res 2020; 161:105143. [PMID: 32814168 PMCID: PMC7428673 DOI: 10.1016/j.phrs.2020.105143] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
Stress granules (SGs) are assemblies of mRNA and proteins that form from mRNAs stalled in translation initiation in response to stress. Chronic stress might even induce formation of cytotoxic pathological SGs. SGs participate in various biological functions including response to apoptosis, inflammation, immune modulation, and signalling pathways; moreover, SGs are involved in pathogenesis of neurodegenerative diseases, viral infection, aging, cancers and many other diseases. Emerging evidence has shown that small molecules can affect SG dynamics, including assembly, disassembly, maintenance and clearance. Thus, targeting SGs is a potential therapeutic strategy for the treatment of human diseases and the promotion of health. The established methods for detecting SGs provided ready tools for large-scale screening of agents that alter the dynamics of SGs. Here, we describe the effects of small molecules on SG assembly, disassembly, and their roles in the disease. Moreover, we provide perspective for the possible application of small molecules targeting SGs in the treatment of human diseases.
Collapse
Affiliation(s)
- Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Juan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
28
|
Revisiting the Concept of Stress in the Prognosis of Solid Tumors: A Role for Stress Granules Proteins? Cancers (Basel) 2020; 12:cancers12092470. [PMID: 32882814 PMCID: PMC7564653 DOI: 10.3390/cancers12092470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Stress Granules (SGs) were discovered in 1999 and while the first decade of research has focused on some fundamental questions, the field is now investigating their role in human pathogenesis. Since then, evidences of a link between SGs and cancerology are accumulating in vitro and in vivo. In this work we summarized the role of SGs proteins in cancer development and their prognostic values. We find that level of expression of protein involved in SGs formation (and not mRNA level) could serve a prognostic marker in cancer. With this review we strongly suggest that SGs (proteins) could be targets of choice to block cancer development and counteract resistance to improve patients care. Abstract Cancer treatments are constantly evolving with new approaches to improve patient outcomes. Despite progresses, too many patients remain refractory to treatment due to either the development of resistance to therapeutic drugs and/or metastasis occurrence. Growing evidence suggests that these two barriers are due to transient survival mechanisms that are similar to those observed during stress response. We review the literature and current available open databases to study the potential role of stress response and, most particularly, the involvement of Stress Granules (proteins) in cancer. We propose that Stress Granule proteins may have prognostic value for patients.
Collapse
|
29
|
Marina D, Arnaud L, Paul Noel L, Felix S, Bernard R, Natacha C. Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential. Cells 2019; 8:E1542. [PMID: 31795417 PMCID: PMC6953081 DOI: 10.3390/cells8121542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation. The different translation initiation protagonists will be described in normal conditions and then in gliomas. In addition, their gene expression in gliomas will systematically be examined using two freely available datasets. Finally, we will discuss different pathways regulating translation initiation and current drugs targeting the translational machinery and their potential for the treatment of gliomas.
Collapse
Affiliation(s)
- Digregorio Marina
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| | - Lombard Arnaud
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Lumapat Paul Noel
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| | - Scholtes Felix
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Rogister Bernard
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurology, CHU of Liège, 4000 Liège, Belgium
| | - Coppieters Natacha
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| |
Collapse
|
30
|
Gao X, Jiang L, Gong Y, Chen X, Ying M, Zhu H, He Q, Yang B, Cao J. Stress granule: A promising target for cancer treatment. Br J Pharmacol 2019; 176:4421-4433. [PMID: 31301065 DOI: 10.1111/bph.14790] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Stress granules (SGs) are primarily composed of mRNAs that stall at translation initiation and usually appear in the cytoplasm under unusual physiological or pathological conditions such as hypoxia, oxidative stress, and viral infection. Recent studies have indicated that several components of SGs participate in tumourigenesis and cancer metastasis through tumour-associated signalling pathways as well as other mechanisms. Furthermore, some chemotherapy drugs have been reported to induce SGs. Thus, the roles of SGs in cancer treatment have attracted considerable interest. Importantly, disturbing the recruitment of SGs components or microtubule polymerization, as well as other strategies that can abolish SGs formation, is reported to inhibit tumour progression, suggesting that targeting SGs could be a promising strategy for cancer treatment. In this review, we summarize the relationship between SGs and cancer, as well as recent advances in targeting SGs, in the interest of providing new opportunities for cancer treatment.
Collapse
Affiliation(s)
- Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanling Gong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobing Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
G3BP1 knockdown sensitizes U87 glioblastoma cell line to Bortezomib by inhibiting stress granules assembly and potentializing apoptosis. J Neurooncol 2019; 144:463-473. [DOI: 10.1007/s11060-019-03252-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
|
32
|
Nunes C, Mestre I, Marcelo A, Koppenol R, Matos CA, Nóbrega C. MSGP: the first database of the protein components of the mammalian stress granules. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5367298. [PMID: 30820574 PMCID: PMC6395795 DOI: 10.1093/database/baz031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 01/09/2023]
Abstract
In response to different stress stimuli, cells transiently form stress granules (SGs) in order to protect themselves and re-establish homeostasis. Besides these important cellular functions, SGs are now being implicated in different human diseases, such as neurodegenerative disorders and cancer. SGs are ribonucleoprotein granules, constituted by a variety of different types of proteins, RNAs, factors involved in translation and signaling molecules, being capable of regulating mRNA translation to facilitate stress response. However, until now a complete list of the SG components has not been available. Therefore, we aimer at identifying and linting in an open access database all the proteins described so far as components of SGs. The identification was made through an exhaustive search of studies listed in PubMed and double checked. Moreover, for each identified protein several details were also gathered from public databases, such as the molecular function, the cell types in which they were detected, the type of stress stimuli used to induce SG formation and the reference of the study describing the recruitment of the component to SGs. Expression levels in the context of different neurodegenerative diseases were also obtained and are also described in the database. The Mammalian Stress Granules Proteome is available at https://msgp.pt/, being a new and unique open access online database, the first to list all the protein components of the SGs identified so far. The database constitutes an important and valuable tool for researchers in this research area of growing interest.
Collapse
Affiliation(s)
- Catarina Nunes
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.,Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Isa Mestre
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Adriana Marcelo
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.,Centre for Biomedical Research, University of Algarve, Faro, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rebekah Koppenol
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Carlos A Matos
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.,Centre for Biomedical Research, University of Algarve, Faro, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.,Centre for Biomedical Research, University of Algarve, Faro, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
33
|
Ivanov P, Kedersha N, Anderson P. Stress Granules and Processing Bodies in Translational Control. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032813. [PMID: 30082464 DOI: 10.1101/cshperspect.a032813] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress granules (SGs) and processing bodies (PBs) are non-membrane-enclosed RNA granules that dynamically sequester translationally inactive messenger ribonucleoprotein particles (mRNPs) into compartments that are distinct from the surrounding cytoplasm. mRNP remodeling, silencing, and/or storage involves the dynamic partitioning of closed-loop polyadenylated mRNPs into SGs, or the sequestration of deadenylated, linear mRNPs into PBs. SGs form when stress-activated pathways stall translation initiation but allow elongation and termination to occur normally, resulting in a sudden excess of mRNPs that are spatially condensed into discrete foci by protein:protein, protein:RNA, and RNA:RNA interactions. In contrast, PBs can exist in the absence of stress, when specific factors promote mRNA deadenylation, condensation, and sequestration from the translational machinery. The formation and dissolution of SGs and PBs reflect changes in messenger RNA (mRNA) metabolism and allow cells to modulate the proteome and/or mediate life or death decisions during changing environmental conditions.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.,The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts 02142
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Abstract
RNA-binding proteins serve an essential role in post-transcriptional gene regulation. Cytoplasmic activation/proliferation-associated protein-1 (caprin-1) is an RNA-binding protein that participates in the regulation of cell cycle control-associated genes. Caprin-1 acts alone or in combination with other RNA-binding proteins, such as RasGAP SH3-domain-binding protein 1 and fragile X mental retardation protein. In the tumorigenesis process, caprin-1 primarily functions by activating cell proliferation and upregulating the expression of immune checkpoint proteins. Through the formation of stress granules, caprin-1 is also involved in the process by which tumor cells adapt to adverse conditions, which contributes to radiation and chemotherapy resistance. Given its role in various clinical malignancies, caprin-1 holds the potential to be used as a biomarker and a target for the development of novel therapeutics. The present review describes this newly identified putative oncogenic protein and its possible impact on tumorigenesis.
Collapse
|
35
|
Delaidelli A, Jan A, Herms J, Sorensen PH. Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathol 2019; 137:535-555. [PMID: 30739199 DOI: 10.1007/s00401-019-01971-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA) translation is the terminal step in protein synthesis, providing a crucial regulatory checkpoint for this process. Translational control allows specific cell types to respond to rapid changes in the microenvironment or to serve specific functions. For example, neurons use mRNA transport to achieve local protein synthesis at significant distances from the nucleus, the site of RNA transcription. Altered expression or functions of the various components of the translational machinery have been linked to several pathologies in the central nervous system. In this review, we provide a brief overview of the basic principles of mRNA translation, and discuss alterations of this process relevant to CNS disease conditions, with a focus on brain tumors and chronic neurological conditions. Finally, synthesizing this knowledge, we discuss the opportunities to exploit the biology of altered mRNA translation for novel therapies in brain disorders, as well as how studying these alterations can shed new light on disease mechanisms.
Collapse
Affiliation(s)
- Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Asad Jan
- Department of Biomedicine, Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000, Aarhus C, Denmark
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Schillerstraße 44, 80336, Munich, Germany
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
36
|
Timalsina S, Arimoto-Matsuzaki K, Kitamura M, Xu X, Wenzhe Q, Ishigami-Yuasa M, Kagechika H, Hata Y. Chemical compounds that suppress hypoxia-induced stress granule formation enhance cancer drug sensitivity of human cervical cancer HeLa cells. J Biochem 2018; 164:381-391. [PMID: 30020475 DOI: 10.1093/jb/mvy062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, when exposed to certain types of stress including hypoxia, eIF2α is phosphorylated by several kinases including protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK). Subsequently, protein translation is stopped and stress granules (SGs) are formed. Cancer cells form SGs under hypoxia. SGs accumulate apoptosis-related molecules and play anti-apoptotic roles. Thus, hypoxia-induced SG formation contributes to drug resistance in cancer cells. For this reason, inhibition of SG formation is expected to be beneficial in cancer therapy. To prove this concept, chemical reagents that inhibit SG formation are required as experimental tools. We searched for chemical compounds that suppress SG formation and identified that β-estradiol, progesterone, and stanolone (hereafter described as EPS) inhibit SG formation in human cervical cancer HeLa cells. As it turned out, EPS block PKR but not PERK, thus fail to suppress SG formation in most cancer cells, where SGs are formed via PERK. Nevertheless, in this study, we used HeLa cells as a model and demonstrated that EPS block hypoxia-induced SG formation in HeLa cells and consequently reduce drug resistance that HeLa cells acquire under hypoxia. Our findings support that inhibition of SG formation is a useful method to control cancers.
Collapse
Affiliation(s)
- Shikshya Timalsina
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masami Kitamura
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Diversity Diamond Unit Project Department, Student Support and Health Administration Organization, Tokyo Medical and Dental University, Tokyo, Japan
| | - Xiaoyin Xu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,China Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiu Wenzhe
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
37
|
Comba A, Bonnet LV, Goitea VE, Hallak ME, Galiano MR. Arginylated Calreticulin Increases Apoptotic Response Induced by Bortezomib in Glioma Cells. Mol Neurobiol 2018; 56:1653-1664. [PMID: 29916141 DOI: 10.1007/s12035-018-1182-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
After retrotranslocation from the endoplasmic reticulum to the cytoplasm, calreticulin is modified by the enzyme arginyltransferase-1 (ATE1). Cellular levels of arginylated calreticulin (R-CRT) are regulated in part by the proteasomal system. Under various stress conditions, R-CRT becomes associated with stress granules (SGs) or reaches the plasma membrane (PM), where it participates in pro-apoptotic signaling. The mechanisms underlying the resistance of tumor cells to apoptosis induced by specific drugs remain unclear. We evaluated the regulatory role of R-CRT in apoptosis of human glioma cell lines treated with the proteasome inhibitor bortezomib (BT). Two cell lines (HOG, MO59K) displaying distinctive susceptibility to apoptosis induction were studied further. BT efficiency was found to be correlated with a subcellular distribution of R-CRT. In MO59K (apoptosis-resistant), R-CRT was confined to SGs formed following BT treatment. In contrast, HOG (apoptosis-susceptible) treated with BT showed lower SG formation and higher levels of cytosolic and PM R-CRT. Increased R-CRT level was associated with enhanced mobilization of intracellular Ca2+ and with sustained apoptosis activation via upregulation of cell death receptor DR5. R-CRT overexpression in the cytoplasm of MO59K rendered the cells susceptible to BT-induced, DR5-mediated cell death. Our findings suggest that R-CRT plays an essential role in the effect of BT treatment on tumor cells and that ATE1 is a strong candidate target for future studies of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Andrea Comba
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Laura V Bonnet
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Victor E Goitea
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Marta E Hallak
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Mauricio R Galiano
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
38
|
He Y, Meng H, Xu H, Fan L, Zhou Z, Xu B, Sun L, Gao Y. Regulation of Integrated Stress Response Sensitizes U87MG Glioblastoma Cells to Temozolomide Through the Mitochondrial Apoptosis Pathway. Anat Rec (Hoboken) 2018; 301:1390-1397. [PMID: 29698579 DOI: 10.1002/ar.23839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 01/01/2023]
Abstract
Glioblastomas are the most frequently diagnosed and worst primary malignancy of the central nervous system, with very poor prognosis. The first-line antiglioma drug temozolomide shows decreasing therapeutic efficacy as treatment progresses. As the integrated stress response (ISR) may be a resistance factor and severe stress might transform the protective effect of the ISR into a damage effect, pharmacological regulation of ISR may be an effective way to sensitize glioma to temozolomide. The aim of the present study was to investigate the mechanisms of the ISR in regulating the therapeutic effect of temozolomide in the human glioblastoma multiforme cell line U87MG. Cultured U87MG cells were treated with temozolomide and PCR array was used to screen key factors in the response to treatment. Cells were co-treated with temozolomide and the eIF2α phosphatase inhibitor salubrinal, and cell apoptosis was measured. Combination treatment with temozolomide and salubrinal had a synergistic effect on cell viability. Salubrinal could upregulate the expression of ATF4, a key factor in the ISR, and enhance temozolomide-induced apoptosis. ATF4 transcriptionally regulated expression of the BH3-ONLY protein NOXA, thus inducing mitochondrial apoptosis. These findings suggest that ISR and ATF4 are involved in the death crosstalk between the endoplasmic reticulum and mitochondria and might be a potential target to enhance the therapeutic effect of temozolomide in patients with glioblastoma multiforme. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Hao Meng
- Department of Neurosurgery, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Huadan Xu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin, China
| | - Linghua Fan
- Department of Clinical Medicine, College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Zijian Zhou
- Department of Clinical Medicine, College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Bo Xu
- Department of Oncology, Drug Discovery Division, Southern Research Institute Alabama University, Alabama, USA
| | - Liankun Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
39
|
White MC, Schroeder RD, Zhu K, Xiong K, McConkey DJ. HRI-mediated translational repression reduces proteotoxicity and sensitivity to bortezomib in human pancreatic cancer cells. Oncogene 2018; 37:4413-4427. [PMID: 29720726 PMCID: PMC6138554 DOI: 10.1038/s41388-018-0227-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
Human cancer cells display extensive heterogeneity in their sensitivities to the proteasome inhibitor bortezomib (Velcade). The molecular mechanisms underlying this heterogeneity remain unclear, and strategies to overcome resistance are limited. Here, we discover that inherent differences in eIF2α phosphorylation among a panel of ten human pancreatic cancer cell lines significantly impacts bortezomib sensitivity, and implicate the HRI (heme-regulated inhibitor) eIF2α kinase as a novel therapeutic target. Within our panel, we identified a subset of cell lines with defective induction of eIF2α phosphorylation, conferring a high degree of sensitivity to bortezomib. These bortezomib-sensitive cells exhibited impaired translation attenuation followed by toxic accumulation of protein aggregates and reactive oxygen species (ROS), whereas the bortezomib-resistant cell lines displayed increased phosphorylation of eIF2α, decreased translation, few protein aggregates, and minimal ROS production. Importantly, we identified HRI as the primary bortezomib-activated eIF2α kinase, and demonstrated that HRI knockdown promoted cell death in the bortezomib-resistant cells. Overall, our data implicate inducible HRI-mediated phosphorylation of eIF2α as a central cytoprotective mechanism following exposure to bortezomib and provide proof-of-concept for the development of HRI inhibitors to overcome proteasome inhibitor resistance.
Collapse
Affiliation(s)
- Matthew C White
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Program in Experimental Therapeutics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Rebecca D Schroeder
- The Program in Experimental Therapeutics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Keyi Zhu
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katherine Xiong
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David J McConkey
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The Program in Experimental Therapeutics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. .,Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, 21287, USA.
| |
Collapse
|
40
|
TGF-β and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging (Albany NY) 2017; 8:2337-2354. [PMID: 27713146 PMCID: PMC5115892 DOI: 10.18632/aging.101050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
The corneal epithelium plays important roles in the maintenance of corneal transparency for good vision, and acts as a protective barrier against foreign insults. Structural and functional changes with aging in the corneal epithelium have been documented. Here we found that transforming growth factor-β (TGF-β) is highly expressed in the elderly donor corneal epithelium, as are senescence-associated genes, such as p16 and p21. In human corneal epithelial cell (HCEC) models, TGF-β induces cellular senescence, characterized by increased SA-β-gal positive cells and elevated expression of p16 and p21. Pharmacological inhibition of TGF-β signaling alleviates TGF-β-induced cellular senescence. In addition, we determined that senescence-associated inflammation was significantly aggravated in TGF-β-induced cellular senescence by detecting the expression of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNFα). Both genetic and pharmacological approaches revealed that blocking nuclear factor-κB (NF-κB) signaling not only inhibited the production of inflammatory factors, but also rescued the senescent phenotype induced by TGF-β in HCECs. Mechanistically, TGF-β induced an atypical RNA stress responses, leading to accelerated mRNA degradation of IκBα, an inhibitor of NF-κB. Together, our data indicate that TGF-β-driven NF-κB activation contributes to corneal epithelial senescence via RNA metabolism and the inflammation blockade can attenuate TGF-β-induced senescence.
Collapse
|
41
|
Mahboubi H, Stochaj U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:884-895. [PMID: 28095315 DOI: 10.1016/j.bbadis.2016.12.022] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022]
Abstract
Stress granule (SG) assembly is a conserved cellular strategy to minimize stress-related damage and promote cell survival. Beyond their fundamental role in the stress response, SGs have emerged as key players for human health. As such, SG assembly is associated with cancer, neurodegenerative disorders, ischemia, and virus infections. SGs and granule-related signaling circuits are therefore promising targets to improve therapeutic intervention for several diseases. This is clinically relevant, because pharmacological drugs can affect treatment outcome by modulating SG formation. As membraneless and highly dynamic compartments, SGs regulate translation, ribostasis and proteostasis. Moreover, they serve as signaling hubs that determine cell viability and stress recovery. Various compounds can modulate SG formation and dynamics. Rewiring cell signaling through SG manipulation thus represents a new strategy to control cell fate under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
42
|
Terenzi A, Pirker C, Keppler BK, Berger W. Anticancer metal drugs and immunogenic cell death. J Inorg Biochem 2016; 165:71-79. [PMID: 27350082 DOI: 10.1016/j.jinorgbio.2016.06.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/09/2016] [Accepted: 06/15/2016] [Indexed: 01/21/2023]
Abstract
Conventional chemotherapeutics, but also innovative precision anticancer compounds, are commonly perceived to target primarily the cancer cell compartment. However, recently it was discovered that some of these compounds can also exert immunomodulatory activities which might be exploited to synergistically enhance their anticancer effects. One specific phenomenon of the interplay between chemotherapy and the anticancer immune response is the so-called "immunogenic cell death" (ICD). ICD was discovered based on a vaccination effect exerted by cancer cells dying from pretreatment with certain chemotherapeutics, termed ICD inducers, in syngeneic transplantation mouse models. Interestingly, only a minority of drugs is able to trigger ICD without a clear-cut relation to chemical structures or their primary modes-of-action. Nevertheless, generation of reactive oxygen species (ROS) and induction of endoplasmic reticulum (ER) stress are clearly linked to ICD. With regard to metal drugs, oxaliplatin but not cisplatin is considered a bona fide ICD inducer. Taken into account that several experimental metal compounds are efficient ROS and ER stress mediators, presence of potent ICD inducers within the plethora of novel metal complexes seems feasible and has occasionally been reported. In the light of recent successes in cancer immunotherapy, here we review existing literature regarding anticancer metal drugs and ICD induction. We recommend a more profound investigation of the immunogenic features of experimental anticancer metal drugs.
Collapse
Affiliation(s)
- Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringerstr. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringerstr. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria; Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
43
|
Raizer JJ, Chandler JP, Ferrarese R, Grimm SA, Levy RM, Muro K, Rosenow J, Helenowski I, Rademaker A, Paton M, Bredel M. A phase II trial evaluating the effects and intra-tumoral penetration of bortezomib in patients with recurrent malignant gliomas. J Neurooncol 2016; 129:139-46. [PMID: 27300524 DOI: 10.1007/s11060-016-2156-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/01/2016] [Indexed: 12/23/2022]
Abstract
One resistance mechanism in malignant gliomas (MG) involves nuclear factor-κB (NF-κB) activation. Bortezomib prevents proteasomal degradation of NF-κB inhibitor α (NFKBIA), an endogenous regulator of NF-κB signaling, thereby limiting the effects of NF-κB on tumor survival and resistance. A presurgical phase II trial of bortezomib in recurrent MG was performed to determine drug concentration in tumor tissue and effects on NFKBIA. Patients were enrolled after signing an IRB approved informed consent. Treatment was bortezomib 1.7 mg/m(2) IV on days 1, 4 and 8 and then surgery on day 8 or 9. Post-operatively, treatment was Temozolomide (TMZ) 75 mg/m(2) PO on days 1-7 and 14-21 and bortezomib 1.7 mg/m(2) on days 7 and 21 [1 cycle was (1) month]. Ten patients were enrolled (8 M and 2 F) with 9 having surgery. Median age and KPS were 50 (42-64) and 90 % (70-100). The median cycles post-operatively was 2 (0-4). The trial was stopped as no patient had a PFS-6. All patients are deceased. Paired plasma and tumor bortezomib concentration measurements revealed higher drug concentrations in tumor than in plasma; NFKBIA protein levels were similar in drug-treated vs. drug-naïve tumor specimens. Nuclear 20S proteasome was less in postoperative samples. Postoperative treatment with TMZ and bortezomib did not show clinical activity. Bortezomib appears to sequester in tumor but pharmacological effects on NFKBIA were not seen, possibly obscured due to downregulation of NFKBIA during tumor progression. Changes in nuclear 20S could be marker of bortezomib effect on tumor.
Collapse
Affiliation(s)
- Jeffrey J Raizer
- Department of Neurology, Northwestern University, Abbott Hall, Room 1123, 710 N. Lake Shore Dr., Chicago, IL, 60611, USA.
| | - James P Chandler
- Department of Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Roberto Ferrarese
- Department of Neurosurgery, Neurocenter and Comprehensive Cancer Center, University of Freiburg, Freiburg, Germany
| | - Sean A Grimm
- Cadence Health Care-Central DuPage Hospital, Winfield, IL, USA
| | | | - Kenji Muro
- Illinois Masonic Hospital, Chicago, IL, USA
| | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Irene Helenowski
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Martin Paton
- Millennium Pharmaceuticals, Inc, Cambridge, MA, UK
| | - Markus Bredel
- Department of Radiation Oncology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|