1
|
Revisiting the definition of glioma recurrence based on a phylogenetic investigation of primary and re-emerging tumor samples: a case report. Brain Tumor Pathol 2022; 39:218-224. [DOI: 10.1007/s10014-022-00438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
|
2
|
Ding X, Zhao Y, Yuan H, Zhang Y, Gao Y. Role of PVT1 polymorphisms in the glioma susceptibility and prognosis. Eur J Cancer Prev 2021; 30:400-408. [PMID: 33443959 DOI: 10.1097/cej.0000000000000636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Genetic factors play a crucial role in the glioma risk and prognosis of glioma patients. To explore the role of plasmacytoma variant translocation 1 (PVT1) polymorphism in the susceptibility and survival of glioma in the Chinese Han population, we conducted a case-control study. METHODS The three single-nucleotide polymorphisms (SNPs) in PVT1 were genotyped using Agena MassARRAY from 575 patients with glioma and 500 healthy controls. We used the χ2 test to analyze the differences in distribution of allele and genotype between the cases and controls. Odds ratio and 95% confidence interval (CI) were calculated by logistic regression analysis to evaluate the association SNPs with glioma risk. The effects of polymorphisms and clinical features on survival of glioma patients were evaluated using the log-rank test, Kaplan-Meier and Cox regression analysis. RESULTS We found that rs13255292 was associated with a decreased risk of glioma in the recessive model in overall or male; and rs4410871 was significantly associated with an increased the risk of glioma in age ≤40 years old or female. Moreover, the extent of resection and chemotherapy were found to be key prognostic factors in survival of glioma patients. However, the gender, age, tumor grade, radiotherapy and PVT1 polymorphisms have no effect on prognosis of glioma patients. CONCLUSIONS Our results indicated that PVT1 polymorphisms (rs13255292 and rs4410871) were associated with glioma susceptibility, but have no effect on prognosis of glioma patients. Further studies with large samples are required to confirm the results.
Collapse
Affiliation(s)
| | | | | | | | - Ya Gao
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
3
|
Tian T, Guo T, Zhen W, Zou J, Li F. BET degrader inhibits tumor progression and stem-like cell growth via Wnt/β-catenin signaling repression in glioma cells. Cell Death Dis 2020; 11:900. [PMID: 33093476 PMCID: PMC7582157 DOI: 10.1038/s41419-020-03117-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
Based on their histological appearance, gliomas are a very common primary tumor type of the brain and are classified into grades, Grade I to Grade IV, of the World Health Organization. Treatment failure is due to the cancer stem cells (CSC) phenotype maintenance and self-renewal. BET degraders such as ZBC260 represents a novel class of BET inhibitors that act by inducing BET proteins degradation. This study explores the mode of action and effects of ZBC260 in vivo and in vitro against glioma. By inhibiting cell proliferation and inducting cell cycle arrest, the fact that glioma cell lines show sensitivity to ZBC260. Notably, ZBC260 targeted glioma without side effects in vivo. In addition, the stem cell-like properties of glioma cells were inhibited upon ZBC260 treatment. When the mechanism was examined, our findings indicated that Wnt/β-catenin pathway repression is required for ZBC260-induced stem cell-like properties and tumor growth suppression. In conclusion, the growth of tumors and stem cell-like properties were inhibited by ZBC260 via Wnt/β-catenin repression, which suggests ZBC260 as a potential therapeutic agent for glioma.
Collapse
Affiliation(s)
- Tao Tian
- Department of Oncology, Shandong Zaozhuang Municipal Hospital, Zaozhuang City, Shandong Province, China
| | - Tongqi Guo
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Wei Zhen
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Jianjun Zou
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Fuyong Li
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Prognostic Nomograms for Primary High-Grade Glioma Patients in Adult: A Retrospective Study Based on the SEER Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1346340. [PMID: 32775408 PMCID: PMC7397389 DOI: 10.1155/2020/1346340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Purpose In our study, we aimed to screen the risk factors that affect overall survival (OS) and cancer-specific survival (CSS) in adult glioma patients and to develop and evaluate nomograms. Methods Primary high-grade gliomas patients being retrieved from the surveillance, epidemiology and end results (SEER) database, between 2004 and 2015, then they randomly assigned to a training group and a validation group. Univariate and multivariate Cox analysis models were used to choose the variables significantly correlated with the prognosis of high-grade glioma patients. And these variables were used to construct the nomograms. Next, concordance index (C-index), calibration plot and receiver operating characteristics (ROCs) curve were used to evaluate the accuracy of the nomogram model. In addition, the decision curve analysis (DCA) was used to analyze the benefit of nomogram and prognostic indicators commonly used in clinical practice. Results A total of 6395 confirmed glioma patients were selected from the SEER database, divided into training set (n =3166) and validation set (n =3229). Age at diagnosis, tumor grade, tumor size, histological type, surgical type, radiotherapy and chemotherapy were screened out by Cox analysis model. For OS nomogram, the C-index of the training set was 0.741 (95% CI: 0.751-0.731), and the validation set was 0.738 (95% CI: 0.748-0.728). For CSS nomogram, the C-index of the training set was 0.739 (95% CI: 0.749-0.729), and the validation set was 0.738 (95% CI: 0.748-0.728). The net benefit and net reduction in inverventions of nomograms in the decision curve analysis (DCA) was higher than histological type. Conclusions We developed nomograms to predict 3- and 5-year OS rates and 3- and 5-year CSS rates in adult high-grade glioma patients. Both the training set and the validation set showed good calibration and validation, indicating the clinical applicability of the nomogram and good predictive results.
Collapse
|
5
|
Jones PS, Carroll KT, Koch M, DiCesare JAT, Reitz K, Frosch M, Barker FG, Cahill DP, Curry WT. Isocitrate Dehydrogenase Mutations in Low-Grade Gliomas Correlate With Prolonged Overall Survival in Older Patients. Neurosurgery 2019; 84:519-528. [PMID: 29846690 DOI: 10.1093/neuros/nyy149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/25/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Older age has been associated with worse outcomes in low-grade gliomas (LGGs). Given their rarity in the older population, determining optimal treatment plans and patient outcomes remains difficult. OBJECTIVE To retrospectively study LGG survival outcomes in an older population stratified by molecular genetic profiles. METHODS We included patients age ≥40 yr with pathologically confirmed World Health Organization grade II gliomas treated at a single institution between 1995 and 2015. We collected tumor genomic information when available. RESULTS Median overall survival for the entire group (n = 111, median age 51 yr, range 40-77 yr) was 15.75 yr with 5- and 10-yr survival rates of 84.3% and 67.7%, respectively. On univariate analysis, patients with isocitrate dehydrogenase (IDH) mutation had significantly increased survival compared to IDH wildtype (hazard ratio [HR] 0.17 [0.07-0.45], P < .001). Older age, seizure at presentation, larger tumor size, IDH wildtype, biopsy only, chemotherapy, and radiation were significantly associated with shorter survival based on univariate analyses. In patients with known IDH status (n = 73), bivariate analysis of IDH mutation status and age showed only IDH status significantly influenced overall survival (HR 0.22 [0.07-0.68], P = .008). Greater surgical resection was predictive of survival, although extent of resection significantly correlated with IDH mutation status (odds ratio 7.5; P < .001). CONCLUSION We show that genomic alterations in LGG patients ≥40 occur at high rates like the younger population and predict a similar survival advantage. Maximizing surgical resection may have survival benefit, although feasibility of resection is often linked to IDH status. Given the importance of molecular genetics, a redefinition of prognostic factors associated with these tumors is likely to emerge.
Collapse
Affiliation(s)
- Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Kate T Carroll
- School of Medicine, University of California-San Diego, San Diego, California
| | - Matthew Koch
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Jasmine A T DiCesare
- Department of Neurosurgery, University of California-Los Angeles, Los Angeles, California
| | - Kara Reitz
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Frosch
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Fred G Barker
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
6
|
Magnetic resonance imaging texture analyses in lower-grade gliomas with a commercially available software: correlation of apparent diffusion coefficient and T2 skewness with 1p/19q codeletion. Neurosurg Rev 2019; 43:1211-1219. [PMID: 31402410 DOI: 10.1007/s10143-019-01157-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/01/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Preoperative prediction of molecular information of lower-grade gliomas (LrGGs) helps to determine the overall treatment strategy as well as the initial surgical strategy. This study aimed to detect magnetic resonance imaging (MRI) texture parameters to predict the molecular signature of LrGGs using a commercially available software and routine MR images. Forty-three patients treated at Keio University Hospital who had World Health Organization grade II or III gliomas were included. All patients having preoperative T1- and T2-weighted, fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted (DW) images were also included. Texture analyses of T2, FLAIR, and apparent diffusion coefficient (ADC) histograms were performed using a commercially available software. Texture parameters including kurtosis, skewness, and entropy were investigated to determine any correlation with the presence or absence of isocitrate dehydrogenase (IDH) mutations, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. ADC skewness and T2 skewness were significantly associated with 1p/19q codeletion status. ADC skewness of ≥ 0.25 predicted 1p/19q codeletion with a sensitivity and specificity of 80% and 65.2%, respectively (AUC = 0.728). T2 skewness of ≥ - 0.11 predicted 1p/19q codeletion with a sensitivity and specificity of 80% and 91.3%, respectively, (AUC = 0.866). None of the texture parameters were associated with IDH mutation and MGMT promoter methylation. MRI texture analysis using a commercially available software demonstrated that T2 skewness could predict 1p/19q codeletion with high sensitivity and specificity, suggesting a clinical utility.
Collapse
|
7
|
Kanazawa T, Fujiwara H, Takahashi H, Nishiyama Y, Hirose Y, Tanaka S, Yoshida K, Sasaki H. Imaging scoring systems for preoperative molecular diagnoses of lower-grade gliomas. Neurosurg Rev 2018; 42:433-441. [PMID: 29700705 DOI: 10.1007/s10143-018-0981-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
Abstract
Recent advance in molecular characterization of gliomas showed that patient prognosis and/or tumor chemosensitivity correlate with certain molecular signatures; however, this information is available only after tumor resection. If molecular information is available by routine radiological examinations, surgical strategy as well as overall treatment strategy could be designed preoperatively.With the aim to establish an imaging scoring system for preoperative diagnosis of molecular status in lower-grade gliomas (WHO grade 2 or 3, LrGGs), we investigated 8 imaging features available on routine CT and MRI in 45 LGGs (discovery cohort) and compared them with the status of 1p/19q codeletion, IDH mutations, and MGMT promoter methylation. The scoring systems were established based on the imaging features significantly associated with each molecular signature, and were tested in the another 52 LrGGs (validation cohort).For prediction of 1p/19q codeletion, the scoring system is composed of calcification, indistinct tumor border on T1, paramagnetic susceptibility effect on T1, and cystic component on FLAIR. For prediction of MGMT promoter methylation, the scoring system is composed of indistinct tumor border, surface localization (FLAIR), and cystic component. The scoring system for prediction of IDH status was not established. The 1p/19q score ≥ 3 showed PPV of 96.2% and specificity of 98.1%, and the MGMT methylation score ≥ 2 showed PPV of 77.4% and specificity of 67.6% in the entire cohort.These scoring systems based on widely available imaging information may help to preoperatively design personalized treatment in patients with LrGG.
Collapse
Affiliation(s)
- Tokunori Kanazawa
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirokazu Fujiwara
- Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenori Takahashi
- Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuya Nishiyama
- Department of Neurosurgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutusukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutusukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Saeko Tanaka
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
8
|
Sasaki H, Yoshida K. Treatment Recommendations for Adult Patients with Diffuse Gliomas of Grades II and III According to the New WHO Classification in 2016. Neurol Med Chir (Tokyo) 2017; 57:658-666. [PMID: 28845038 PMCID: PMC5735229 DOI: 10.2176/nmc.ra.2017-0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
With advanced understanding of molecular background and correlation with therapeutic outcomes, the revised 4th edition of World Health Organization (WHO) classification of central nervous system (CNS) tumors incorporated molecular information into the definition of diffuse gliomas. Indeed, oligodendroglioma and astrocytoma are now defined by molecular signature, with diagnosis of glioblastoma being made by histology. In parallel, numerous clinical trials are underway all over the world, and important findings are being produced every year that have an impact on patient outcomes. Moreover, novel therapies/technologies are also being actively developed; however, there are still many CNS tumors for which no effective therapy has been established except radiotherapy. In this article, the authors review the recent results of major clinical trials and present their treatment recommendations for patients with adult, supratentorial diffuse gliomas of grades II and III stratified according to the new WHO classification.
Collapse
Affiliation(s)
- Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine
| | | |
Collapse
|